Contemporary Topics in Fish Cognition and Behaviour

Total Page:16

File Type:pdf, Size:1020Kb

Contemporary Topics in Fish Cognition and Behaviour Available online at www.sciencedirect.com ScienceDirect Contemporary topics in fish cognition and behaviour Catarina Vila Pouca and Culum Brown The field of fish cognition and behaviour is now well established with numerosity), understand the accuracy and upper and recent developments reflect a shift to mechanistic, limit of their discrimination ability, and assess how fish comparative and theoretical approaches compared to early compare to other vertebrate species (reviewed in Ref. work. In this review we briefly summarise recent advances in [6]). The general consensus from this work is that fish four major areas of research: spatial learning, social cognition, have good number sense and can be as efficient in numerical competency and cognition, consciousness and pain. establishing quantity as terrestrial vertebrates. The debate on whether fish are conscious and able to feel pain is particularly topical, and we discuss recent behavioural and Two numerical information processing systems seem to adaptive arguments in favour of fish pain. In this review we also exist in humans: a generalist ‘analogue magnitude sys- propose interesting avenues of research in which fish have tem’ to estimate large quantities; and an accurate ‘object been given little attention in comparison with other vertebrate tracking system’, to quickly track small quantities indi- species. vidually. Recent studies have sought to understand if these also occur in fish (reviewed in Ref. [6]). In line with Address other non-human animals, some studies on fish support Department of Biological Sciences, Macquarie University, Sydney 2109, the dual system hypothesis (e.g. [7]), and the unit limit of Australia the ‘object tracking system’ of fishes seems to be similar to other vertebrates (around four objects, set by short- Corresponding author: Brown, Culum ([email protected]) term memory). Nonetheless, a few studies provide sup- port for an alternative perspective, that a single processing Current Opinion in Behavioral Sciences 2017, 16:46–52 system could operate across all quantities (e.g. [8,9]), thus This review comes from a themed issue on Mixed emotions leaving the subject unresolved and open to further study. Edited by Ben Hayden and Jessica F Cantlon Fish are capable of true numerical discrimination like other species, but will spontaneously use continuous quantities if available [10,11]. Their accuracy and upper http://dx.doi.org/10.1016/j.cobeha.2017.03.002 discrimination limit is comparable to those of mammals 2352-1546/ã 2017 Elsevier Ltd. All rights reserved. and birds, with some species-specific differences [6,12–15]. Three-spined sticklebacks, for example, were successful in a discrimination task where they choose the larger of two social groups with a ratio of 0.86 (i.e. there is small relative difference between quantities), similar to bottlenose dolphins [8,16]. It also appears that, when Introduction learning to distinguish between quantities, fish sponta- Fish have now become a standard model species in the neously learn about relative sizes (this is bigger than that) study of comparative cognition (Figure 1). Comprehen- instead of absolute sizes (this has four elements and that sive reviews on fish behaviour and cognition, with has two), even though they are capable of both [17], and detailed methodologies used in this research, are avail- can even learn using ordinal numerical information able and we refer readers new to this field to those reviews (choose the nth element; [18]). [1,2 ,3 ,4]. The objective of this short review is to summarise developments in four major areas of contem- Researchers have also begun investigating proximate porary research in fish cognition, as well as highlight some mechanisms of numerical discrimination such as the role exciting new directions in less studied topics (Box 1). of individual, sex, cerebral lateralization and context differences [9,13,19,20]. For example, guppies that were Numerical discrimination strongly lateralized had better numerical skills than non- Numbers are an essential part of everyday life for most lateralized fish, both in the context of shoal size choice animals. Being able to count or assess quantities can guide and training with abstract stimuli [20], and their numeri- decisions such as which group to join, where to forage or cal acuity was enhanced when two guppies were inter- whether to fight or flee (see Ref. [5]). This is also true for acting, as a result of meritocratic leadership [21]. fish, and indeed they show good numerical skills. The main focus of research in numerical competency in fish Another emerging theme in human and non-human has been to distinguish quantity discrimination from literature is whether numerical discrimination is indepen- numerical abilities (by controlling other cues that covary dent of sensory modalities. Evidence in other species is Current Opinion in Behavioral Sciences 2017, 16:46–52 www.sciencedirect.com Evolving topics in fish cognition and behaviour