The Cuticle* Antony P
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis Elegans
HIGHLIGHTED ARTICLE | INVESTIGATION A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans William Dodd,*,1 Lanlan Tang,*,1 Jean-Christophe Lone,† Keon Wimberly,* Cheng-Wei Wu,* Claudia Consalvo,* Joni E. Wright,* Nathalie Pujol,†,2 and Keith P. Choe*,2 *Department of Biology, University of Florida, Gainesville, Florida 32611 and †Aix Marseille University, CNRS, INSERM, CIML, Marseille, France ORCID ID: 0000-0001-8889-3197 (N.P.) ABSTRACT Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/ Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT- 3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates de- toxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling. KEYWORDS damage sensor; collagen; detoxification; osmotic stress; antimicrobial response XTRACELLULAR matrices (ECMs) are ubiquitous features Internal and epidermal tissues secrete ECMs as mechanical Eof animal tissues composed of secreted fibrous proteins support. -
Nail Anatomy and Physiology for the Clinician 1
Nail Anatomy and Physiology for the Clinician 1 The nails have several important uses, which are as they are produced and remain stored during easily appreciable when the nails are absent or growth. they lose their function. The most evident use of It is therefore important to know how the fi ngernails is to be an ornament of the hand, but healthy nail appears and how it is formed, in we must not underestimate other important func- order to detect signs of pathology and understand tions, such as the protective value of the nail plate their pathogenesis. against trauma to the underlying distal phalanx, its counterpressure effect to the pulp important for walking and for tactile sensation, the scratch- 1.1 Nail Anatomy ing function, and the importance of fi ngernails and Physiology for manipulation of small objects. The nails can also provide information about What we call “nail” is the nail plate, the fi nal part the person’s work, habits, and health status, as of the activity of 4 epithelia that proliferate and several well-known nail features are a clue to sys- differentiate in a specifi c manner, in order to form temic diseases. Abnormal nails due to biting or and protect a healthy nail plate [1 ]. The “nail onychotillomania give clues to the person’s emo- unit” (Fig. 1.1 ) is composed by: tional/psychiatric status. Nail samples are uti- • Nail matrix: responsible for nail plate production lized for forensic and toxicology analysis, as • Nail folds: responsible for protection of the several substances are deposited in the nail plate nail matrix Proximal nail fold Nail plate Fig. -
C. Elegans Gene M03f4.3 Is a D2-Like Dopamine Receptor
C. ELEGANS GENE M03F4.3 IS A D2-LIKE DOPAMINE RECEPTOR Arpy Sarkis Ohanian B.Sc., University of Washington, 2002 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Molecular Biology and Biochemistry 0 Arpy Sarkis Ohanian 2004 SIMON FRASER UNIVERSITY July 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.[~q APPROVAL Name: Arpy Sarkis Ohanian Degree: Master of Science Title of Thesis: C. elegans gene M03F4.3 is a probable candidate for expression of dopamine receptor. Examining Committee: Chair: Dr. A. T. Beckenbach Associate Professor, Department of Biological Sciences Dr. David L. Baillie Senior Supervisor Professor, Department of Molecular Biology and Biochemistry Dr. Barry Honda Supervisor Professor, Department of Molecular Biology and Biochemistry Dr. Bruce Brandhorst Supervisor Professor, Department of Molecular Biology and Biochemistry Dr. Robert C. Johnsen Supervisor Research Associate, Department of Molecular Biology and Biochemistry Dr. Nicholas Harden Internal Examiner Associate Professor, Department of Molecular Biology and Biochemistry Date DefendedIApproved: July 29,2004 Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. -
A Novel Nuclear Receptor/Coregulator Complex Controls C. Elegans Lipid Metabolism, Larval Development, and Aging
