A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis Elegans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												A Transparent Window Into Biology: a Primer on Caenorhabditis Elegans* Ann K
A Transparent window into biology: A primer on Caenorhabditis elegans* Ann K. Corsi1§, Bruce Wightman2§, and Martin Chalfie3§ 1Biology Department, The Catholic University of America, Washington, DC 20064 2Biology Department, Muhlenberg College, Allentown, PA 18104 3Department of Biological Sciences, Columbia University, New York, NY 10027 Table of Contents 1. Introduction ............................................................................................................................2 2. C. elegans basics .....................................................................................................................4 2.1. Growth and maintenance ................................................................................................ 4 2.2. Sexual forms and their importance .................................................................................... 5 2.3. Life cycle ....................................................................................................................7 3. C. elegans genetics ...................................................................................................................8 4. Why choose C. elegans? ......................................................................................................... 10 5. C. elegans tissues ................................................................................................................... 11 5.1. Epidermis: a model for extracellular matrix production, wound healing, and cell fusion ............ 12 5.2. Muscles—controlling - 
												
												C. Elegans Gene M03f4.3 Is a D2-Like Dopamine Receptor
C. ELEGANS GENE M03F4.3 IS A D2-LIKE DOPAMINE RECEPTOR Arpy Sarkis Ohanian B.Sc., University of Washington, 2002 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the Department of Molecular Biology and Biochemistry 0 Arpy Sarkis Ohanian 2004 SIMON FRASER UNIVERSITY July 2004 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author.[~q APPROVAL Name: Arpy Sarkis Ohanian Degree: Master of Science Title of Thesis: C. elegans gene M03F4.3 is a probable candidate for expression of dopamine receptor. Examining Committee: Chair: Dr. A. T. Beckenbach Associate Professor, Department of Biological Sciences Dr. David L. Baillie Senior Supervisor Professor, Department of Molecular Biology and Biochemistry Dr. Barry Honda Supervisor Professor, Department of Molecular Biology and Biochemistry Dr. Bruce Brandhorst Supervisor Professor, Department of Molecular Biology and Biochemistry Dr. Robert C. Johnsen Supervisor Research Associate, Department of Molecular Biology and Biochemistry Dr. Nicholas Harden Internal Examiner Associate Professor, Department of Molecular Biology and Biochemistry Date DefendedIApproved: July 29,2004 Partial Copyright Licence The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. - 
												
												A Novel Nuclear Receptor/Coregulator Complex Controls C. Elegans Lipid Metabolism, Larval Development, and Aging
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging Andreas H. Ludewig,1 Corinna Kober-Eisermann,1 Cindy Weitzel,1,2 Axel Bethke,1 Kerstin Neubert,1 Birgit Gerisch,1 Harald Hutter,3 and Adam Antebi1,2,4 1MPI fuer molekulare Genetik, 14195 Berlin, Germany; 2Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA; 3MPI fuer Medizinische Forschung, 69120 Heidelberg, Germany Environmental cues transduced by an endocrine network converge on Caenorhabditis elegans nuclear receptor DAF-12 to mediate arrest at dauer diapause or continuous larval development. In adults, DAF-12 selects long-lived or short-lived modes. How these organismal choices are molecularly specified is unknown. Here we show that coregulator DIN-1 and DAF-12 physically and genetically interact to instruct organismal fates. Homologous to human corepressor SHARP, DIN-1 comes in long (L) and short (S) isoforms, which are nuclear localized but have distinct functions. DIN-1L has embryonic and larval developmental roles. DIN-1S, along with DAF-12, regulates lipid metabolism, larval stage-specific programs, diapause, and longevity. Epistasis experiments reveal that din-1S acts in the dauer pathways downstream of lipophilic hormone, insulin/IGF, and TGF signaling, the same point as daf-12. We propose that the DIN-1S/DAF-12 complex serves as a molecular switch that implements slow life history alternatives in response to diminished hormonal signals. [Keywords: Nuclear receptor; coregulator; aging; dauer; heterochrony] Supplemental material is available at http://www.genesdev.org. - 
												
