Consensus Clinical Management Guidelines for Friedreich's Ataxia

Total Page:16

File Type:pdf, Size:1020Kb

Consensus Clinical Management Guidelines for Friedreich's Ataxia Consensus Clinical Management Guidelines for Friedreich’s ataxia November 2014 Date of ERN-RND Affirmation: April 2019 Introduction to the European Reference Network for Rare Neurological Diseases (ERN-RND): ERN-RND is a European Reference Network established and approved by the European Union. ERN-RND is a healthcare infrastructure which focuses on rare neurological diseases (RND). The three main pillars of ERN-RND are (i) network of experts and expertise centres, (ii) generation, pooling and dissemination of RND knowledge, and (iii) implementation of e- health to allow the expertise to travel instead of patients and families. ERN-RND unites 32 of Europe’s leading expert centres in 13 Member States and includes highly active patient organizations. Centres are located in Belgium, Bulgaria, Czech Republic, France, Germany, Hungary, Italy, Lithuania, Netherlands, Poland, Slovenia, Spain and the UK. The following disease groups are covered by ERN-RND: Ataxias and Hereditary Spastic Paraplegias Atypical Parkinsonism and genetic Parkinson’s disease Dystonia, Paroxysmal Disorder and Neurodegeneration with Brain Ion Accumulation Frontotemporal Dementia Huntingtons’ Disease and other Choreas Leukodystrophies Specific information about the network, the expert centres and the diseases covered can be found at the networks web site www.ern-rnd.eu. Affirmation of value: The European Reference Network for Rare Neurological Diseases has affirmed the value of this guideline as best clinical practice for the management of Friedreich’s ataxia. This document was supported by and done in the framework of the European Reference Network for Rare Neurological Diseases (ERN-RND). ERN-RND is one of the 24 European Reference Networks (ERNs) approved by the ERN Board of Member States. The ERNs are co-funded by the European Commission (ERN-RND: 3HP 767231). Disclaimer: Clinical practice guidelines, practice advisories, systematic reviews and other guidance published, endorsed or affirmed by ERN-RND are assessments of current scientific and clinical information provided as an educational service. The information (1) should not be considered inclusive of all proper treatments, methods of care, or as a statement of the standard of care; (2) is not continually updated and may not reflect the most recent evidence (new information may emerge between the time information is developed and when it is published or read); (3) addresses only the question(s) specifically identified; (4) does not mandate any particular course of medical care; and (5) is not intended to substitute for the independent professional judgement of the treating provider, as the information does account for individual variation among patients. In all cases, the selected course of action should be considered by the treating provider in the context of treating the individual patient. Use of the information is voluntary. ERN-RND provided this information on an “as is” basis, and makes no warranty, expressed or implied, regarding the information. ERN-RND specifically disclaims any warranties of merchantability or fitness for a particular use or purpose. ERN-RND assumes no responsibility for any injury or damage to persons or property arising out of or related to any use of this information or for any errors or omissions. Guidelines on the FARA website: http://www.curefa.org/clinical-care-guidelines Guidelines: This document was supported by and done in the framework of the European Reference Network for Rare Neurological Diseases (ERN-RND). ERN-RND is one of the 24 European Reference Networks (ERNs) approved by the ERN Board of Member States. The ERNs are co-funded by the European Commission (ERN-RND: 3HP 767231). Authors Executive committee: Professor Martin Delatycki, Dr Louise Corben, Professor Massimo Pandolfo, Professor David Lynch, Professor Jörg Schulz Contributing authors (in alphabetical order) Dr Laura Balcer Department of Neurology, University of Pennsylvania School of Medicine, USA. Mr Ron Bartek Friedreich Ataxia Research Alliance, USA. Dr Claire Bates Palliative Medicine, Barking, Havering and Redbridge University Hospitals NHS Trust, UK. Ms Emma Campagna Physiotherapy Department, Friedreich Ataxia Clinic, Monash Medical Centre, Victoria, Australia. Dr Louise Corben Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville and