Movement Disorders in the Elderly
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiplex Families with Multiple System Atrophy
ORIGINAL CONTRIBUTION Multiplex Families With Multiple System Atrophy Kenju Hara, MD, PhD; Yoshio Momose, MD, PhD; Susumu Tokiguchi, MD, PhD; Mitsuteru Shimohata, MD, PhD; Kenshi Terajima, MD, PhD; Osamu Onodera, MD, PhD; Akiyoshi Kakita, MD, PhD; Mitsunori Yamada, MD, PhD; Hitoshi Takahashi, MD, PhD; Motoyuki Hirasawa, MD, PhD; Yoshikuni Mizuno, MD, PhD; Katsuhisa Ogata, MD, PhD; Jun Goto, MD, PhD; Ichiro Kanazawa, MD, PhD; Masatoyo Nishizawa, MD, PhD; Shoji Tsuji, MD, PhD Background: Multiple system atrophy (MSA) has Results: Consanguineous marriage was observed in 1 been considered a sporadic disease, without patterns of of 4 families. Among 8 patients, 1 had definite MSA, 5 inheritance. had probable MSA, and 2 had possible MSA. The most frequent phenotype was MSA with predominant parkin- Objective: To describe the clinical features of 4 multi- sonism, observed in 5 patients. Six patients showed pon- plex families with MSA, including clinical genetic tine atrophy with cross sign or slitlike signal change at aspects. the posterolateral putaminal margin or both on brain mag- netic resonance imaging. Possibilities of hereditary atax- Design: Clinical and genetic study. ias, including SCA1 (ataxin 1, ATXN1), SCA2 (ATXN2), Machado-Joseph disease/SCA3 (ATXN1), SCA6 (ATXN1), Setting: Four departments of neurology in Japan. SCA7 (ATXN7), SCA12 (protein phosphatase 2, regula- tory subunit B,  isoform; PP2R2B), SCA17 (TATA box Patients: Eight patients in 4 families with parkinson- binding protein, TBP) and DRPLA (atrophin 1; ATN1), ism, cerebellar ataxia, and autonomic failure with age at ␣ onset ranging from 58 to 72 years. Two siblings in each were excluded, and no mutations in the -synuclein gene family were affected with these conditions. -
Friedreich Ataxia Mouse Models with Progressive Cerebellar and Sensory Ataxia Reveal Autophagic Neurodegeneration in Dorsal Root Ganglia
The Journal of Neuroscience, February 25, 2004 • 24(8):1987–1995 • 1987 Neurobiology of Disease Friedreich Ataxia Mouse Models with Progressive Cerebellar and Sensory Ataxia Reveal Autophagic Neurodegeneration in Dorsal Root Ganglia Delphine Simon,1 Herve´ Seznec,1 Anne Gansmuller,1 Nade`ge Carelle,1 Philipp Weber,1 Daniel Metzger,1 Pierre Rustin,2 Michel Koenig,1 and He´le`ne Puccio1 1Institut de Ge´ne´tique et de Biologie Mole´culaire et Cellulaire, Centre National de la Recherche Scientifique/Institut National de la Sante´ et de la Recherche Me´dicale (INSERM)/Universite´ Louis Pasteur, 67404 Illkirch cedex, CU de Strasbourg, France, and 2Unite´ de Recherches sur les Handicaps Ge´ne´tiques de l’Enfant, INSERM U393, Hoˆpital Necker-Enfants Malades, 75015 Paris, France Friedreich ataxia (FRDA), the most common recessive ataxia, is characterized by degeneration of the large sensory neurons of the spinal cord and cardiomyopathy. It is caused by severely reduced levels of frataxin, a mitochondrial protein involved in iron–sulfur cluster (ISC) biosynthesis. Through a spatiotemporally controlled conditional gene-targeting approach, we have generated two mouse models for FRDA that specifically develop progressive mixed cerebellar and sensory ataxia, the most prominent neurological features of FRDA. Histological studies showed both spinal cord and dorsal root ganglia (DRG) anomalies with absence of motor neuropathy, a hallmark of the human disease. In addition, one line revealed a cerebellar granule cell loss, whereas both lines had Purkinje cell arborization defects. These lines represent the first FRDA models with a slowly progressive neurological degeneration. We identified an autophagic process as the causative pathological mechanism in the DRG, leading to removal of mitochondrial debris and apparition of lipofuscin deposits. -
Scienti®C Review Spastic Movement Disorder