Vila Pouca and Brown 47 Figure 1 50 40 30 20 10 Number of publications 0 1993 1994 2003 2004 2010 2011 2012 2013 2014 2015 2016 Year Current Opinion in Behavioral Sciences The number of publications on fish learning and cognition grew in recent decades and currently seems to be reaching stability. Data based on keyword search (fish, fishes, learn, learning and cognition) in Google Scholar. The 2016?data excludes publications from November and December. still inconclusive [22], and in fish only one study has modality-dependent systems for numerical skills in fishes addressed this issue. Blind cavefish could distinguish but far more work needs to be done in this area [14]. It is between groups of sticks up to a ratio of 0.50 (two versus also a possibility that specific selective pressures acted on six and two versus four sticks), but were unsuccessful blind cavefish to decrease metabolic consumption, when tested with a 0.67 ratio (two versus three sticks), a reducing brain mass or dropping neural circuits related ratio achieved by other fish species using vision [14]. to cognitive tasks not useful in caves, such as shoal size These results are compatible with the idea of multiple discrimination [14]. One good approach to tackle ultimate and proximate questions for numerical discrimination would be to use species that are active in both good Box 1 New lines of research in fish cognition. and poor light conditions, such as weakly electric fish, and Cognitive flexibility is one emergent area of research. While only a test them with visual and other sensory cues [14]. few species have been studied, it seems fish are capable of inhibiting previously learned behaviours, of reversal learning (e.g. [58]), and display innovative behaviours and problem solving in new situations Social cognition (e.g. [59]). Fish would be a good model species to test evolutionary Complex social intelligence is no longer considered ecology predictions such as the ‘necessity drives innovation’ hypothesis, and investigate potential mechanisms underlying beha- restricted to primates. Complex social behaviours in fish vioural flexibility [60,61]. have been widely acknowledged and reviewed and Another topic largely unexplored is the study of play behaviour in include social learning and traditions, individual recogni- fish. For long deemed restricted to primates, it has become clear tion, cooperation and shared intentionality, dominance other species of mammals and birds also play. Playful behaviour hierarchies, social status and transitive inference, among seems to be a developmental precursor to many behavioural and many others [1,4]. social skills, and might facilitate innovation and creativity [62]. Since the observation of fishes’ natural behaviour is rare compared to other vertebrates, and a generic definition of play applicable throughout Fish are an ideal group to test ecological and evolutionary the animal kingdom has been controversial, early claims of play in links to social cognition. Most species differ in social and/ fish have largely been dismissed [63]. However, Burghardt and col- or ecological complexity in the wild, and we can easily leagues have recently proposed a ‘five criteria’ definition of play that manipulate their social experiences or information per- can also be applied to fish, amphibians and reptiles [62,63], and have reported a peculiar thermometer-striking behaviour in cichlid fish that ception in the laboratory to disentangle some of these fits the play definition [64]. Because of the diversity and sophistica- interactions (e.g. [23,24]). Moreover, we know the biolog- tion of behaviours and cognitive abilities of fishes, it seems only ical functions and metabolic needs driving many social reasonable to assume play behaviour also occurs in fish and thus behaviours are highly conserved across vertebrates, as are should be further investigated. neuromolecular pathways and neural circuits for social decision making [25–27]. Armed with this recent www.sciencedirect.com Current Opinion in Behavioral Sciences 2017, 16:46–52 48 Mixed emotions knowledge, now is an exciting time to study fish social ecological cognition hypothesis [41]. The theory poses cognition using comparative approaches. that the learning and memory skills of an animal are sharply honed by the selective pressures operating in a Similar to humans and other primates, fishes’ social species microhabitat. In a series of papers, White and behaviour and decision-making processes are linked to Brown compared the spatial learning ability of intertidal molecular and gene expression changes (e.g. [28 ,29,30]). gobies from sandy shores versus rocky reefs ([42–44,45 ]; For example, the decision to cooperate or cheat and the Figure 2). Gobies from stable rocky shores need to have perception of reward in cleaner wrasses is modulated by great spatial learning abilities to ensure they return to the cortisol, dopamine and the neuropeptide arginine-vaso- home pool at each low tide to avoid being stranded. tocin [31–33], that are also involved in similar behaviours Gobies from sandy shores, by contrast, need only retreat in monkeys [34].