Friedreich Ataxia Clinic, Monash Medical Centre, Victoria, Australia. Dr Miriam Cnop, Laboratory of Experimental Medicine and Division of Endocrinology, Erasmus Hospital, ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium. Professor Martin Delatycki Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville and Friedreich Ataxia Clinic, Monash Medical Centre, Victoria, Australia. Professor Alexandra Dürr Neurogenetic Clinic of Département de Génétique, Hôpital de la Salpêtrière, Paris, France. Dr Anton Emmanuel Department of Gastroenterology and Nutrition, University College London, UK. Ms Jennifer Farmer Friedreich Ataxia Research Alliance, USA. Consensus clinical management guidelines for Friedreich ataxia. November 2014. 2 Professor John Flynn Professor of Orthopaedic Surgery, University of Pennsylvania and Children's Hospital of Philadelphia, USA. Ms Lisa S. Friedman Departments of Neurology and Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania, USA. Dr Paola Giunti Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. Dr Marios Hadjivassiliou Department of Neurology, Royal Hallamshire Hospital, Sheffield, UK. Dr Michael Ho Monash Lung and Sleep, Monash Medical Centre, Victoria, Australia. Dr Grazia Isaya Pediatric and Adolescent Medicine, Mayo Clinic, Minnesota, USA. Dr Mary Kearney Cochrane Collaboration, Irish College of General Practitioners, Dublin, Ireland. Ms Melissa Loucas Senior Speech and Language Therapist, National Hospital for Neurology and Neurosurgery, London, UK. Professor David R. Lynch Departments of Neurology and Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania, USA. Dr Caterina Marotti Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione-IRCCS Istituto Neurologico Carlo Besta, Milan, Italy. Ms Sarah Milne Physiotherapy Department, Kingston Centre, Victoria, Australia. Dr Thierry Morlet Auditory Physiology and Psychoacoutics Laboratory, A.I. duPont Hospital for Children, Delaware, USA. Dr Andrew McGarry Cooper Neurological Institute, New Jersey, USA. Professor Massimo Pandolfo Consensus clinical management guidelines for Friedreich ataxia. November 2014. 3 Laboratory of Experimental Neurology, Université Libre de Bruxelles, Brussels, Belgium. Dr Jalesh Panicker National Hospital for Neurology and Neurosurgery, London, UK. Dr Michael Parkinson Department of Molecular Neuroscience, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK. Dr R Mark Payne Department of Pediatrics, Indiana University School of Medicine, Indiana, USA. Dr Roger Peverill Monash Heart, Monash Medical Centre, Victoria, Australia. Associate Professor Gary Rance Department of Audiology and Speech Pathology, University of Melbourne, Victoria, Australia. Ms Lucy Rodriguez Clinical Specialist Speech and Language Therapist, National Hospital for Neurology and Neurosurgery, London, UK. Ms Kimberly A. Schadt Departments of Neurology and Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania, USA. Ms Lauren Seyer Departments of Neurology and Pediatrics, Children’s Hospital of Philadelphia and the University of Pennsylvania, USA. Professor Jörg Schulz Department of Neurology, University Hospital, Aachen, Germany. Dr S.H Subramony Department of Neurology, Neuromuscular Division, University of Florida, Gainesville, Florida, USA. Dr. Kelly L. Sullivan University of South Florida, Ataxia Research Center, Florida, USA. Dr Adam Vogel Department of Audiology and Speech Pathology, University of Melbourne, Victoria, Australia. Dr Eppie Yiu Consensus clinical management guidelines for Friedreich ataxia. November 2014. 4 Bruce Lefroy Centre, Murdoch Childrens Research Institute, Parkville and Friedreich Ataxia Clinic, Monash Medical Centre, Victoria, Australia. Dr Grace Yoon Divisions of Neurology and Clinical and Metabolic Genetics, Hospital for Sick Children and University of Toronto, Ontario, Canada. Dr. Theresa A. Zesiewicz University of South Florida, Ataxia Research Center, Florida, USA. Consensus clinical management guidelines for Friedreich ataxia. November 2014. 5 Disclaimer: This document is designed to be a general guide to appropriate clinical practice. It is anticipated it will be followed subject to the clinician’s judgment and the preference of the person with Friedreich ataxia in each individual case. These guidelines are designed to provide information to assist in decision-making and are based on the best evidence available at the time of development. Clinicians and individuals with Friedreich ataxia are encouraged to ensure they are aware of evidence that may become available after the completion of this document. Copies of the document can be downloaded through the Friedreich Ataxia Research Alliance (USA) on: http://www.curefa.org/ Funding: The authors of this document gratefully acknowledge the financial assistance provided by the Friedreich Ataxia Research Alliance (USA). Consensus clinical management guidelines for Friedreich ataxia. November 2014. 6 Friedreich ataxia clinical