Spinal Cord (2000) 38, 389 ± 393 ã 2000 International Medical Society of Paraplegia All rights reserved 1362 ± 4393/00 $15.00 www.nature.com/sc Scienti®c Review Spastic movement disorder V Dietz*,1 1Paracare, Paraplegic Centre of the University Hospital Balgrist, ZuÈrich, Switzerland This review deals with the neuronal mechanisms underlying spastic movement disorder, assessed by electrophysiological means with the aim of ®rst, a better understanding of the underlying pathophysiology and second, the selection of an adequate treatment. For the patient usually one of the ®rst symptoms of a lesion within the central motor system represents the movement disorder, which is most characteristic during locomotion in patients with spasticity. The clinical examination reveals exaggerated tendon tap re¯exes and increased muscle tone typical of the spastic movement disorder. However, today we know that there exists only a weak relationship between the physical signs obtained during the clinical examination in a passive motor condition and the impaired neuronal mechanisms being in operation during an active movement. By the recording and analysis of electrophysiological and biomechanical parameters during a functional movement such as locomotion, the signi®cance of, for example, impaired re¯ex behaviour or pathophysiology of muscle tone and its contribution to the movement disorder can reliably be assessed. Consequently, an adequate treatment should not be restricted to the cosmetic therapy and correction of an isolated clinical parameter but should be based on the pathophysiology and signi®cance of the mechanisms underlying the disorder of functional movement which impairs the patient. Spinal Cord (2000) 38, 389 ± 393 Keywords: spinal cord injury; spasticity; electrophysiological recordings; treatment Introduction Movement disorders are prominent features of impaired strength of electromyographic (EMG) activation of function of the motor systems and are frequently best antagonistic leg muscles as well as intrinsic and passive re¯ected during gait. -
A Review on Parkinson's Disease Treatment
Lee et al. Neuroimmunol Neuroinflammation 2021;8:[Online First] Neuroimmunology DOI: 10.20517/2347-8659.2020.58 and Neuroinflammation Review Open Access A review on Parkinson’s disease treatment Tori K. Lee, Eva L. Yankee Department of Biology, Pacific Union College, Angwin, CA 94508, USA. Correspondence to: Tori K. Lee, Department of Biology, Pacific Union College, 1 Angwin Ave, Angwin, CA 94508, USA. E-mail: [email protected] How to cite this article: Lee TK, Yankee EL. A review on Parkinson’s disease treatment. Neuroimmunol Neuroinflammation 2021;8:[Online First]. http://dx.doi.org/10.20517/2347-8659.2020.58 Received: 1 Oct 2020 First Decision: 1 Dec 2020 Revised: 15 Dec 2020 Accepted: 24 Dec 2020 Available online: 25 Jan 2021 Academic Editors: Athanassios P. Kyritsis, Backil Sung Copy Editor: Monica Wang Production Editor: Jing Yu Abstract Parkinson’s disease (PD) is a neurodegenerative illness and has a common onset between the ages of 55 and 65 years. There is progressive development of both motor and non-motor symptoms, greatly affecting one’s overall quality of life. While there is no cure, various treatments have been developed to help manage the symptoms of PD. Management of PD is a growing field and targets new treatment methods, as well as improvements to old ones. Pharmacological, surgical, and therapeutic treatments have allowed physicians to treat not only the main motor symptoms of PD, but target patient-specific problems as they arise. This review discusses both the established and new possibilities for PD treatment that can provide patient-specific care and mitigate side effects for common treatments. -
Efficacy of Rhythmic Auditory Stimulation on Ataxia and Functional Dependence Post- Cerebellar Stroke" (2020)
Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale School of Medicine Physician Associate Program Theses School of Medicine 5-22-2020 Efficacy of Rhythmicudit A ory Stimulation on Ataxia and Functional Dependence Post-Cerebellar Stroke Kaitlin Fitzgerald Yale Physician Associate Program, [email protected] Follow this and additional works at: https://elischolar.library.yale.edu/ysmpa_theses Recommended Citation Fitzgerald, Kaitlin, "Efficacy of Rhythmic Auditory Stimulation on Ataxia and Functional Dependence Post- Cerebellar Stroke" (2020). Yale School of Medicine Physician Associate Program Theses. 13. https://elischolar.library.yale.edu/ysmpa_theses/13 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale School of Medicine Physician Associate Program Theses by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. EFFICACY OF RHYTHMIC AUDITORY STIMULATION ON ATAXIA AND FUNCTIONAL DEPENDENCE POST-CEREBELLAR STROKE A Thesis Presented to The Faculty of the School of Medicine Yale University In Candidacy for the degree of Master of Medical Science May 2020 Kaitlin Fitzgerald, PA-SII Dr. Diana Richardson, MD Class of 2020 Assistant Clinical Professor Yale Physician Associate Program. Yale School of Medicine, Neurology i Table of Contents ABSTRACT -
