Directional Derivatives and the Gradient Vector

Total Page:16

File Type:pdf, Size:1020Kb

Directional Derivatives and the Gradient Vector Math 314 Lecture #16 §14.6: Directional Derivatives and the Gradient Vector Outcome A: Compute the directional derivative of a function of several variables at a given point in a given direction. The partial derivatives fx(x0, y0) and fy(x0, y0) measure the rate of change of f in the x and y directions respectively, i.e., in the ~i and ~j direction. To measure the rate of change in another unit direction ~u = ha, bi we look at the curve obtained by the intersection of z = f(x, y) and the vertical plane containing the point (x0, y0, z0) and parallel to ~u. Here is a picture of this intersection. For a small constant h, a small displacement from the point (x0, y0) in the direction of ~u is the vector h~u, that is we move from (x0, y0) to the point (x0 + ha, y0 + hb). The “rise” over “run” of f for this displacement is the ratio ∆z z − z f(x + ha, y + hb) − f(x , y ) = 0 = 0 0 0 0 . h h h The directional derivative of f at the point (x0, y0) in the direction of the unit vector ~u is the scalar quantity f(x0 + ha, y0 + hb) − f(x0, y0) D~uf(x0, y0) = lim , h→0 h if the limit exists. Theorem. If f(x, y) is differentiable, then f has directional derivative in the direction of every unit vector ~u = ha, bi, and D~uf(x, y) = fx(x, y)a + fy(x, y)b. Notice that the directional derivative is nothing more than the dot product of the vector hfx(x, y), fy(x, y)i with ~u. Proof. For x = x0 + ha and y = y0 + hb, the composition g(h) = f(x0 + ha, y0 + hb) is a differentiable function of h by the Chain Rule, and so direct differentiation gives 0 g(h) − g(0) f(x0 + ha, y0 + hb) − f(x0, y0) g (0) = lim = lim = D~uf(x0, y0). h→0 h h→0 h On the other hand, the Chain Rule gives an equal expression for the derivative of g with respect to h, ∂f dx ∂f dy g0(h) = + = f (x + ha, y + hb)a + f (x + ha, y + hb)b, ∂x dh ∂y dt x 0 0 y 0 0 in which by setting h = 0 we get 0 g (0) = fx(x0, y0)a + fy(x0, y0)b. 0 We have two expressions for g (0), and so the two expressions are equal. For a differentiable function f of three variables x, y, z, the directional derivative at a point (x0, y0, z0) in the direction of a unit vector ~u = ha, b, ci is the scalar D~uf(x0, y0, z0) = hfx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)i · ha, b, ci. 2 Example. Find√ the directional derivative of f(x, y) = y /x at the point (1, 2) in the direction of h2, 5i. Notice that the given direction vector IS NOT a unit vector, so we normalize it first to get * √ + 2 5 ~u = , . 3 3 2 2 With fx = −y /x and fy = 2y/x, the directional derivative of f at (1, 2) in the direction ~u is √ √ 4 5 − 8 D f(1, 2) = −4(2/3) + 4( 5/3) = > 0. ~u 3 Outcome B: Find the gradient of a function of several variables. The vector hfx, fyi that appears in the computation of the directional derivative of a function of two variables, is an example of a vector field, i.e., at each point (x, y) we attach the vector hfx, fyi. The gradient of a function f(x, y) is the vector field given by ∇f(x, y) = hfx(x, y), fy(x, y)i. The gradient of a function f(x, y, z) is the vector field given by ∇f(x, y, z) = hfx(x, y, z), fy(x, y, z), fz(x, y, z)i. The derivative of a differentiable function f of two or more variables is the gradient ∇f, i.e., it appears in the definition of differentiability of a function of two variables as ∆z = ∇f(x, y) · h∆x, ∆yi + 1∆x + 2∆y. Example. The gradient (derivative) of hyperbolic paraboloid z = f(x, y) = x2 − y2 is ∇f(x, y) = h2x, −2yi. Outcome C: Find the maximum rate of change of a function at a given point and the direction in which it occurs. Theorem. If f is a differentiable function of two or more variables, then the maximum value of the directional derivative is k∇fk and it occurs in the direction of ∇f. Proof. The direction derivative is the dot product D~uf = ∇f · u for a unit vector ~u. Recall that ~a ·~b = k~ak kbk cos θ where θ is the angle between ~a and ~b. Thus the directional derivative is D~uf = k∇fk k~uk cos θ = k∇fk cos θ. The maximum value of D~uf occurs when cos θ = 1, i.e., when the angle between ∇f and ~u is 0. The maximum value of D~uf occurs when ~u = ∇f/k∇fk, and is k∇fk. Example. The gradient of w = f(x, y, z) = (x + y)/z is ∇f = h1/z, 1/z, −(x + y)/z2i. The gradient of f at the point (1, 1, −1) is the vector ∇f(1, 1, −1) = h−1, −1, −2i. Moving in the direction of h−1, −1, −2i from the point (1, 1, −1) gives the maximum rate of change in the values f which is √ k∇f(1, 1, −1)k = kh−1, −1, −2ik = 6. Outcome D: Find equations of the tangent plane and the normal line to a surface at a point. Suppose a surface S is given implicitly by F (x, y, z) = k for a differentiable function F , i.e., the level surface of a differentiable function of three variables. Any surface of the form z = f(x, y) can be put in this form as f(x, y) − z = 0 for a differentiable f, i.e., F (x, y, z) = f(x, y) − z and k = 0. A smooth curve ~r(t) = hx(t), y(t), z(t)i that lies on S satisfies the equation F (~r(t)) = k. Applying the Chain Rule to this equation gives dx dy dz 0 = F ~r(t) + F ~r(t) + F ~r(t) = ∇F ~r(t) · ~r 0(t). x dt y dt z dt Since ~r(t) is a smooth curve that lies in S, the tangent line of ~r(t) at t = t0 lies in the tangent plane of S at ~r(t0). 0 With hx0, y0, z0i = ~r(t0), the equation ∇F ·~r = 0 implies that ∇F (x0, y0, z0) is orthogonal to the tangent plane of S at (x0, y0, z0). Thus another equation for the tangent plane of S at (x0, y0, z0) is Fx(x0, y0, z0)(x − x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0. When F (x, y, z) = f(x, y) − z, then Fz = −1 and this equation for the tangent line becomes the familiar z − z0 = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0). An equation for the normal line to S at (x0, y0, z0) is hx, y, zi = hx0, y0, z0i + t∇F (x0, y0, z0). Example. If F (x, y, z) = x2 + y2 + 2z2 − 4 = 0, then ∇F (x, y, z) = h2x, 2y, 4zi. An equation for the tangent plane at the point (1, 1, 1) on this ellipsoid is 2(x − 1) + 2(y − 1) − 4(z − 1) = 0 or z − 1 = 2(x − 1) + 4(y − 1). Here is a picture of the ellipsoid and its tangent plane at the point (1, 1, 1). An equation for the normal line to this surface at the point (2, 1, 3) is hx, y, zi = h1, 1, 1i + th2, 2, 4i..
Recommended publications
  • The Directional Derivative the Derivative of a Real Valued Function (Scalar field) with Respect to a Vector
    Math 253 The Directional Derivative The derivative of a real valued function (scalar field) with respect to a vector. f(x + h) f(x) What is the vector space analog to the usual derivative in one variable? f 0(x) = lim − ? h 0 h ! x -2 0 2 5 Suppose f is a real valued function (a mapping f : Rn R). ! (e.g. f(x; y) = x2 y2). − 0 Unlike the case with plane figures, functions grow in a variety of z ways at each point on a surface (or n{dimensional structure). We'll be interested in examining the way (f) changes as we move -5 from a point X~ to a nearby point in a particular direction. -2 0 y 2 Figure 1: f(x; y) = x2 y2 − The Directional Derivative x -2 0 2 5 We'll be interested in examining the way (f) changes as we move ~ in a particular direction 0 from a point X to a nearby point . z -5 -2 0 y 2 Figure 2: f(x; y) = x2 y2 − y If we give the direction by using a second vector, say ~u, then for →u X→ + h any real number h, the vector X~ + h~u represents a change in X→ position from X~ along a line through X~ parallel to ~u. →u →u h x Figure 3: Change in position along line parallel to ~u The Directional Derivative x -2 0 2 5 We'll be interested in examining the way (f) changes as we move ~ in a particular direction 0 from a point X to a nearby point .