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging Andreas H. Ludewig,1 Corinna Kober-Eisermann,1 Cindy Weitzel,1,2 Axel Bethke,1 Kerstin Neubert,1 Birgit Gerisch,1 Harald Hutter,3 and Adam Antebi1,2,4 1MPI fuer molekulare Genetik, 14195 Berlin, Germany; 2Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA; 3MPI fuer Medizinische Forschung, 69120 Heidelberg, Germany Environmental cues transduced by an endocrine network converge on Caenorhabditis elegans nuclear receptor DAF-12 to mediate arrest at dauer diapause or continuous larval development. In adults, DAF-12 selects long-lived or short-lived modes. How these organismal choices are molecularly specified is unknown. Here we show that coregulator DIN-1 and DAF-12 physically and genetically interact to instruct organismal fates. Homologous to human corepressor SHARP, DIN-1 comes in long (L) and short (S) isoforms, which are nuclear localized but have distinct functions. DIN-1L has embryonic and larval developmental roles. DIN-1S, along with DAF-12, regulates lipid metabolism, larval stage-specific programs, diapause, and longevity. Epistasis experiments reveal that din-1S acts in the dauer pathways downstream of lipophilic hormone, insulin/IGF, and TGF signaling, the same point as daf-12. We propose that the DIN-1S/DAF-12 complex serves as a molecular switch that implements slow life history alternatives in response to diminished hormonal signals. [Keywords: Nuclear receptor; coregulator; aging; dauer; heterochrony] Supplemental material is available at http://www.genesdev.org. -
And Hedgehog-Related Homologs in C. Elegans
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Letter The function and expansion of the Patched- and Hedgehog-related homologs in C. elegans Olivier Zugasti,1 Jeena Rajan,2 and Patricia E. Kuwabara1,3 1University of Bristol, Department of Biochemistry, School of Medical Sciences, Bristol BS8 1TD, United Kingdom The Hedgehog (Hh) signaling pathway promotes pattern formation and cell proliferation in Drosophila and vertebrates. Hh is a ligand that binds and represses the Patched (Ptc) receptor and thereby releases the latent activity of the multipass membrane protein Smoothened (Smo), which is essential for transducing the Hh signal. In Caenorhabditis elegans, the Hh signaling pathway has undergone considerable divergence. Surprisingly, obvious Smo and Hh homologs are absent whereas PTC, PTC-related (PTR), and a large family of nematode Hh-related (Hh-r) proteins are present. We find that the number of PTC-related and Hh-r proteins has expanded in C. elegans, and that this expansion occurred early in Nematoda. Moreover, the function of these proteins appears to be conserved in Caenorhabditis briggsae. Given our present understanding of the Hh signaling pathway, the absence of Hh and Smo raises many questions about the evolution and the function of the PTC, PTR, and Hh-r proteins in C. elegans. To gain insights into their roles, we performed a global survey of the phenotypes produced by RNA-mediated interference (RNAi). Our study reveals that these genes do not require Smo for activity and that they function in multiple aspects of C. elegans development, including molting, cytokinesis, growth, and pattern formation. -
Wnt Signaling Controls Temporal Identities of Seam Cells in Caenorhabditis Elegans
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 345 (2010) 144–155 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans Haiyan Ren a,b, Hong Zhang b,⁎ a Graduate Program in Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China b National Institute of Biological Sciences, Beijing 102206, PR China article info abstract Article history: The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam Received for publication 12 April 2010 cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this Revised 4 June 2010 study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, Accepted 1 July 2010 plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in Available online 17 July 2010 retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression Keywords: Heterochronic gene pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the dcr-1 heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated lit-1 silencing of target heterochronic genes. We further show that loss of function of other components of Wnt Wnt signaling signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. -
Non-Canonical Apical Constriction Shapes Emergent Matrices in C
bioRxiv preprint doi: https://doi.org/10.1101/189951; this version posted January 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Non-canonical apical constriction shapes emergent matrices in C. elegans Sophie S. Katz1 and Alison R. Frand1 1Department of Biological Chemistry David Geffen School of Medicine University of California, Los Angeles Los Angeles, CA 90095 *To whom correspondence should be addressed: [email protected] Keywords: Actomyosin cytoskeleton, adherens junctions, epidermal morphogenesis, cuticle patterning, C. elegans molting cycle bioRxiv preprint doi: https://doi.org/10.1101/189951; this version posted January 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY We describe a morphogenetic mechanism that integrates apical constriction with remodeling apical extracellular matrices. Therein, a pulse of anisotropic constriction generates transient epithelial protrusions coupled to an interim apical