Recommended publications
  • Friedreich Ataxia Mouse Models with Progressive Cerebellar and Sensory Ataxia Reveal Autophagic Neurodegeneration in Dorsal Root Ganglia
    The Journal of Neuroscience, February 25, 2004 • 24(8):1987–1995 • 1987 Neurobiology of Disease Friedreich Ataxia Mouse Models with Progressive Cerebellar and Sensory Ataxia Reveal Autophagic Neurodegeneration in Dorsal Root Ganglia Delphine Simon,1 Herve´ Seznec,1 Anne Gansmuller,1 Nade`ge Carelle,1 Philipp Weber,1 Daniel Metzger,1 Pierre Rustin,2 Michel Koenig,1 and He´le`ne Puccio1 1Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Sante´ et de la Recherche Me´dicale (INSERM)/Universite´ Louis Pasteur, 67404 Illkirch cedex, CU de Strasbourg, France, and 2Unite´ de Recherches sur les Handicaps Ge´ne´tiques de l’Enfant, INSERM U393, Hoˆpital Necker-Enfants Malades, 75015 Paris, France Friedreich ataxia (FRDA), the most common recessive ataxia, is characterized by degeneration of the large sensory neurons of the spinal cord and cardiomyopathy. It is caused by severely reduced levels of frataxin, a mitochondrial protein involved in iron–sulfur cluster (ISC) biosynthesis. Through a spatiotemporally controlled conditional gene-targeting approach, we have generated two mouse models for FRDA that specifically develop progressive mixed cerebellar and sensory ataxia, the most prominent neurological features of FRDA. Histological studies showed both spinal cord and dorsal root ganglia (DRG) anomalies with absence of motor neuropathy, a hallmark of the human disease. In addition, one line revealed a cerebellar granule cell loss, whereas both lines had Purkinje cell arborization defects. These lines represent the first FRDA models with a slowly progressive neurological degeneration. We identified an autophagic process as the causative pathological mechanism in the DRG, leading to removal of mitochondrial debris and apparition of lipofuscin deposits.
    [Show full text]
  • Scienti®C Review Spastic Movement Disorder
    Spinal Cord (2000) 38, 389 ± 393 ã 2000 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/00 $15.00 www.nature.com/sc Scienti®c Review Spastic movement disorder V Dietz*,1 1Paracare, Paraplegic Centre of the University Hospital Balgrist, ZuÈrich, Switzerland This review deals with the neuronal mechanisms underlying spastic movement disorder, assessed by electrophysiological means with the aim of ®rst, a better understanding of the underlying pathophysiology and second, the selection of an adequate treatment. For the patient usually one of the ®rst symptoms of a lesion within the central motor system represents the movement disorder, which is most characteristic during locomotion in patients with spasticity. The clinical examination reveals exaggerated tendon tap re¯exes and increased muscle tone typical of the spastic movement disorder. However, today we know that there exists only a weak relationship between the physical signs obtained during the clinical examination in a passive motor condition and the impaired neuronal mechanisms being in operation during an active movement. By the recording and analysis of electrophysiological and biomechanical parameters during a functional movement such as locomotion, the signi®cance of, for example, impaired re¯ex behaviour or pathophysiology of muscle tone and its contribution to the movement disorder can reliably be assessed. Consequently, an adequate treatment should not be restricted to the cosmetic therapy and correction of an isolated clinical parameter but should be based on the pathophysiology and signi®cance of the mechanisms underlying the disorder of functional movement which impairs the patient. Spinal Cord (2000) 38, 389 ± 393 Keywords: spinal cord injury; spasticity; electrophysiological recordings; treatment Introduction Movement disorders are prominent features of impaired strength of electromyographic (EMG) activation of function of the motor systems and are frequently best antagonistic leg muscles as well as intrinsic and passive re¯ected during gait.