    [Show full text]
  • The Matrix Calculus You Need for Deep Learning
    The Matrix Calculus You Need For Deep Learning Terence Parr and Jeremy Howard July 3, 2018 (We teach in University of San Francisco's MS in Data Science program and have other nefarious projects underway. You might know Terence as the creator of the ANTLR parser generator. For more material, see Jeremy's fast.ai courses and University of San Francisco's Data Institute in- person version of the deep learning course.) HTML version (The PDF and HTML were generated from markup using bookish) Abstract This paper is an attempt to explain all the matrix calculus you need in order to understand the training of deep neural networks. We assume no math knowledge beyond what you learned in calculus 1, and provide links to help you refresh the necessary math where needed. Note that you do not need to understand this material before you start learning to train and use deep learning in practice; rather, this material is for those who are already familiar with the basics of neural networks, and wish to deepen their understanding of the underlying math. Don't worry if you get stuck at some point along the way|just go back and reread the previous section, and try writing down and working through some examples. And if you're still stuck, we're happy to answer your questions in the Theory category at forums.fast.ai. Note: There is a reference section at the end of the paper summarizing all the key matrix calculus rules and terminology discussed here. arXiv:1802.01528v3 [cs.LG] 2 Jul 2018 1 Contents 1 Introduction 3 2 Review: Scalar derivative rules4 3 Introduction to vector calculus and partial derivatives5 4 Matrix calculus 6 4.1 Generalization of the Jacobian .
    [Show full text]
  • A Brief Tour of Vector Calculus
    A BRIEF TOUR OF VECTOR CALCULUS A. HAVENS Contents 0 Prelude ii 1 Directional Derivatives, the Gradient and the Del Operator 1 1.1 Conceptual Review: Directional Derivatives and the Gradient........... 1 1.2 The Gradient as a Vector Field............................ 5 1.3 The Gradient Flow and Critical Points ....................... 10 1.4 The Del Operator and the Gradient in Other Coordinates*............ 17 1.5 Problems........................................ 21 2 Vector Fields in Low Dimensions 26 2 3 2.1 General Vector Fields in Domains of R and R . 26 2.2 Flows and Integral Curves .............................. 31 2.3 Conservative Vector Fields and Potentials...................... 32 2.4 Vector Fields from Frames*.............................. 37 2.5 Divergence, Curl, Jacobians, and the Laplacian................... 41 2.6 Parametrized Surfaces and Coordinate Vector Fields*............... 48 2.7 Tangent Vectors, Normal Vectors, and Orientations*................ 52 2.8 Problems........................................ 58 3 Line Integrals 66 3.1 Defining Scalar Line Integrals............................. 66 3.2 Line Integrals in Vector Fields ............................ 75 3.3 Work in a Force Field................................. 78 3.4 The Fundamental Theorem of Line Integrals .................... 79 3.5 Motion in Conservative Force Fields Conserves Energy .............. 81 3.6 Path Independence and Corollaries of the Fundamental Theorem......... 82 3.7 Green's Theorem.................................... 84 3.8 Problems........................................ 89 4 Surface Integrals, Flux, and Fundamental Theorems 93 4.1 Surface Integrals of Scalar Fields........................... 93 4.2 Flux........................................... 96 4.3 The Gradient, Divergence, and Curl Operators Via Limits* . 103 4.4 The Stokes-Kelvin Theorem..............................108 4.5 The Divergence Theorem ...............................112 4.6 Problems........................................114 List of Figures 117 i 11/14/19 Multivariate Calculus: Vector Calculus Havens 0.