Neurologic Outcomes in Friedreich Ataxia: Study of a Single-Site Cohort E415
Volume 6, Number 3, June 2020 Neurology.org/NG A peer-reviewed clinical and translational neurology open access journal ARTICLE Neurologic outcomes in Friedreich ataxia: Study of a single-site cohort e415 ARTICLE Prevalence of RFC1-mediated spinocerebellar ataxia in a North American ataxia cohort e440 ARTICLE Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy e428 ARTICLE Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy revisited: Genotype-phenotype correlations of all published cases e434 Academy Officers Neurology® is a registered trademark of the American Academy of Neurology (registration valid in the United States). James C. Stevens, MD, FAAN, President Neurology® Genetics (eISSN 2376-7839) is an open access journal published Orly Avitzur, MD, MBA, FAAN, President Elect online for the American Academy of Neurology, 201 Chicago Avenue, Ann H. Tilton, MD, FAAN, Vice President Minneapolis, MN 55415, by Wolters Kluwer Health, Inc. at 14700 Citicorp Drive, Bldg. 3, Hagerstown, MD 21742. Business offices are located at Two Carlayne E. Jackson, MD, FAAN, Secretary Commerce Square, 2001 Market Street, Philadelphia, PA 19103. Production offices are located at 351 West Camden Street, Baltimore, MD 21201-2436. Janis M. Miyasaki, MD, MEd, FRCPC, FAAN, Treasurer © 2020 American Academy of Neurology. Ralph L. Sacco, MD, MS, FAAN, Past President Neurology® Genetics is an official journal of the American Academy of Neurology. Journal website: Neurology.org/ng, AAN website: AAN.com CEO, American Academy of Neurology Copyright and Permission Information: Please go to the journal website (www.neurology.org/ng) and click the Permissions tab for the relevant Mary E. -
Nonnekes Gait Upper Motor Neuron Syndrome Clean
A review of the management of gait impairments in chronic unilateral upper motor neuron lesions Jorik Nonnekes MD PhD1, 2, Nathalie Benda MD PhD2, Hanneke van Duijnhoven MD1, Frits Lem MD2, Noël Keijsers PhD3, Jan Willem K. Louwerens MD PhD4, Allan Pieterse PT PhD1, Bertjo Renzenbrink MD,5 Vivian Weerdesteyn PT PhD,1,3 Jaap Buurke PT PhD,6,7 Alexander C.H. Geurts MD PhD1,2 1Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; 2Department of Rehabilitation, Sint Maartenskliniek, Nijmegen, The Netherlands 3Research Department, Sint Maartenskliniek, Nijmegen, The Netherlands 4Department of Orthopaedics, Sint Maartenskliniek, Nijmegen, The Netherlands 5Rijndam Rehabilitation Center, Rotterdam, The Netherlands 6Roessingh Research and Development, Enschede, the Netherlands 7Biomedical Signals and Systems, MIRA - Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands Running title: Gait impairments in supratentorial upper motor neuron syndromes Word count: 3497 Corresponding author Jorik Nonnekes, MD, PhD Radboud University Medical Centre Department of Rehabilitation PO Box 19101, 6500 HB Nijmegen The Netherlands E-mail: [email protected] ABSTRACT Importance: A variety of neurological disorders can damage the corticospinal tract in the supratentorial region of the brain. Gait impairments are common in patients with chronic supratentorial upper motor neuron lesions, and are a source of great disability. Clinical management aimed at improving the gait pattern in these patients is generally perceived as a challenging task, as many possible abnormalities may interact. Moreover, a multitude of treatment options exist – ranging from assistive devices and muscle stretching to pharmacological and surgical interventions – but evidence is inconclusive for most approaches and there is a lack of clear treatment guidelines. -
Movement Disorders After Brain Injury