    [Show full text]
  • Dual Role of the Mitochondrial Protein Frataxin in Astrocytic Tumors
    Laboratory Investigation (2011) 91, 1766–1776 & 2011 USCAP, Inc All rights reserved 0023-6837/11 $32.00 Dual role of the mitochondrial protein frataxin in astrocytic tumors Elmar Kirches1, Nadine Andrae1, Aline Hoefer2, Barbara Kehler1,3, Kim Zarse4, Martin Leverkus3, Gerburg Keilhoff5, Peter Schonfeld5, Thomas Schneider6, Annette Wilisch-Neumann1 and Christian Mawrin1 The mitochondrial protein frataxin (FXN) is known to be involved in mitochondrial iron homeostasis and iron–sulfur cluster biogenesis. It is discussed to modulate function of the electron transport chain and production of reactive oxygen species (ROS). FXN loss in neurons and heart muscle cells causes an autosomal-dominant mitochondrial disorder, Friedreich’s ataxia. Recently, tumor induction after targeted FXN deletion in liver and reversal of the tumorigenic phenotype of colonic carcinoma cells following FXN overexpression were described in the literature, suggesting a tumor suppressor function. We hypothesized that a partial reversal of the malignant phenotype of glioma cells should occur after FXN transfection, if the mitochondrial protein has tumor suppressor functions in these brain tumors. In astrocytic brain tumors and tumor cell lines, we observed reduced FXN levels compared with non-neoplastic astrocytes. Mitochondrial content (citrate synthase activity) was not significantly altered in U87MG glioblastoma cells stably overexpressing FXN (U87-FXN). Surprisingly, U87-FXN cells exhibited increased cytoplasmic ROS levels, although mitochondrial ROS release was attenuated by FXN, as expected. Higher cytoplasmic ROS levels corresponded to reduced activities of glutathione peroxidase and catalase, and lower glutathione content. The defect of antioxidative capacity resulted in increased susceptibility of U87-FXN cells against oxidative stress induced by H2O2 or buthionine sulfoximine.
    [Show full text]
  • Idiopathic Scoliosis
    Close (https://www.aetna.com/) Idiopathic Scoliosis Number: 0398 Policy History Policy I. Aetna considers surface electrical muscle stimulators Last Review 06/13/2017 (direct or alternating current, not high-voltage Effective: 05/04/2000 galvanic current) experimental and investigational for Next Review: 04/12/2018 the management of idiopathic scoliosis because there is inadequate evidence of its effectiveness and Review History safety in the peer-reviewed published medical literature. Definitions II. Aetna considers surgery (e.g., spinal fusion with instrumentation and bone grafting) for the treatment of idiopathic scoliosis medically necessary for any of Additional the following conditions: Information A. An increasing curve (greater than 40 degrees) in a Clinical Policy Bulletin growing child; or Notes B. Scoliosis related pain that is refractory to conservative treatments; or C. Severe deformity (curve greater than 50 degrees) with trunk asymmetry in children and adolescents; or D. Thoracic lordosis that can not be treated conservatively. Aetna considers idiopathic scoliosis surgery experimental and investigational when these criteria are not met. III. Aetna considers growing rods technique medically necessary in the treatment of idiopathic scoliosis for persons who meet criteria for surgery above. Please note this include the MAGEC System; but does not apply to other expandable magnetic growing rods (e.g., Phenix Growing Rod device) which are considered investigational and experimental. IV. Scoliosis braces and casts A. Aetna considers the following types of braces and casts medically necessary DME for the treatment of scoliosis: 1. Boston scoliosis brace 2. Charleston scoliosis brace 3. Milwaukee scoliosis brace 4. Providence brace 5. Rigo-Cheneau brace 6.
    [Show full text]
  • Vet Oracle Teleneurology: Client Factsheet
    Client Factsheet Paroxysmal Dyskinesia Paroxysmal Dyskinesia: A little bit of background Paroxysmal dyskinesias (PDs) are episodic movement disorders in which abnormal movements are present only during attacks. Although increasingly being recognised, they are often poorly characterised in veterinary literature and are commonly mistaken for an epileptic seizure, both by owners and by vets. The term ‘paroxysmal’ indicates that the signs occur suddenly against a background of normality. The term ‘dyskinesia’ broadly refers to a movement of the body that is involuntary, which means that the animal has no control over the movement and remains fully aware of its surroundings. Between attacks, affected animals are totally normal and there is no loss of consciousness during the attacks, though some animals may find the episodes disconcerting and do not respond normally. The attacks can last anything from a few minutes to a couple of hours and can sometime occur multiple times in a day. What causes Paroxysmal Dyskinesia? Most neurologists consider that PD results from dysfunction an area of the brain called the basal nuclei (often call the basal ganglia) and the cerebellum which is a fundamental part of the brain that involves in coordinating movement. Nerve cells in the basal nuclei play an important role in initiating and controlling movement. It is thought that abnormal signal from the cerebellum causes abnormal activity of the basal nuclei, which results in spontaneous and uncontrolled muscle activity and, therefore, movement and posture. The underlying cause of many PDs is unknown, with the majority being described as idiopathic (meaning of unknown cause) and presumed to be related to abnormal brain signalling between different parts involved with movement or its feedback control.