    [Show full text]
  • Notes for Math 136: Review of Calculus
    Notes for Math 136: Review of Calculus Gyu Eun Lee These notes were written for my personal use for teaching purposes for the course Math 136 running in the Spring of 2016 at UCLA. They are also intended for use as a general calculus reference for this course. In these notes we will briefly review the results of the calculus of several variables most frequently used in partial differential equations. The selection of topics is inspired by the list of topics given by Strauss at the end of section 1.1, but we will not cover everything. Certain topics are covered in the Appendix to the textbook, and we will not deal with them here. The results of single-variable calculus are assumed to be familiar. Practicality, not rigor, is the aim. This document will be updated throughout the quarter as we encounter material involving additional topics. We will focus on functions of two real variables, u = u(x;t). Most definitions and results listed will have generalizations to higher numbers of variables, and we hope the generalizations will be reasonably straightforward to the reader if they become necessary. Occasionally (notably for the chain rule in its many forms) it will be convenient to work with functions of an arbitrary number of variables. We will be rather loose about the issues of differentiability and integrability: unless otherwise stated, we will assume all derivatives and integrals exist, and if we require it we will assume derivatives are continuous up to the required order. (This is also generally the assumption in Strauss.) 1 Differential calculus of several variables 1.1 Partial derivatives Given a scalar function u = u(x;t) of two variables, we may hold one of the variables constant and regard it as a function of one variable only: vx(t) = u(x;t) = wt(x): Then the partial derivatives of u with respect of x and with respect to t are defined as the familiar derivatives from single variable calculus: ¶u dv ¶u dw = x ; = t : ¶t dt ¶x dx c 2016, Gyu Eun Lee.
    [Show full text]
  • Policy Gradient
    Lecture 7: Policy Gradient Lecture 7: Policy Gradient David Silver Lecture 7: Policy Gradient Outline 1 Introduction 2 Finite Difference Policy Gradient 3 Monte-Carlo Policy Gradient 4 Actor-Critic Policy Gradient Lecture 7: Policy Gradient Introduction Policy-Based Reinforcement Learning In the last lecture we approximated the value or action-value function using parameters θ, V (s) V π(s) θ ≈ Q (s; a) Qπ(s; a) θ ≈ A policy was generated directly from the value function e.g. using -greedy In this lecture we will directly parametrise the policy πθ(s; a) = P [a s; θ] j We will focus again on model-free reinforcement learning Lecture 7: Policy Gradient Introduction Value-Based and Policy-Based RL Value Based Learnt Value Function Implicit policy Value Function Policy (e.g. -greedy) Policy Based Value-Based Actor Policy-Based No Value Function Critic Learnt Policy Actor-Critic Learnt Value Function Learnt Policy Lecture 7: Policy Gradient Introduction Advantages of Policy-Based RL Advantages: Better convergence properties Effective in high-dimensional or continuous action spaces Can learn stochastic policies Disadvantages: Typically converge to a local rather than global optimum Evaluating a policy is typically inefficient and high variance Lecture 7: Policy Gradient Introduction Rock-Paper-Scissors Example Example: Rock-Paper-Scissors Two-player game of rock-paper-scissors Scissors beats paper Rock beats scissors Paper beats rock Consider policies for iterated rock-paper-scissors A deterministic policy is easily exploited A uniform random policy
