Riemann Surfaces : Reception by the French School Athanase Papadopoulos
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalized Riemann Hypothesis Léo Agélas
Generalized Riemann Hypothesis Léo Agélas To cite this version: Léo Agélas. Generalized Riemann Hypothesis. 2019. hal-00747680v3 HAL Id: hal-00747680 https://hal.archives-ouvertes.fr/hal-00747680v3 Preprint submitted on 29 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Generalized Riemann Hypothesis L´eoAg´elas Department of Mathematics, IFP Energies nouvelles, 1-4, avenue de Bois-Pr´eau,F-92852 Rueil-Malmaison, France Abstract (Generalized) Riemann Hypothesis (that all non-trivial zeros of the (Dirichlet L-function) zeta function have real part one-half) is arguably the most impor- tant unsolved problem in contemporary mathematics due to its deep relation to the fundamental building blocks of the integers, the primes. The proof of the Riemann hypothesis will immediately verify a slew of dependent theorems (Borwien et al.(2008), Sabbagh(2002)). In this paper, we give a proof of Gen- eralized Riemann Hypothesis which implies the proof of Riemann Hypothesis and Goldbach's weak conjecture (also known as the odd Goldbach conjecture) one of the oldest and best-known unsolved problems in number theory. 1. Introduction The Riemann hypothesis is one of the most important conjectures in math- ematics. -
LOOKING BACKWARD: from EULER to RIEMANN 11 at the Age of 24
LOOKING BACKWARD: FROM EULER TO RIEMANN ATHANASE PAPADOPOULOS Il est des hommes auxquels on ne doit pas adresser d’´eloges, si l’on ne suppose pas qu’ils ont le goˆut assez peu d´elicat pour goˆuter les louanges qui viennent d’en bas. (Jules Tannery, [241] p. 102) Abstract. We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann’s predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book From Riemann to differential geometry and relativity (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017. AMS Mathematics Subject Classification: 01-02, 01A55, 01A67, 26A42, 30- 03, 33C05, 00A30. Keywords: Bernhard Riemann, function of a complex variable, space, Rie- mannian geometry, trigonometric series, zeta function, differential geometry, elliptic integral, elliptic function, Abelian integral, Abelian function, hy- pergeometric function, topology, Riemann surface, Leonhard Euler, space, integration. Contents 1. Introduction 2 2. Functions 10 3. Elliptic integrals 21 arXiv:1710.03982v1 [math.HO] 11 Oct 2017 4. Abelian functions 30 5. Hypergeometric series 32 6. The zeta function 34 7. On space 41 8. Topology 47 9. Differential geometry 63 10. Trigonometric series 69 11. Integration 79 12. Conclusion 81 References 85 Date: October 12, 2017. -
Nonintersecting Brownian Motions on the Unit Circle: Noncritical Cases
The Annals of Probability 2016, Vol. 44, No. 2, 1134–1211 DOI: 10.1214/14-AOP998 c Institute of Mathematical Statistics, 2016 NONINTERSECTING BROWNIAN MOTIONS ON THE UNIT CIRCLE By Karl Liechty and Dong Wang1 DePaul University and National University of Singapore We consider an ensemble of n nonintersecting Brownian particles on the unit circle with diffusion parameter n−1/2, which are condi- tioned to begin at the same point and to return to that point after time T , but otherwise not to intersect. There is a critical value of T which separates the subcritical case, in which it is vanishingly un- likely that the particles wrap around the circle, and the supercritical case, in which particles may wrap around the circle. In this paper, we show that in the subcritical and critical cases the probability that the total winding number is zero is almost surely 1 as n , and →∞ in the supercritical case that the distribution of the total winding number converges to the discrete normal distribution. We also give a streamlined approach to identifying the Pearcey and tacnode pro- cesses in scaling limits. The formula of the tacnode correlation kernel is new and involves a solution to a Lax system for the Painlev´e II equation of size 2 2. The proofs are based on the determinantal × structure of the ensemble, asymptotic results for the related system of discrete Gaussian orthogonal polynomials, and a formulation of the correlation kernel in terms of a double contour integral. 1. Introduction. The probability models of nonintersecting Brownian motions have been studied extensively in last decade; see Tracy and Widom (2004, 2006), Adler and van Moerbeke (2005), Adler, Orantin and van Moer- beke (2010), Delvaux, Kuijlaars and Zhang (2011), Johansson (2013), Ferrari and Vet˝o(2012), Katori and Tanemura (2007) and Schehr et al. -