    [Show full text]
  • THE MANAGEMENT of TREMOR Peter G Bain
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.72.suppl_1.i3 on 1 March 2002. Downloaded from THE MANAGEMENT OF TREMOR Peter G Bain *i3 J Neurol Neurosurg Psychiatry 2002;72(Suppl I):i3–i9 remor is defined as a rhythmical, involuntary oscillatory movement of a body part.1 The Tformulation of a clinical diagnosis for an individual’s tremor involves two discrete steps2: c The observed tremor is classified on phenomenological grounds c An attempt is made to find the cause of the tremor by looking for aetiological clues in the patient’s history and physical examination and also, in some cases, by investigation. c PHENOMENOLOGICAL CLASSIFICATION OF TREMOR The phenomenological classification of tremor is determined by finding out: c which parts of the patient’s body are affected by tremor? c what types (or components) of tremor, classified by state of activity, are present at those anatomical sites? The following definitions are used to describe the various tremor components evident on exam- ination1: c Rest tremor is a tremor present in a body part that is not voluntarily activated and is completely supported against gravity (ideally resting on a couch) copyright. c Action tremor is any tremor that is produced by voluntary contraction of a muscle. It includes pos- tural, kinetic, intention, task specific, and isometric tremor: – Postural tremor is present while voluntarily maintaining a position against gravity – Kinetic tremor is tremor occurring during any voluntary movement. Simple kinetic tremor occurs during voluntary movements that are not target directed – Intention tremor or tremor during target directed movement is present when tremor amplitude increases during visually guided movements towards a target at the termination of that movement, when the possibility of position specific tremor or postural tremor produced at the beginning and end of a movement has been excluded – Task specific kinetic tremor—kinetic tremor may appear or become exacerbated during specific activities.
    [Show full text]
  • The Pathogenetic Role of Β-Cell Mitochondria in Type 2 Diabetes
    236 3 Journal of M Fex et al. Mitochondria in β-cells 236:3 R145–R159 Endocrinology REVIEW The pathogenetic role of β-cell mitochondria in type 2 diabetes Malin Fex1, Lisa M Nicholas1, Neelanjan Vishnu1, Anya Medina1, Vladimir V Sharoyko1, David G Nicholls1, Peter Spégel1,2 and Hindrik Mulder1 1Department of Clinical Sciences in Malmö, Unit of Molecular Metabolism, Lund University Diabetes Centre, Clinical Research Center, Malmö University Hospital, Lund University, Malmö, Sweden 2Department of Chemistry, Center for Analysis and Synthesis, Lund University, Sweden Correspondence should be addressed to H Mulder: [email protected] Abstract Mitochondrial metabolism is a major determinant of insulin secretion from pancreatic Key Words β-cells. Type 2 diabetes evolves when β-cells fail to release appropriate amounts f TCA cycle of insulin in response to glucose. This results in hyperglycemia and metabolic f coupling signal dysregulation. Evidence has recently been mounting that mitochondrial dysfunction f oxidative phosphorylation plays an important role in these processes. Monogenic dysfunction of mitochondria is a f mitochondrial transcription rare condition but causes a type 2 diabetes-like syndrome owing to β-cell failure. Here, f genetic variation we describe novel advances in research on mitochondrial dysfunction in the β-cell in type 2 diabetes, with a focus on human studies. Relevant studies in animal and cell models of the disease are described. Transcriptional and translational regulation in mitochondria are particularly emphasized. The role of metabolic enzymes and pathways and their impact on β-cell function in type 2 diabetes pathophysiology are discussed. The role of genetic variation in mitochondrial function leading to type 2 diabetes is highlighted.