    [Show full text]
  • Tensor Calculus and Differential Geometry
    Course Notes Tensor Calculus and Differential Geometry 2WAH0 Luc Florack March 10, 2021 Cover illustration: papyrus fragment from Euclid’s Elements of Geometry, Book II [8]. Contents Preface iii Notation 1 1 Prerequisites from Linear Algebra 3 2 Tensor Calculus 7 2.1 Vector Spaces and Bases . .7 2.2 Dual Vector Spaces and Dual Bases . .8 2.3 The Kronecker Tensor . 10 2.4 Inner Products . 11 2.5 Reciprocal Bases . 14 2.6 Bases, Dual Bases, Reciprocal Bases: Mutual Relations . 16 2.7 Examples of Vectors and Covectors . 17 2.8 Tensors . 18 2.8.1 Tensors in all Generality . 18 2.8.2 Tensors Subject to Symmetries . 22 2.8.3 Symmetry and Antisymmetry Preserving Product Operators . 24 2.8.4 Vector Spaces with an Oriented Volume . 31 2.8.5 Tensors on an Inner Product Space . 34 2.8.6 Tensor Transformations . 36 2.8.6.1 “Absolute Tensors” . 37 CONTENTS i 2.8.6.2 “Relative Tensors” . 38 2.8.6.3 “Pseudo Tensors” . 41 2.8.7 Contractions . 43 2.9 The Hodge Star Operator . 43 3 Differential Geometry 47 3.1 Euclidean Space: Cartesian and Curvilinear Coordinates . 47 3.2 Differentiable Manifolds . 48 3.3 Tangent Vectors . 49 3.4 Tangent and Cotangent Bundle . 50 3.5 Exterior Derivative . 51 3.6 Affine Connection . 52 3.7 Lie Derivative . 55 3.8 Torsion . 55 3.9 Levi-Civita Connection . 56 3.10 Geodesics . 57 3.11 Curvature . 58 3.12 Push-Forward and Pull-Back . 59 3.13 Examples . 60 3.13.1 Polar Coordinates in the Euclidean Plane .
    [Show full text]
  • Matrix Calculus
    Appendix D Matrix Calculus From too much study, and from extreme passion, cometh madnesse. Isaac Newton [205, §5] − D.1 Gradient, Directional derivative, Taylor series D.1.1 Gradients Gradient of a differentiable real function f(x) : RK R with respect to its vector argument is defined uniquely in terms of partial derivatives→ ∂f(x) ∂x1 ∂f(x) , ∂x2 RK f(x) . (2053) ∇ . ∈ . ∂f(x) ∂xK while the second-order gradient of the twice differentiable real function with respect to its vector argument is traditionally called the Hessian; 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂x1 ∂x1∂x2 ··· ∂x1∂xK 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 2 K f(x) , ∂x2∂x1 ∂x2 ··· ∂x2∂xK S (2054) ∇ . ∈ . .. 2 2 2 ∂ f(x) ∂ f(x) ∂ f(x) 2 ∂xK ∂x1 ∂xK ∂x2 ∂x ··· K interpreted ∂f(x) ∂f(x) 2 ∂ ∂ 2 ∂ f(x) ∂x1 ∂x2 ∂ f(x) = = = (2055) ∂x1∂x2 ³∂x2 ´ ³∂x1 ´ ∂x2∂x1 Dattorro, Convex Optimization Euclidean Distance Geometry, Mεβoo, 2005, v2020.02.29. 599 600 APPENDIX D. MATRIX CALCULUS The gradient of vector-valued function v(x) : R RN on real domain is a row vector → v(x) , ∂v1(x) ∂v2(x) ∂vN (x) RN (2056) ∇ ∂x ∂x ··· ∂x ∈ h i while the second-order gradient is 2 2 2 2 , ∂ v1(x) ∂ v2(x) ∂ vN (x) RN v(x) 2 2 2 (2057) ∇ ∂x ∂x ··· ∂x ∈ h i Gradient of vector-valued function h(x) : RK RN on vector domain is → ∂h1(x) ∂h2(x) ∂hN (x) ∂x1 ∂x1 ··· ∂x1 ∂h1(x) ∂h2(x) ∂hN (x) h(x) , ∂x2 ∂x2 ··· ∂x2 ∇ .