Movement Disorders After Brain Injury Erin L. Smith Movement Disorders Fellow UNMC Department of Neurological Sciences Objectives 1. Review the evidence behind linking brain injury to movement disorders 2. Identify movement disorders that are commonly seen in persons with brain injury 3. Discuss management options for movement disorders in persons with brain injury Brain Injury and Movement Disorders: Why They Happen History • James Parkinson’s Essay on the Shaking Palsy • Stated that PD patients had no h/o trauma • “Punch Drunk Syndrome” in boxers (Martland, 1928) • Parkinsonian features after midbrain injury (Kremer 1947) • 7 pts, Varying etiology of injury • Many more reports have emerged over time History Chronic Traumatic Encephalopathy (CTE) • Dementia pugilistica (1920s) • Chronic, repeated head injury (30%) • Football players • Mike Webster, 2005 • Boxers • Other “combat” sports • Domestic violence • Military background • Many neurological sx • Dx on autopsy • Taupoathy Linking Brain Injury to Movement Disorders Timeline Injury Anatomy Severity Brain Injury and Movement Disorders Typically severe injury • Neurology (2018) • Rare after mild-moderate • 325,870 veterans injury • Half with TBI (all severities) Pre-existing movement • 12-year follow-up disorders may be linked • 1,462 dx with PD • Parkinson’s Disease (PD) • 949 had TBI • Caveats: • Mild TBI = 56% increased • Incidence is overall low risk of PD • Environmental factors • Mod-Severe TBI = 83% also at play increased risk of PD • Not all data supports it Timeline: Brain Injury -
Pseudoparkinsonism: a Review of a Common Nonparkinsonian Hypokinetic Movement Disorder
Vol.2, No.4, 108-112 (2013) Advances in Parkinson’s Disease http://dx.doi.org/10.4236/apd.2013.24020 Pseudoparkinsonism: A review of a common nonparkinsonian hypokinetic movement disorder Roger Kurlan*, Marcie L. Rabin Atlantic Neuroscience Institute, Overlook Medical Center, Summit, USA; *Corresponding Author: [email protected] Received 16 September 2013; revised 16 October 2013; accepted 24 October 2013 Copyright © 2013 Roger Kurlan, Marcie L. Rabin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT [2-4]. Over time, clinicians learned that a variety of entities This article reviews the syndrome pseudopark- besides neuroleptic drugs can similarly cause a clinical insonism, a movement disorder described in the picture resembling that of PD. The notion that a parkin- literature that resembles parkinsonism but dif- sonian syndrome could be caused by cerebrovascular fers qualitatively. Patients with this disorder disease became popularized in the 1980’s and 1990’s. have apraxic slowness, paratonic rigidity, frontal Some publications referred to the condition as “vascular gait disorder and elements of akinesia that, pseudoparkinsonism” [5,6], similar to the term used for taken together, may be mistaken for true park- neuroleptic drugs. Other articles, in contrast, used the insonism. Pseudoparkinsonism appears to be term “vascular parkinsonism” to describe features with a common and is most often due to Alzheimer’s vascular etiology that are reminiscent of, but distinct disease or vascular dementia. It seems that pa- from, those found in PD. -
Impaired Modulation of Quadriceps Tendon Jerk Reflex During Spastic Gait
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Brain (1999), 122, 567–579 Impaired modulation of quadriceps tendon jerk reflex during spastic gait: differences between spinal and cerebral lesions Michael Faist,1 Matthias Ertel,1 Wiltrud Berger1 and Volker Dietz2 1Department of Clinical Neurology and Neurophysiology, Correspondence to: Dr Michael Faist, Department of University of Freiburg, Germany and 2Swiss Paraplegic Clinical Neurology and Neurophysiology, University of Centre, University Hospital Balgrist, Zu¨rich, Switzerland Freiburg, Breisacherstr. 