Recommended publications
  • Preference and Motivation Tests for Body Tactile Stimulation in Fish
    animals Article Preference and Motivation Tests for Body Tactile Stimulation in Fish Ana Carolina dos Santos Gauy 1,2, Marcela Cesar Bolognesi 1,2, Guilherme Delgado Martins 1 and Eliane Gonçalves-de-Freitas 1,2,* 1 Departamento de Ciências Biológicas, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil; [email protected] (A.C.d.S.G.); [email protected] (M.C.B.); [email protected] (G.D.M.) 2 CAUNESP—Centro de Aquicultura da UNESP, Jaboticabal 14884-900, SP, Brazil * Correspondence: [email protected] Simple Summary: Body tactile stimulation, such as human massage therapy, is a way to relieve stress in humans and other animals, therefore it could improve animal health and welfare. This physical stimulation can also be done through artificial devices, as a sensory enrichment. However, before using it in an artificial environment, it is imperative to test whether animals perceive such enrichment as positive (searching for it spontaneously) or negative (avoiding it). Here, we tested whether the Nile tilapia fish search for or avoid tactile stimulation. We used a rectangular PVC frame, filled with vertical plastic sticks sided with silicone bristles that provided tactile stimulation when fish passed through them. We carried out preference and motivation tests, in which fish could choose to cross through the device with and without tactile stimulus. The same procedure was repeated after fish were exposed to either isolation or social stress. We found that fish crossed less by tactile device than by open areas.
    [Show full text]
  • Comparative Evolutionary Approach to Pain Perception in Fishes
    Brown, Culum (2016) Comparative evolutionary approach to pain perception in fishes. Animal Sentience 3(5) DOI: 10.51291/2377-7478.1029 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2016.011: Brown Commentary on Key on Fish Pain Comparative evolutionary approach to pain perception in fishes Commentary on Key on Fish Pain Culum Brown Biological Sciences Macquarie University Abstract: Arguments against the fact that fish feel pain repeatedly appear even in the face of growing evidence that they do. The standards used to judge pain perception keep moving as the hurdles are repeatedly cleared by novel research findings. There is undoubtedly a vested commercial interest in proving that fish do not feel pain, so the topic has a half-life well past its due date. Key (2016) reiterates previous perspectives on this topic characterised by a black-or-white view that is based on the proposed role of the human cortex in pain perception. I argue that this is incongruent with our understanding of evolutionary processes. Keywords: pain, fishes, behaviour, physiology, nociception Culum Brown [email protected] studies the behavioural ecology of fishes with a special interest in learning and memory. He is Associate Professor of vertebrate evolution at Macquarie University, Co-Editor of the volume Fish Cognition and Behavior, and Editor for Animal Behaviour of the Journal of Fish Biology.
    [Show full text]
  • Consciousness in Teleosts: There Is Something It Feels Like to Be a Fish
    Woodruff, Michael L. (2017) Consciousness in teleosts: There is something it feels like to be a fish. Animal Sentience 13(1) DOI: 10.51291/2377-7478.1198 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Animal Sentience 2017.010: Woodruff on Fish Feel Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been reviewed, revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html [Editorial note: Animal Sentience and does not publish primary research reports of findings from experiments that hurt animals. In the context of open peer commentary, however, including criticism of findings from such experiments, secondary references to findings already published elsewhere are unavoidable.] Consciousness in teleosts: There is something it feels like to be a fish Michael L. Woodruff Departments of Biomedical Sciences and Psychology, East Tennessee State University Abstract: Ray-finned fish are often excluded from the group of non-human animals considered to have phenomenal consciousness. This is generally done on the grounds that the fish pallium lacks a sufficiently expansive gross parcellation, as well as even minimally sufficient neuronal organization, intrinsic connectivity, and reciprocal extrinsic connections with the thalamus to support the subjective experience of qualia.
    [Show full text]
  • Contingency Checking and Self-Directed Behaviors in Giant Manta Rays: Do Elasmobranchs Have Self-Awareness?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/297913466 Contingency checking and self-directed behaviors in giant manta rays: Do elasmobranchs have self-awareness? Article in Journal of Ethology · March 2016 DOI: 10.1007/s10164-016-0462-z CITATIONS READS 25 833 2 authors: Csilla Ari Dominic P D'Agostino University of South Florida University of South Florida 55 PUBLICATIONS 735 CITATIONS 106 PUBLICATIONS 2,118 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Effect of ketone supplementation on CNS diseases View project Non-adenosine nucleosides, LPS and WAG/Rij rats View project All content following this page was uploaded by Csilla Ari on 11 February 2019. The user has requested enhancement of the downloaded file. Contingency checking and self-directed behaviors in giant manta rays: Do elasmobranchs have self-awareness? Csilla Ari & Dominic P. D’Agostino Journal of Ethology ISSN 0289-0771 J Ethol DOI 10.1007/s10164-016-0462-z 1 23 Your article is protected by copyright and all rights are held exclusively by Japan Ethological Society and Springer Japan. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website.