A Short and Simple Proof of the Riemann's Hypothesis
A Short and Simple Proof of the Riemann’s Hypothesis Charaf Ech-Chatbi To cite this version: Charaf Ech-Chatbi. A Short and Simple Proof of the Riemann’s Hypothesis. 2021. hal-03091429v10 HAL Id: hal-03091429 https://hal.archives-ouvertes.fr/hal-03091429v10 Preprint submitted on 5 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Short and Simple Proof of the Riemann’s Hypothesis Charaf ECH-CHATBI ∗ Sunday 21 February 2021 Abstract We present a short and simple proof of the Riemann’s Hypothesis (RH) where only undergraduate mathematics is needed. Keywords: Riemann Hypothesis; Zeta function; Prime Numbers; Millennium Problems. MSC2020 Classification: 11Mxx, 11-XX, 26-XX, 30-xx. 1 The Riemann Hypothesis 1.1 The importance of the Riemann Hypothesis The prime number theorem gives us the average distribution of the primes. The Riemann hypothesis tells us about the deviation from the average. Formulated in Riemann’s 1859 paper[1], it asserts that all the ’non-trivial’ zeros of the zeta function are complex numbers with real part 1/2. 1.2 Riemann Zeta Function For a complex number s where ℜ(s) > 1, the Zeta function is defined as the sum of the following series: +∞ 1 ζ(s)= (1) ns n=1 X In his 1859 paper[1], Riemann went further and extended the zeta function ζ(s), by analytical continuation, to an absolutely convergent function in the half plane ℜ(s) > 0, minus a simple pole at s = 1: s +∞ {x} ζ(s)= − s dx (2) s − 1 xs+1 Z1 ∗One Raffles Quay, North Tower Level 35. -
Dynamical Systems/Syst`Emes Dynamiques SIMPLE
Dynamical systems/Systemes` dynamiques SIMPLE EXPONENTIAL ESTIMATE FOR THE NUMBER OF REAL ZEROS OF COMPLETE ABELIAN INTEGRALS Dmitri Novikov, Sergeı˘ Yakovenko The Weizmann Institute of Science (Rehovot, Israel) Abstract. We show that for a generic real polynomial H = H(x, y) and an arbitrary real differential 1-form ω = P (x, y) dx + Q(x, y) dy with polynomial coefficients of degree 6 d, the number of ovals of the foliation H = const, which yield the zero value of the complete H Abelian integral I(t) = H=t ω, grows at most as exp OH (d) as d → ∞, where OH (d) depends only on H. This result essentially improves the previous double exponential estimate obtained in [1] for the number of zero ovals on a bounded distance from singular level curves of H. La borne simplement exponentielle pour le nombre de zeros´ reels´ isoles´ des integrales completes` abeliennes´ R´esum´e. Soit H = H(x, y) un polynˆome r´eel de deux variables et ω = P (x, y) dx + Q(x, y) dy une forme diff´erentielle quelconque avec des coefficients polynomiaux r´eels de degr´e d. Nous montrons que le nombre des ovales (c’est-a-dire les composantes compactes connexes) des courbes de niveau H = const, telles que l’int´egrale de la forme s’annule, est au plus exp OH (d) quand d → ∞, o`u OH (d) ne d´epend que du polynˆome H. Ce th´eor`emeam´eliore de mani`ere essentielle la borne doublement exponentielle obtenue dans [1]. Nous ´etablissons aussi les bornes sup´erieures exponentielles similaires pour le nom- bre de z´eros isol´espour les enveloppes polynomiales des ´equations diff´erentielles ordinaires lin´eaires irr´eductibles ou presque irr´eductibles. -
Bernhard Riemann 1826-1866
Modern Birkh~user Classics Many of the original research and survey monographs in pure and applied mathematics published by Birkh~iuser in recent decades have been groundbreaking and have come to be regarded as foun- dational to the subject. Through the MBC Series, a select number of these modern classics, entirely uncorrected, are being re-released in paperback (and as eBooks) to ensure that these treasures remain ac- cessible to new generations of students, scholars, and researchers. BERNHARD RIEMANN (1826-1866) Bernhard R~emanno 1826 1866 Turning Points in the Conception of Mathematics Detlef Laugwitz Translated by Abe Shenitzer With the Editorial Assistance of the Author, Hardy Grant, and Sarah Shenitzer Reprint of the 1999 Edition Birkh~iuser Boston 9Basel 9Berlin Abe Shendtzer (translator) Detlef Laugwitz (Deceased) Department of Mathematics Department of Mathematics and Statistics Technische Hochschule York University Darmstadt D-64289 Toronto, Ontario M3J 1P3 Gernmany Canada Originally published as a monograph ISBN-13:978-0-8176-4776-6 e-ISBN-13:978-0-8176-4777-3 DOI: 10.1007/978-0-8176-4777-3 Library of Congress Control Number: 2007940671 Mathematics Subject Classification (2000): 01Axx, 00A30, 03A05, 51-03, 14C40 9 Birkh~iuser Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkh~user Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. -