64, D-79106-Freiburg, Germany E-mail: [email protected] Summary In healthy subjects, functionally appropriate modulation throughout the step cycle. In patients with spinal lesion of short latency leg muscle reflexes occurs during gait. the reflex depression during gait was almost removed and This modulation has been ascribed, in part, to changes was associated with weak or no modulation during the in presynaptic inhibition of Ia afferents. The changes in step cycle. In patients with cerebral lesion there was less modulation of quadriceps tendon jerk reflexes during gait depression of the reflex size associated with a reduced of healthy subjects were compared with those of hemi- reflex modulation on the affected side compared with or paraparetic spastic patients. The spasticity was due to healthy subjects. On the ‘unaffected’ side of these patients unilateral cerebral infarction or traumatic spinal cord reflex modulation was similar to that of healthy subjects, injury, respectively. The modulation of the quadriceps but the reflex size during gait was not significantly femoris tendon jerk reflex at 16 phases of the step different from standing control values. -
Tremor, Abnormal Movement and Imbalance Differential
Types of involuntary movements Tremor Dystonia Chorea Myoclonus Tics Tremor Rhythmic shaking of muscles that produces an oscillating movement Parkinsonian tremor Rest tremor > posture > kinetic Re-emergent tremor with posture Usually asymmetric Pronation-supination tremor Distal joints involved primarily Often posturing of the limb Parkinsonian tremor Other parkinsonian features Bradykinesia Rigidity Postural instability Many, many other motor and non- motor features Bradykinesia Rigidity Essential tremor Kinetic > postural > rest Rest in 20%, late feature, only in arms Intentional 50% Bringing spoon to mouth is challenging!! Mildly asymmetric Gait ataxia – typically mild Starts in the arms but can progress to neck, voice and jaw over time Jaw tremor occurs with action, not rest Neck tremor should resolve when patient is lying flat Essential tremor Many other tremor types Physiologic tremor Like ET but faster rate and lower amplitude Drug-induced tremor – Lithium, depakote, stimulants, prednisone, beta agonists, amiodarone Anti-emetics (phenergan, prochlorperazine), anti-psychotics (except clozapine and Nuplazid) Many other tremor types Primary writing tremor only occurs with writing Orthostatic tremor leg tremor with standing, improves with walking and sitting, causes imbalance Many other tremor types Cerebellar tremor slowed action/intention tremor Holmes tremor mid-brain lesion, unilateral Dystonia Dystonia Muscle contractions that cause sustained or intermittent torsion of a body part in a repetitive -
The Clinical Approach to Movement Disorders Wilson F
REVIEWS The clinical approach to movement disorders Wilson F. Abdo, Bart P. C. van de Warrenburg, David J. Burn, Niall P. Quinn and Bastiaan R. Bloem Abstract | Movement disorders are commonly encountered in the clinic. In this Review, aimed at trainees and general neurologists, we provide a practical step-by-step approach to help clinicians in their ‘pattern recognition’ of movement disorders, as part of a process that ultimately leads to the diagnosis. The key to success is establishing the phenomenology of the clinical syndrome, which is determined from the specific combination of the dominant movement disorder, other abnormal movements in patients presenting with a mixed movement disorder, and a set of associated neurological and non-neurological abnormalities. Definition of the clinical syndrome in this manner should, in turn, result in a differential diagnosis. Sometimes, simple pattern recognition will suffice and lead directly to the diagnosis, but often ancillary investigations, guided by the dominant movement disorder, are required. We illustrate this diagnostic process for the most common types of movement disorder, namely, akinetic –rigid syndromes and the various types of hyperkinetic disorders (myoclonus, chorea, tics, dystonia and tremor). Abdo, W. F. et al. Nat. Rev. Neurol. 6, 29–37 (2010); doi:10.1038/nrneurol.2009.196 1 Continuing Medical Education online 85 years. The prevalence of essential tremor—the most common form of tremor—is 4% in people aged over This activity has been planned and implemented in accordance 40 years, increasing to 14% in people over 65 years of with the Essential Areas and policies of the Accreditation Council age.2,3 The prevalence of tics in school-age children and for Continuing Medical Education through the joint sponsorship of 4 MedscapeCME and Nature Publishing Group.