    [Show full text]
  • Nonnekes Gait Upper Motor Neuron Syndrome Clean
    A review of the management of gait impairments in chronic unilateral upper motor neuron lesions Jorik Nonnekes MD PhD1, 2, Nathalie Benda MD PhD2, Hanneke van Duijnhoven MD1, Frits Lem MD2, Noël Keijsers PhD3, Jan Willem K. Louwerens MD PhD4, Allan Pieterse PT PhD1, Bertjo Renzenbrink MD,5 Vivian Weerdesteyn PT PhD,1,3 Jaap Buurke PT PhD,6,7 Alexander C.H. Geurts MD PhD1,2 1Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; 2Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands 3Research Department, Sint Maartenskliniek, Nijmegen, The Netherlands 4Department of Orthopaedics, Sint Maartenskliniek, Nijmegen, The Netherlands 5Rijndam Rehabilitation Center, Rotterdam, The Netherlands 6Roessingh Research and Development, Enschede, the Netherlands 7Biomedical Signals and Systems, MIRA - Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands Running title: Gait impairments in supratentorial upper motor neuron syndromes Word count: 3497 Corresponding author Jorik Nonnekes, MD, PhD Radboud University Medical Centre Department of Rehabilitation PO Box 19101, 6500 HB Nijmegen The Netherlands E-mail: [email protected] ABSTRACT Importance: A variety of neurological disorders can damage the corticospinal tract in the supratentorial region of the brain. Gait impairments are common in patients with chronic supratentorial upper motor neuron lesions, and are a source of great disability. Clinical management aimed at improving the gait pattern in these patients is generally perceived as a challenging task, as many possible abnormalities may interact. Moreover, a multitude of treatment options exist – ranging from assistive devices and muscle stretching to pharmacological and surgical interventions – but evidence is inconclusive for most approaches and there is a lack of clear treatment guidelines.
    [Show full text]
  • Movement Disorders in the Elderly
    MOVEMENT DISORDERS IN THE ELDERLY Eugene C. Lai, M.D., Ph.D. Michael E. DeBakey VA Medical Center Baylor College of Medicine Houston, Texas MOVEMENT DISORDERS Neurologic dysfunctions in which there is either a paucity of voluntary and automatic movements (HYPOKINESIA) or an excess of movement (HYPERKINESIA) or uncontrolled movements (DYSKINESIA) typically unassociated with weakness or spasticity HYPOKINESIAS • Parkinson‟s disease • Secondary Parkinsonism • Parkinson‟s plus syndromes HYPERKINESIAS • Akathisia • Hemifacial spasm • Athetosis • Myoclonus • Ballism • Restless leg syndrome • Chorea • Tics • Dystonia • Tremor COMMON MOVEMENT DISORDERS IN THE ELDERLY • Parkinsonism • Tremor • Gait disorder • Restless leg syndrome • Drug-induced syndrome PARKINSONISM • Parkinson‟s disease • Secondary parkinsonism • Drug-induced parkinsonism • Vascular parkinsonism • Parkinson‟s plus syndromes • Multiple system atrophy • Progressive supranuclear palsy PARKINSON’S DISEASE PARKINSON’S DISEASE Classical Clinical Features • Resting Tremor • Cogwheel Rigidity • Bradykinesia • Postural Instability PARKINSON’S DISEASE Associated Clinical Features • Micrographia • Hypophonia • Hypomimia • Shuffling gait / festination • Drooling • Dysphagia NON-MOTOR COMPLICATIONS IN PARKINSON’S DISEASE • Sleep disturbances • Autonomic dysfunctions • Sensory phenomena • Neuropsychiatric manifestations • Cognitive impairment PARKINSON’S DISEASE General Considerations • The second most common progressive neurodegenerative disorder • The most common neurodegenerative movement
    [Show full text]
  • Traumatic Brain Injury(Tbi)
    TRAUMATIC BRAIN INJURY(TBI) B.K NANDA, LECTURER(PHYSIOTHERAPY) S. K. HALDAR, SR. OCCUPATIONAL THERAPIST CUM JR. LECTURER What is Traumatic Brain injury? Traumatic brain injury is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration impact, blast waves, or penetration by a projectile, leading to temporary or permanent impairment of brain function. Traumatic brain injury (TBI) has a dramatic impact on the health of the nation: it accounts for 15–20% of deaths in people aged 5–35 yr old, and is responsible for 1% of all adult deaths. TBI is a major cause of death and disability worldwide, especially in children and young adults. Males sustain traumatic brain injuries more frequently than do females. Approximately 1.4 million people in the UK suffer a head injury every year, resulting in nearly 150 000 hospital admissions per year. Of these, approximately 3500 patients require admission to ICU. The overall mortality in severe TBI, defined as a post-resuscitation Glasgow Coma Score (GCS) ≤8, is 23%. In addition to the high mortality, approximately 60% of survivors have significant ongoing deficits including cognitive competency, major activity, and leisure and recreation. This has a severe financial, emotional, and social impact on survivors left with lifelong disability and on their families. It is well established that the major determinant of outcome from TBI is the severity of the primary injury, which is irreversible. However, secondary injury, primarily cerebral ischaemia, occurring in the post-injury phase, may be due to intracranial hypertension, systemic hypotension, hypoxia, hyperpyrexia, hypocapnia and hypoglycaemia, all of which have been shown to independently worsen survival after TBI.