matrix, which then patterns long durable ridges on C. elegans cuticles. ABSTRACT Specialized epithelia produce intricate apical matrices by poorly defined mechanisms. To address this question, we studied the role of apical constriction in patterning the acellular cuticle of C. elegans. Knocking-down epidermal actin, non-muscle myosin II or alpha-catenin led to the formation of mazes, rather than long ridges (alae) on the midline; yet, these same knockdowns did not appreciably affect the pattern of circumferential bands (annuli). Imaging epidermal F- actin and cell-cell junctions revealed that longitudinal apical-lateral and apical-medial AFBs, in addition to cortical meshwork, assemble when the fused seam narrows rapidly; and that discontinuous junctions appear as the seam gradually widens. -
Research Article the Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora)
Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 407072, 18 pages http://dx.doi.org/10.1155/2013/407072 Research Article The Continuing Debate on Deep Molluscan Phylogeny: Evidence for Serialia (Mollusca, Monoplacophora + Polyplacophora) I. Stöger,1,2 J. D. Sigwart,3 Y. Kano,4 T. Knebelsberger,5 B. A. Marshall,6 E. Schwabe,1,2 and M. Schrödl1,2 1 SNSB-Bavarian State Collection of Zoology, Munchhausenstraße¨ 21, 81247 Munich, Germany 2 Faculty of Biology, Department II, Ludwig-Maximilians-Universitat¨ Munchen,¨ Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany 3 Queen’s University Belfast, School of Biological Sciences, Marine Laboratory, 12-13 The Strand, Portaferry BT22 1PF, UK 4 Department of Marine Ecosystems Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan 5 Senckenberg Research Institute, German Centre for Marine Biodiversity Research (DZMB), Sudstrand¨ 44, 26382 Wilhelmshaven, Germany 6 Museum of New Zealand Te Papa Tongarewa, P.O. Box 467, Wellington, New Zealand Correspondence should be addressed to M. Schrodl;¨ [email protected] Received 1 March 2013; Revised 8 August 2013; Accepted 23 August 2013 Academic Editor: Dietmar Quandt Copyright © 2013 I. Stoger¨ et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molluscs are a diverse animal phylum with a formidable fossil record. Although there is little doubt about the monophyly of the eight extant classes, relationships between these groups are controversial. We analysed a comprehensive multilocus molecular data set for molluscs, the first to include multiple species from all classes, including five monoplacophorans in both extant families. -
The Cuticle of Caenorhabditis Elegans ~ ROBERT S
248 Journal o[ Nematology, Volume 14, No. 2, April 1982 17. Kimble, J., and D. Hirsh. 1979. The post- 1980. The Caenorhabditis elegans male: postem- emhryonic cell lineages of the hermaphrodite and brynnic development of nongonadal structures. male gonads in Caenorhabditis elegans. Develop. Develop. Biol. 78:542-576. Biol. 70:396-417. 27. Sulston, J., and J. Hodgkin. 1979. A diet of 18. Kimble, J., and J. White. 1981. On the con- worms. Nature 279:758-759. lrol of germ cell developmenl in Caenorhabditis 28. Sulston, J., and R. Horvitz. 1977. Postem- elegans. Develop. Biol. 81:208-219. hryonic cell lineages of the nematode Caenorhabditis 19. Krieg, C., T. Cole, U. Deppe, E. Schieren- elegans. Develop. Biol. 56:110-156. berg, D. Schmin, B. Yodel and G. yon Ehrenstein. 29. Sulston, J., and R. Horvitz. 1981. Ahnormal 1978. The cellular anatomy of embryos of the nema- cell lineages in mutants of the nematode Caenorhah- tode Caenorhabditis elegans. Analysis and recon- ditis elegans. Develop. Biol. 82:41-55. struction of serial section electron micrographs. 30. Sulston, J., and J. White. 1980. Regulation Develop. Biol. 65:193-215. and cell atttonomy during postembryonic develop- 20. Luc, M. 1981. Observations on some Xi- ment of Caenorhabditis elegans. Develop. Biol. 78: phinema species with the female anterior branch 577-597. reduced or ahsent (Nematoda: tongidoridae). Revue 31. Triantaphyllou, A., and H. Hirschmann. Nematol. 4:157-167. 1980. Cytogenetics and morphology in relation to 21. Nigon, V. 1965. Development et reproduction evolution and speciation of plant-parasitic nema- des nematodes. In P. P. Grasse, ed. -
•Nail Structure •Nail Growth •Nail Diseases, Disorders, and Conditions