    [Show full text]
  • High Order Gradient, Curl and Divergence Conforming Spaces, with an Application to NURBS-Based Isogeometric Analysis
    High order gradient, curl and divergence conforming spaces, with an application to compatible NURBS-based IsoGeometric Analysis R.R. Hiemstraa, R.H.M. Huijsmansa, M.I.Gerritsmab aDepartment of Marine Technology, Mekelweg 2, 2628CD Delft bDepartment of Aerospace Technology, Kluyverweg 2, 2629HT Delft Abstract Conservation laws, in for example, electromagnetism, solid and fluid mechanics, allow an exact discrete representation in terms of line, surface and volume integrals. We develop high order interpolants, from any basis that is a partition of unity, that satisfy these integral relations exactly, at cell level. The resulting gradient, curl and divergence conforming spaces have the propertythat the conservationlaws become completely independent of the basis functions. This means that the conservation laws are exactly satisfied even on curved meshes. As an example, we develop high ordergradient, curl and divergence conforming spaces from NURBS - non uniform rational B-splines - and thereby generalize the compatible spaces of B-splines developed in [1]. We give several examples of 2D Stokes flow calculations which result, amongst others, in a point wise divergence free velocity field. Keywords: Compatible numerical methods, Mixed methods, NURBS, IsoGeometric Analyis Be careful of the naive view that a physical law is a mathematical relation between previously defined quantities. The situation is, rather, that a certain mathematical structure represents a given physical structure. Burke [2] 1. Introduction In deriving mathematical models for physical theories, we frequently start with analysis on finite dimensional geometric objects, like a control volume and its bounding surfaces. We assign global, ’measurable’, quantities to these different geometric objects and set up balance statements.
    [Show full text]
  • Math 1320-9 Notes of 3/30/20 11.6 Directional Derivatives and Gradients
    Math 1320-9 Notes of 3/30/20 11.6 Directional Derivatives and Gradients • Recall our definitions: f(x0 + h; y0) − f(x0; y0) fx(x0; y0) = lim h−!0 h f(x0; y0 + h) − f(x0; y0) and fy(x0; y0) = lim h−!0 h • You can think of these definitions in several ways, e.g., − You keep all but one variable fixed, and differentiate with respect to the one special variable. − You restrict the function to a line whose direction vector is one of the standard basis vectors, and differentiate that restriction with respect to the corresponding variable. • In the case of fx we move in the direction of < 1; 0 >, and in the case of fy, we move in the direction for < 0; 1 >. Math 1320-9 Notes of 3/30/20 page 1 How about doing the same thing in the direction of some other unit vector u =< a; b >; say. • We define: The directional derivative of f at (x0; y0) in the direc- tion of the (unit) vector u is f(x0 + ha; y0 + hb) − f(x0; y0) Duf(x0; y0) = lim h−!0 h (if this limit exists). • Thus we restrict the function f to the line (x0; y0) + tu, think of it as a function g(t) = f(x0 + ta; y0 + tb); and compute g0(t). • But, by the chain rule, d f(x + ta; y + tb) = f (x ; y )a + f (x ; y )b dt 0 0 x 0 0 y 0 0 =< fx(x0; y0); fy(x0; y0) > · < a; b > • Thus we can compute the directional derivatives by the formula Duf(x0; y0) =< fx(x0; y0); fy(x0; y0) > · < a; b > : • Of course, the partial derivatives @=@x and @=@y are just directional derivatives in the directions i =< 0; 1 > and j =< 0; 1 >, respectively.