    [Show full text]
  • Src Inhibitors Modulate Frataxin Protein Levels
    Human Molecular Genetics, 2015, Vol. 24, No. 15 4296–4305 doi: 10.1093/hmg/ddv162 Advance Access Publication Date: 6 May 2015 Original Article ORIGINAL ARTICLE Src inhibitors modulate frataxin protein levels Downloaded from https://academic.oup.com/hmg/article/24/15/4296/2453025 by guest on 28 September 2021 Fabio Cherubini1, Dario Serio1, Ilaria Guccini1, Silvia Fortuni1,2, Gaetano Arcuri1, Ivano Condò1, Alessandra Rufini1,2, Shadman Moiz1, Serena Camerini3, Marco Crescenzi3, Roberto Testi1,2 and Florence Malisan1,* 1Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy, 2Fratagene Therapeutics Ltd, 22 Northumberland Rd, Dublin, Ireland and 3Department of Cell Biology and Neurosciences, Italian National Institute of Health, Viale Regina Elena, 299, 00161 Rome, Italy *To whom correspondence should be addressed at: Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, 00133 Rome, Italy. Tel: +39 0672596501; Fax: +39 0672596505; Email: [email protected] Abstract Defective expression of frataxin is responsible for the inherited, progressive degenerative disease Friedreich’s Ataxia (FRDA). There is currently no effective approved treatment for FRDA and patients die prematurely. Defective frataxin expression causes critical metabolic changes, including redox imbalance and ATP deficiency. As these alterations are known to regulate the tyrosine kinase Src, we investigated whether Src might in turn affect frataxin expression. We found that frataxin can be phosphorylated by Src. Phosphorylation occurs primarily on Y118 and promotes frataxin ubiquitination, a signal for degradation. Accordingly, Src inhibitors induce accumulation of frataxin but are ineffective on a non-phosphorylatable frataxin- Y118F mutant.
    [Show full text]
  • Update on Scoliosis
    Update on Evaluation and Treatment of Scoliosis Ron El-Hawary, MD, MSc, FRCS(C)*, Chukwudi Chukwunyerenwa, MD, MCh, FRCS(C) KEYWORDS Scoliosis Bracing Surgery VEPTR KEY POINTS Scoliosis can arise from a variety of causes and is defined as a lateral curvature of the spine greater than 10. The most common cause of scoliosis is idiopathic, which accounts for up to 80% of scoli- osis in children. The Adam’s forward bending test is a clinical evaluation of axial plane rotation that is asso- ciated with scoliosis. The goal of treatment is to prevent curve progression. If a curve progresses beyond 50,it will likely continue to progress into adulthood. For children with early onset scoliosis, the goal of treatment is also to maintain spine, chest, and pulmonary development throughout childhood. INTRODUCTION Scoliosis can arise from a variety of causes and is defined as a lateral curvature of the spine greater than 10 on an anterior-posterior standing radiograph (Fig. 1). However, in reality, it is a 3-dimensional structural deformity that includes a curvature in the anterior-posterior plane, angulation in the sagittal plane, and rotation in the transverse plane. This 3-dimensional deformity differentiates scoliosis from nonstructural spine deformities, which arise as compensation for abnormalities in other regions (eg, lower limb disorders resulting in limb length discrepancy), in which case the deformity is mono-planer and resolves when the primary abnormality is treated. IDIOPATHIC SCOLIOSIS The most common cause of scoliosis is idiopathic, which accounts for up to 80% of scoliosis in children.1 The cause of idiopathic scoliosis is unknown and is a diagnosis Disclosures: Consulting Depuy-Synthes Spine, Medtronic Canada, Halifax Biomedical Inc, research/educational support Depuy-Synthes Spine, Medtronic Canada (R.
    [Show full text]