•Nail Structure Nail Theory •Nail Growth •Nail Diseases, Disorders, and Conditions Onychology The study of nails. Nail Structure 1. Free Edge – Extends past the skin. 2. Nail Body – Visible nail area. 3. Nail Wall – Skin on both sides of nail. 4. Lunula – Whitened half-moon 5. Eponychium – Lies at the base of the nail, live skin. 6. Mantle – Holds root and matrix. Nail Structure 7. Nail Matrix – Generates cells that make the nail. 8. Nail Root – Attached to matrix 9. Cuticle – Overlapping skin around the nail 10. Nail Bed – Skin that nail sits on 11. Nail Grooves – Tracks that nail slides on 12. Perionychium – Skin around nail 13. Hyponychium – Underneath the free edge Hyponychium Nail Body Nail Groove Nail Bed Lunula Eponychium Matrix Nail Root Free Edge Nail Bed Eponychium Matrix Nail Root Nail Growth • Keratin – Glue-like protein that hardens to make the nail. • Rate of Growth – 4 to 6 month to grow new nail – Approx. 1/8” per month • Faster in summer • Toenails grow faster Injuries • Result: shape distortions or discoloration – Nail lost due to trauma. – Nail lost through disease. Types of Nail Implements Nippers Nail Clippers Cuticle Pusher Emery Board or orangewood stick Nail Diseases, Disorders and Conditions • Onychosis – Any nail disease • Etiology – Cause of nail disease, disorder or condition. • Hand and Nail Examination – Check for problems • Six signs of infection – Pain, swelling, redness, local fever, throbbing and pus Symptoms • Coldness – Lack of circulation • Heat – Infection • Dry Texture – Lack of moisture • Redness -
Epithelial Shaping by Diverse Apical Extracellular Matrices Requires the Nidogen Domain Protein DEX-1 in C
Genetics: Early Online, published on November 8, 2018 as 10.1534/genetics.118.301752 Epithelial shaping by diverse apical extracellular matrices requires the nidogen domain protein DEX-1 in C. elegans Jennifer D. Cohen*, Kristen M. Flatt†, Nathan E. Schroeder†‡, Meera V. Sundaram*§ *Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104 †Program in Neuroscience, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-4730 ‡Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801-4730 1 Copyright 2018. Running title: DEX-1 and ZP matrices in C. elegans keywords C. elegans; extracellular matrix; zona pellucida; cuticle; excretory system §Corresponding author: Department of Genetics, University of Pennsylvania Perelman School of Medicine, 446a Clinical Research Bldg., 415 Curie Blvd., Philadelphia, PA 19104-6145. E-mail: [email protected] 2 ABSTRACT The body’s external surfaces and the insides of biological tubes, like the vascular system, are lined by a lipid, glycoprotein-, and glycosaminoglycan- rich apical extracellular matrix (aECM). aECMs are the body’s first line of defense against infectious agents and promote tissue integrity and morphogenesis, but are poorly described relative to basement membranes and stromal ECMs. While some aECM components, such as zona pellucida domain (ZP) proteins, have been identified, little is known regarding the overall composition of the aECM or the mechanisms by which different aECM components work together to shape epithelial tissues. In Caenorhabditis elegans, external epithelia develop in the context of an ill-defined ZP-containing aECM that precedes secretion of the collagenous cuticle. C. elegans has 43 genes that encode at least 65 unique ZP proteins, and we show that some of these comprise distinct pre-cuticle aECMs in the embryo. -
Requirement of Tyrosylprotein Sulfotransferase-A for Proper Cuticle Formation in the Nematode C
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS 29078 FEBS Letters 579 (2005) 53–58 Requirement of tyrosylprotein sulfotransferase-A for proper cuticle formation in the nematode C. elegans Tai Hoon Kima,c, Soon Baek Hwanga,d, Pan-Young Jeongb, Junho Leea,d,*, Jin Won Choa,c,* a Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea b Department of Biochemistry, Yonsei University, Seoul 120-749, Republic of Korea c Protein Network Research Center, Yonsei University, Seoul 120-749, Republic of Korea d School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea Received 27 September 2004; revised 9 November 2004; accepted 10 November 2004 Available online 26 November 2004 Edited by Veli-Pekka Lehto cyte adhesion, and coagulation factors VIII and V [13–19]. The Abstract Tyrosine O-sulfation is one of the post-translational modification processes that occur to membrane proteins and se- wide spectrum of the substrates for TPST and limitation in the creted proteins in eukaryotes. Tyrosylprotein sulfotransferase prediction of a defined consensus sulfation target sequence (TPST) is responsible for this modification, and in this report, within a protein have made it difficult to assess the biological we describe the expression pattern and the biological role of roles of tyrosine O-sulfation at the organismic level. One way TPST-A in the nematode Caenorhabditis elegans. We found that to examine the roles of TPST is to study mutations. Although TPST-A was mainly expressed in the hypodermis, especially in the knockout mouse lacking the mouse TPST gene was recently the seam cells.