Abelian Integrals and the Genesis of Abel's Greatest Discovery
Abelian integrals and the genesis of Abel's greatest discovery Christian F. Skau Department of Mathematical Sciences, Norwegian University of Science and Technology March 20, 2020 Draft P(x) R(x) = Q(x) 3x 7 − 18x 6 + 46x 5 − 84x 4 + 127x 3 − 122x 2 + 84x − 56 = (x − 2)3(x + i)(x − i) 4x 4 − 12x 3 + 7x 2 − x + 1 = 3x 2 + 7 + (x − 2)3(x + i)(x − i) (−1) 3 4 i=2 (−i=2) = 3x 2 + 7 + + + + + (x − 2)3 (x − 2)2 x − 2 x + i x − i Draft Z 1=2 −3 R(x) dx = x 3 + 7x + + + 4 log (x − 2) (x − 2)2 x − 2 i −i + log (x + i) + log (x − i) 2 2 i −i = Re(x) + 4 log (x − 2) + log (x + i) + log (x − i) 2 2 The integral of a rational function R(x) is a rational function Re(x) plus a sum of logarithms of the form log(x + a), a 2 C, multiplied with constants. Draft eix − e−ix 1 p sin x = arcsin x = log ix + 1 − x 2 2i i Trigonometric functions and the inverse arcus-functions can be expressed by (complex) exponential and logarithmic functions. Draft A rational function R(x; y) of x and y is of the form P(x; y) R(x; y) = ; Q(x; y) where P and Q are polynomials in x and y. So, P i j aij x y R(x; y) = P k l bkl x y Similarly we define a rational function of x1; x2;:::; xn. -
RIEMANN's HYPOTHESIS 1. Gauss There Are 4 Prime Numbers Less
RIEMANN'S HYPOTHESIS BRIAN CONREY 1. Gauss There are 4 prime numbers less than 10; there are 25 primes less than 100; there are 168 primes less than 1000, and 1229 primes less than 10000. At what rate do the primes thin out? Today we use the notation π(x) to denote the number of primes less than or equal to x; so π(1000) = 168. Carl Friedrich Gauss in an 1849 letter to his former student Encke provided us with the answer to this question. Gauss described his work from 58 years earlier (when he was 15 or 16) where he came to the conclusion that the likelihood of a number n being prime, without knowing anything about it except its size, is 1 : log n Since log 10 = 2:303 ::: the means that about 1 in 16 seven digit numbers are prime and the 100 digit primes are spaced apart by about 230. Gauss came to his conclusion empirically: he kept statistics on how many primes there are in each sequence of 100 numbers all the way up to 3 million or so! He claimed that he could count the primes in a chiliad (a block of 1000) in 15 minutes! Thus we expect that 1 1 1 1 π(N) ≈ + + + ··· + : log 2 log 3 log 4 log N This is within a constant of Z N du li(N) = 0 log u so Gauss' conjecture may be expressed as π(N) = li(N) + E(N) Date: January 27, 2015. 1 2 BRIAN CONREY where E(N) is an error term. -
Lecture 9 Riemann Surfaces, Elliptic Functions Laplace Equation
Lecture 9 Riemann surfaces, elliptic functions Laplace equation Consider a Riemannian metric gµν in two dimensions. In two dimensions it is always possible to choose coordinates (x,y) to diagonalize it as ds2 = Ω(x,y)(dx2 + dy2). We can then combine them into a complex combination z = x+iy to write this as ds2 =Ωdzdz¯. It is actually a K¨ahler metric since the condition ∂[i,gj]k¯ = 0 is trivial if i, j = 1. Thus, an orientable Riemannian manifold in two dimensions is always K¨ahler. In the diagonalized form of the metric, the Laplace operator is of the form, −1 ∆=4Ω ∂z∂¯z¯. Thus, any solution to the Laplace equation ∆φ = 0 can be expressed as a sum of a holomorphic and an anti-holomorphid function. ∆φ = 0 φ = f(z)+ f¯(¯z). → In the following, we assume Ω = 1 so that the metric is ds2 = dzdz¯. It is not difficult to generalize our results for non-constant Ω. Now, we would like to prove the following formula, 1 ∂¯ = πδ(z), z − where δ(z) = δ(x)δ(y). Since 1/z is holomorphic except at z = 0, the left-hand side should vanish except at z = 0. On the other hand, by the Stokes theorem, the integral of the left-hand side on a disk of radius r gives, 1 i dz dxdy ∂¯ = = π. Zx2+y2≤r2 z 2 I|z|=r z − This proves the formula. Thus, the Green function G(z, w) obeying ∆zG(z, w) = 4πδ(z w), − should behave as G(z, w)= log z w 2 = log(z w) log(¯z w¯), − | − | − − − − near z = w. -
Simply-Riemann-1588263529. Print