    [Show full text]
  • If a Fish Can Pass the Mark Test, What Are the Implications For
    SHORT REPORTS If a fish can pass the mark test, what are the implications for consciousness and self- awareness testing in animals? 1 1 1,2 1 Masanori KohdaID *, Takashi HottaID , Tomohiro Takeyama , Satoshi Awata , Hirokazu Tanaka1,3, Jun-ya Asai1, Alex L. Jordan1,4* 1 Laboratory of Animal Sociology, Department of Biology and Geosciences, Osaka City University, Osaka, Japan, 2 Department of Biosphere-Geosphere Science, Okayama University of Science, Okayama, Japan, 3 Institute of Ecology and Evolution, Department of Behavioural Ecology, University of Bern, Hinterkappelen, Switzerland, 4 Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany a1111111111 a1111111111 * [email protected] (MK); [email protected] (ALJ) a1111111111 a1111111111 a1111111111 Abstract The ability to perceive and recognise a reflected mirror image as self (mirror self-recognition, MSR) is considered a hallmark of cognition across species. Although MSR has been reported in mammals and birds, it is not known to occur in any other major taxon. Potentially OPEN ACCESS limiting our ability to test for MSR in other taxa is that the established assay, the mark test, Citation: Kohda M, Hotta T, Takeyama T, Awata S, requires that animals display contingency testing and self-directed behaviour. These behav- Tanaka H, Asai J-y, et al. (2019) If a fish can pass the mark test, what are the implications for iours may be difficult for humans to interpret in taxonomically divergent animals, especially consciousness and self-awareness testing in those that lack the dexterity (or limbs) required to touch a mark. Here, we show that a fish, animals? PLoS Biol 17(2): e3000021.
    [Show full text]
  • Quo Vadimus Welfare of Aquatic Animals: Where Things Are, Where
    ICES Journal of Marine Science (2018), doi:10.1093/icesjms/fsy067 Quo Vadimus Welfare of aquatic animals: where things are, where they are going, and what it means for research, aquaculture, recreational angling, and commercial fishing 1, ,‡ 2,‡ 3,‡ 4,‡ 5 Howard I. Browman * , Steven J. Cooke , Ian G. Cowx , Stuart W. G. Derbyshire Alexander Kasumyan5,‡, Brian Key6,‡ James D. Rose7,‡ Alexander Schwab8,‡, Anne Berit Skiftesvik1,‡, E. Don Stevens9,‡, Craig A. Watson10,‡, and Robert Arlinghaus11,12,‡ 1Marine Ecosystem Acoustics Group, Institute of Marine Research, Austevoll Research Station, Saugeneset 16, 5392 Storebø, Norway 2Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada 10 3Hull International Fisheries Institute, University of Hull, Hull HU67RX, UK 4Department of Psychology, National University of Singapore, Singapore 11570, Singapore 5Department of Ichthyology, Faculty of Biology, Moscow State University, Moscow 119991, Russia 6School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia 7Department of Zoology and Physiology and Neuroscience Program, University of Wyoming, Department 3166, 1000 East University Avenue, 15 Laramie, WY 80521, USA 8Im Wyga¨rtli 10, 4114 Hofstetten SO, Switzerland 9Department of Biomedical Sciences, University of Prince Edward Island, Charlottetown PEI C1A 4P3, Canada 10Tropical Aquaculture Laboratory, School of Forest Resources and Conservation, University of Florida, Ruskin, FL 33570, USA 11Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mu¨ggelseedamm 310, 12587 Berlin, 20 Germany 12Division of Integrative Fisheries Management, Albrecht-Daniel-Thaer Institute for Agriculture and Horticulture, Faculty of Life Sciences, and Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Invalidenstrasse 42, Berlin 10115, Germany *Corresponding author: tel: þ47 98 86 07 78; e-mail: [email protected].