    [Show full text]
  • Derivatives Along Vectors and Directional Derivatives
    DERIVATIVES ALONG VECTORS AND DIRECTIONAL DERIVATIVES Math 225 Derivatives Along Vectors Suppose that f is a function of two variables, that is, f : R2 → R, or, if we are thinking without coordinates, f : E2 → R. The function f could be the distance to some point or curve, the altitude function for some landscape, or temperature (assumed to be static, i.e., not changing with time). Let P ∈ E2, and assume some disk centered at p is contained in the domain of f, that is, assume that P is an interior point of the domain of f.This allows us to move in any direction from P , at least a little, and stay in the domain of f. We want to ask how fast f(X) changes as X moves away from P , and to express it as some kind of derivative. The answer clearly depends on which direction you go. If f is not constant near P ,then f(X) increases in some directions, and decreases in others. If we move along a level curve of f,thenf(X) doesn’t change at all (that’s what a level curve means—a curve on which the function is constant). The answer also depends on how fast you go. Suppose that f measures temperature, and that some particle is moving along a path through P . The particle experiences a change of temperature. This happens not because the temperature is a function of time, but rather because of the particle’s motion. Now suppose that a second particle moves along the same path in the same direction, but faster.
    [Show full text]
  • 1 Space Curves and Tangent Lines 2 Gradients and Tangent Planes
    CLASS NOTES for CHAPTER 4, Nonlinear Programming 1 Space Curves and Tangent Lines Recall that space curves are de¯ned by a set of parametric equations, x1(t) 2 x2(t) 3 r(t) = . 6 . 7 6 7 6 xn(t) 7 4 5 In Calc III, we might have written this a little di®erently, ~r(t) =< x(t); y(t); z(t) > but here we want to use n dimensions rather than two or three dimensions. The derivative and antiderivative of r with respect to t is done component- wise, x10 (t) x1(t) dt 2 x20 (t) 3 2 R x2(t) dt 3 r(t) = . ; R(t) = . 6 . 7 6 R . 7 6 7 6 7 6 xn0 (t) 7 6 xn(t) dt 7 4 5 4 5 And the local linear approximation to r(t) is alsoRdone componentwise. The tangent line (in n dimensions) can be written easily- the derivative at t = a is the direction of the curve, so the tangent line is given by: x1(a) x10 (a) 2 x2(a) 3 2 x20 (a) 3 L(t) = . + t . 6 . 7 6 . 7 6 7 6 7 6 xn(a) 7 6 xn0 (a) 7 4 5 4 5 In Class Exercise: Use Maple to plot the curve r(t) = [cos(t); sin(t); t]T ¼ and its tangent line at t = 2 . 2 Gradients and Tangent Planes Let f : Rn R. In this case, we can write: ! y = f(x1; x2; x3; : : : ; xn) 1 Note that any function that we wish to optimize must be of this form- It would not make sense to ¯nd the maximum of a function like a space curve; n dimensional coordinates are not well-ordered like the real line- so the fol- lowing statement would be meaningless: (3; 5) > (1; 2).
    [Show full text]
  • Directional Derivatives
    Directional Derivatives The Question Suppose that you leave the point (a, b) moving with velocity ~v = v , v . Suppose further h 1 2i that the temperature at (x, y) is f(x, y). Then what rate of change of temperature do you feel? The Answers Let’s set the beginning of time, t = 0, to the time at which you leave (a, b). Then at time t you are at (a + v1t, b + v2t) and feel the temperature f(a + v1t, b + v2t). So the change in temperature between time 0 and time t is f(a + v1t, b + v2t) f(a, b), the average rate of change of temperature, −f(a+v1t,b+v2t) f(a,b) per unit time, between time 0 and time t is t − and the instantaneous rate of f(a+v1t,b+v2t) f(a,b) change of temperature per unit time as you leave (a, b) is limt 0 − . We apply → t the approximation f(a + ∆x, b + ∆y) f(a, b) fx(a, b) ∆x + fy(a, b) ∆y − ≈ with ∆x = v t and ∆y = v t. In the limit as t 0, the approximation becomes exact and we have 1 2 → f(a+v1t,b+v2t) f(a,b) fx(a,b) v1t+fy (a,b) v2t lim − = lim t 0 t t 0 t → → = fx(a, b) v1 + fy(a, b) v2 = fx(a, b),fy(a, b) v , v h i·h 1 2i The vector fx(a, b),fy(a, b) is denoted ~ f(a, b) and is called “the gradient of the function h i ∇ f at the point (a, b)”.
    [Show full text]