Simply Riemann Simply Riemann JEREMY GRAY SIMPLY CHARLY NEW YORK Copyright © 2020 by Jeremy Gray Cover Illustration by José Ramos Cover Design by Scarlett Rugers All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to the publisher at the address below. [email protected] ISBN: 978-1-943657-21-6 Brought to you by http://simplycharly.com Contents Praise for Simply Riemann vii Other Great Lives x Series Editor's Foreword xi Preface xii Introduction 1 1. Riemann's life and times 7 2. Geometry 41 3. Complex functions 64 4. Primes and the zeta function 87 5. Minimal surfaces 97 6. Real functions 108 7. And another thing . 124 8. Riemann's Legacy 126 References 143 Suggested Reading 150 About the Author 152 A Word from the Publisher 153 Praise for Simply Riemann “Jeremy Gray is one of the world’s leading historians of mathematics, and an accomplished author of popular science. In Simply Riemann he combines both talents to give us clear and accessible insights into the astonishing discoveries of Bernhard Riemann—a brilliant but enigmatic mathematician who laid the foundations for several major areas of today’s mathematics, and for Albert Einstein’s General Theory of Relativity.Readable, organized—and simple. Highly recommended.” —Ian Stewart, Emeritus Professor of Mathematics at Warwick University and author of Significant Figures “Very few mathematicians have exercised an influence on the later development of their science comparable to Riemann’s whose work reshaped whole fields and created new ones. -
The Historical Development of Algebraic Geometry∗
The Historical Development of Algebraic Geometry∗ Jean Dieudonn´e March 3, 1972y 1 The lecture This is an enriched transcription of footage posted by the University of Wis- consin{Milwaukee Department of Mathematical Sciences [1]. The images are composites of screenshots from the footage manipulated with Python and the Python OpenCV library [2]. These materials were prepared by Ryan C. Schwiebert with the goal of capturing and restoring some of the material. The lecture presents the content of Dieudonn´e'sarticle of the same title [3] as well as the content of earlier lecture notes [4], but the live lecture is natu- rally embellished with different details. The text presented here is, for the most part, written as it was spoken. This is why there are some ungrammatical con- structions of spoken word, and some linguistic quirks of a French speaker. The transcriber has taken some liberties by abbreviating places where Dieudonn´e self-corrected. That is, short phrases which turned out to be false starts have been elided, and now only the subsequent word-choices that replaced them ap- pear. Unfortunately, time has taken its toll on the footage, and it appears that a brief portion at the beginning, as well as the last enumerated period (VII. Sheaves and schemes), have been lost. (Fortunately, we can still read about them in [3]!) The audio and video quality has contributed to several transcription errors. Finally, a lack of thorough knowledge of the history of algebraic geometry has also contributed some errors. Contact with suggestions for improvement of arXiv:1803.00163v1 [math.HO] 1 Mar 2018 the materials is welcome. -
Lectures on the Combinatorial Structure of the Moduli Spaces of Riemann Surfaces
LECTURES ON THE COMBINATORIAL STRUCTURE OF THE MODULI SPACES OF RIEMANN SURFACES MOTOHICO MULASE Contents 1. Riemann Surfaces and Elliptic Functions 1 1.1. Basic Definitions 1 1.2. Elementary Examples 3 1.3. Weierstrass Elliptic Functions 10 1.4. Elliptic Functions and Elliptic Curves 13 1.5. Degeneration of the Weierstrass Elliptic Function 16 1.6. The Elliptic Modular Function 19 1.7. Compactification of the Moduli of Elliptic Curves 26 References 31 1. Riemann Surfaces and Elliptic Functions 1.1. Basic Definitions. Let us begin with defining Riemann surfaces and their moduli spaces. Definition 1.1 (Riemann surfaces). A Riemann surface is a paracompact Haus- S dorff topological space C with an open covering C = λ Uλ such that for each open set Uλ there is an open domain Vλ of the complex plane C and a homeomorphism (1.1) φλ : Vλ −→ Uλ −1 that satisfies that if Uλ ∩ Uµ 6= ∅, then the gluing map φµ ◦ φλ φ−1 (1.2) −1 φλ µ −1 Vλ ⊃ φλ (Uλ ∩ Uµ) −−−−→ Uλ ∩ Uµ −−−−→ φµ (Uλ ∩ Uµ) ⊂ Vµ is a biholomorphic function. Remark. (1) A topological space X is paracompact if for every open covering S S X = λ Uλ, there is a locally finite open cover X = i Vi such that Vi ⊂ Uλ for some λ. Locally finite means that for every x ∈ X, there are only finitely many Vi’s that contain x. X is said to be Hausdorff if for every pair of distinct points x, y of X, there are open neighborhoods Wx 3 x and Wy 3 y such that Wx ∩ Wy = ∅.