    [Show full text]
  • Fish Intelligence, Sentience and Ethics
    WellBeing International WBI Studies Repository 1-2015 Fish Intelligence, Sentience and Ethics Culum Brown Macquarie University Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_asie Part of the Animal Studies Commons, Comparative Psychology Commons, and the Other Animal Sciences Commons Recommended Citation Brown, C. (2015). Fish intelligence, sentience and ethics. Animal cognition, 18(1), 1-17. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Fish Intelligence, Sentience and Ethics Culum Brown Macquarie University KEYWORDS fish cognition, sentience, welfare, pain, intelligence, ethics ABSTRACT Fish are one of the most highly utilised vertebrate taxa by humans; they are harvested from wild stocks as part of global fishing industries, grown under intensive aquaculture conditions, are the most common pet and are widely used for scientific research. But fish are seldom afforded the same level of compassion or welfare as warm-blooded vertebrates. Part of the problem is the large gap between people’s perception of fish intelligence and the scientific reality. This is an important issue because public perception guides government policy. The perception of an animal’s intelligence often drives our decision whether or not to include them in our moral circle. From a welfare perspective, most researchers would suggest that if an animal is sentient, then it can most likely suffer and should therefore be offered some form of formal protection. There has been a debate about fish welfare for decades which centres on the question of whether they are sentient or conscious.
    [Show full text]
  • Attitudes of Clinical Psychologists Towards the Reporting of Nonhuman Animal Abuse Laetitia Geoffroy-Dallery Antioch University, New England
    Antioch University AURA - Antioch University Repository and Archive Student & Alumni Scholarship, including Dissertations & Theses Dissertations & Theses 2018 Attitudes of Clinical Psychologists Towards the Reporting of Nonhuman Animal Abuse Laetitia Geoffroy-Dallery Antioch University, New England Follow this and additional works at: https://aura.antioch.edu/etds Part of the Clinical Psychology Commons Recommended Citation Geoffroy-Dallery, Laetitia, "Attitudes of Clinical Psychologists Towards the Reporting of Nonhuman Animal Abuse" (2018). Dissertations & Theses. 438. https://aura.antioch.edu/etds/438 This Dissertation is brought to you for free and open access by the Student & Alumni Scholarship, including Dissertations & Theses at AURA - Antioch University Repository and Archive. It has been accepted for inclusion in Dissertations & Theses by an authorized administrator of AURA - Antioch University Repository and Archive. For more information, please contact [email protected], [email protected]. Running Head: ATTITUDES TOWARD REPORTING OF NONHUMAN ANIMAL ABUSE Attitudes of Clinical Psychologists Towards the Reporting of Nonhuman Animal Abuse by Laetitia Geoffroy-Dallery A.L.B., Harvard University, 2013 M.S., Antioch University New England, 2016 Submitted in partial fulfillment of the requirements for the degree of Doctor of Psychology in the Department of Clinical Psychology at Antioch University New England, 2018 Keene, New Hampshire ATTITUDES TOWARD REPORTING NONHUMAN ANIMAL ABUSE ii Department of Clinical Psychology DISSERTATION COMMITTEE PAGE The undersigned have examined the dissertation entitled: ATTITUDES OF CLINICAL PSYCHOLOGISTS TOWARDS THE REPORTING OF NONHUMAN ANIMAL ABUSE presented on July 16, 2018 by Laetitia Geoffroy-Dallery Candidate for the degree of Doctor of Psychology and hereby certify that it is accepted*. Dissertation Committee Chairperson: Martha B.
    [Show full text]
  • Why Fish Welfare Matters: the Evidence for Fish Sentience
    WHY FISH WELFARE MATTERS: THE EVIDENCE FOR FISH SENTIENCE © Flickr com/Taro Taylor WHAT IS SENTIENCE? Sentience refers to having the awareness and cognitive (mental) ability necessary to have emotions1. This means sentient beings don’t just detect, observe or react to the things around them, but they can also feel something in response. Emotional states make evolutionary sense: some (e.g. pleasure) incentivise and reward you for behaviours that benefit your survival and chances of reproduction, and others (e.g. fear) reinforce the negative experience of doing something harmful and make you more likely to remember and avoid that in the future2. It is therefore unsurprising that the capacity for ‘feelings’ has evolved in different animal groups. WHY DOES SENTIENCE MATTER? As sentient beings can feel positive and negative emotions, happiness and fear, and can experience pain, we have a duty of care for the welfare of those that we farm and keep in captive environments. One animal group that has historically been forgotten in discussions of animal sentience and suffering, is fish. But fish are used in enormous numbers by humans for food, experimentation and as pets. Globally, up to 3 trillion fish are caught from the wild and up to 160 billion are farmed for human consumption each year3. This is around 40 times more animals than all the farmed land animals combined (which is approximately 74 billion4). This is having a devastating impact on wild fish populations, the aquatic environment, and crucially – fish welfare. HOW DO WE KNOW THAT FISH ARE SENTIENT ANIMALS? There is a growing body of scientific evidence to show that fish are sentient5-11.
    [Show full text]
  • Cleaner Wrasse Pass the Mark Test. What Are the Implications for Consciousness And
    bioRxiv preprint doi: https://doi.org/10.1101/397067; this version posted August 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. PLoS Biology 2 Cleaner wrasse pass the mark test. What are the implications for consciousness and 4 self-awareness testing in animals? 6 Masanori Kohda1*, Takashi Hotta1, Tomohiro Takeyama1, 2, Satoshi Awata1, Hirokazu 8 Tanaka1,3, Jun-ya Asai1, L. Alex Jordan1,4* 10 1 Laboratory of Animal Sociology, Department of Biology and Geosciences, Osaka City University, Osaka, Japan. 2 Department of Biosphere-Geosphere Science, Okayama 12 University of Science, Okayama, Japan. 3 Institute of Ecology and Evolution, Department of Behavioural Ecology, University of Bern, Hinterkappelen, Switzerland. 4 Department of 14 Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany. 16 *Corresponding authors: E-mail: [email protected], [email protected] 18 20 Short title: The mark test in fish 1 bioRxiv preprint doi: https://doi.org/10.1101/397067; this version posted August 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract 22 The ability to perceive and recognise a reflected mirror image as self (mirror self-recognition, 24 MSR) is considered a hallmark of cognition across species. Although MSR has been reported in mammals and birds, it is not known to occur in any other major taxon.
    [Show full text]
  • The Watery World of Fishes
    THE THE WATERY THE WATERY WORLD OF WATERY WORLD OF FISHES WORLD OF FISHESFISHES This booklet provides teachers with the information they need to teach students about the sentience and capabilities of fishes. FACT SHEET: FACTS AND FISHES © May 2019 Voiceless 2 Paddington Street Paddington NSW 2021 T: +612 9357 0723 [email protected] Follow us: Voiceless.Institute voiceless.org.au @VoicelessNews voiceless.org.au ABOUT VOICELESS Voiceless, the animal protection institute, is an independent non-profit think tank working to promote respect and compassion for animals. By encouraging critical-thinking on animal protection issues and growing the field of animal law, Voiceless is equipping today’s youth to become tomorrow’s decision-makers. CONTACT If you would like to get in touch with us about this fact sheet or find out more about our education work, please contact: [email protected] Thank you to Professor Culum Brown, Dr Cat Dorey and Dr Dinesh Wadiwel for their assistance in reviewing this booklet. Want to keep reading on this topic? This information and more can be found in Jonathan Balcombe’s book, What a Fish Knows (Scientific American / Farrar, Straus and Giroux, 2016). Voiceless is a proud partner of the Humane Education Coalition Disclaimer: Voiceless Limited ACN 108 494 631 (‘Voiceless’) is a company limited by guarantee. Voiceless is not a legal practice and does not give legal advice to individuals or organisations. While Voiceless has made every effort to ensure the accuracy of information, including images, presented in this publication, Voiceless does not guarantee the accuracy or completeness of that information.
    [Show full text]
  • Fish Intelligence - Wikipedia
    Fish intelligence - Wikipedia https://en.wikipedia.org/wiki/Fish_intelligence Fish intelligence Fish intelligence is "...the resultant of the process of acquiring, storing in memory, retrieving, combining, comparing, and using in new contexts information and conceptual skills"[1] as it applies to fish. According to Culum Brown from Macquarie University, "Fish are more intelligent than they appear. In many areas, such as memory, their cognitive powers match or exceed those of ‘higher’ vertebrates including non-human The elephantnose fish has the highest primates."[2] brain-to-body oxygen consumption ratio Fish hold records for the relative brain weights of of all known vertebrates vertebrates. Most vertebrate species have similar brain-to- body mass ratios. The deep sea bathypelagic bony-eared assfish,[3] has the smallest ratio of all known vertebrates.[4] At the other extreme, the electrogenic elephantnose fish, an The bony-eared assfish has the smallest African freshwater fish, has one of the largest brain-to-body brain-to-body weight ratio of all known weight ratios of all known vertebrates (slightly higher than vertebrates humans) and the highest brain-to-body oxygen consumption ratio of all known vertebrates (three times that for humans).[5] Contents Brain Memory Tool use Construction Social intelligence Deception Distraction display False courtship behaviour Death feigning Cooperation Numeracy Social learning Latent learning Cleaner fish Play Food stocking 1 of 14 10/08/2018, 3:59 PM Fish intelligence - Wikipedia https://en.wikipedia.org/wiki/Fish_intelligence
    [Show full text]