												And Hedgehog-Related Homologs in C. Elegans
Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Letter The function and expansion of the Patched- and Hedgehog-related homologs in C. elegans Olivier Zugasti,1 Jeena Rajan,2 and Patricia E. Kuwabara1,3 1University of Bristol, Department of Biochemistry, School of Medical Sciences, Bristol BS8 1TD, United Kingdom The Hedgehog (Hh) signaling pathway promotes pattern formation and cell proliferation in Drosophila and vertebrates. Hh is a ligand that binds and represses the Patched (Ptc) receptor and thereby releases the latent activity of the multipass membrane protein Smoothened (Smo), which is essential for transducing the Hh signal. In Caenorhabditis elegans, the Hh signaling pathway has undergone considerable divergence. Surprisingly, obvious Smo and Hh homologs are absent whereas PTC, PTC-related (PTR), and a large family of nematode Hh-related (Hh-r) proteins are present. We find that the number of PTC-related and Hh-r proteins has expanded in C. elegans, and that this expansion occurred early in Nematoda. Moreover, the function of these proteins appears to be conserved in Caenorhabditis briggsae. Given our present understanding of the Hh signaling pathway, the absence of Hh and Smo raises many questions about the evolution and the function of the PTC, PTR, and Hh-r proteins in C. elegans. To gain insights into their roles, we performed a global survey of the phenotypes produced by RNA-mediated interference (RNAi). Our study reveals that these genes do not require Smo for activity and that they function in multiple aspects of C. elegans development, including molting, cytokinesis, growth, and pattern formation. - 
												
												Web Resources for C. Elegans Studies* §
Web resources for C. elegans studies* § Raymond Lee , Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Table of Contents 1. Introduction ............................................................................................................................1 2. Portal and knowledge environment .............................................................................................. 2 2.1. WormBase ...................................................................................................................2 2.2. Caenorhabditis elegans WWW Server ..............................................................................3 3. Literature search ...................................................................................................................... 4 3.1. Textpresso ................................................................................................................... 4 3.2. NCBI PubMed ..............................................................................................................5 3.3. Caenorhabditis elegans WWW Server Worm Literature Index ............................................... 5 4. Gene function .........................................................................................................................6 4.1. WormBase Gene Summary ............................................................................................. 6 4.2. NCBI AceView ........................................................................................................... - 
												
												TGF-Β Signaling in C. Elegans * Tina L
TGF-β signaling in C. elegans * Tina L. Gumienny1 and Cathy Savage-Dunn2§ 1Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843 USA 2Department of Biology, Queens College, and the Graduate School and University Center, City University of New York, Flushing, NY 11367 USA Table of Contents 1. Overview ...............................................................................................................................2 2. DBL-1 pathway .......................................................................................................................4 2.1. Body size regulation ...................................................................................................... 5 2.2. Male tail development .................................................................................................... 6 2.3. Innate immunity ............................................................................................................ 6 2.4. Aging and longevity ...................................................................................................... 7 2.5. Mesodermal patterning ................................................................................................... 8 2.6. Chemosensation and neuronal function .............................................................................. 8 2.7. Ligand, receptors, and their modulators ............................................................................. 8 2.8. Intracellular - 
												
												Molecular Evolution Inferences from the C. Elegans Genome* Asher D
Molecular evolution inferences from the C. elegans genome* Asher D. Cutter§, Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada Table of Contents 1. Introduction ............................................................................................................................1 2. Mutation ................................................................................................................................2 3. Recombination ........................................................................................................................ 3 4. Natural Selection ..................................................................................................................... 4 5. Genetic Drift ...........................................................................................................................6 6. Population dynamics ................................................................................................................ 7 7. Summary ...............................................................................................................................7 8. Acknowledgements .................................................................................................................. 8 9. References ..............................................................................................................................8 Abstract An understanding of evolution at the molecular level requires the simultaneous - 
												
												Wnt Signaling Controls Temporal Identities of Seam Cells in Caenorhabditis Elegans
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Developmental Biology 345 (2010) 144–155 Contents lists available at ScienceDirect Developmental Biology journal homepage: www.elsevier.com/developmentalbiology Wnt signaling controls temporal identities of seam cells in Caenorhabditis elegans Haiyan Ren a,b, Hong Zhang b,⁎ a Graduate Program in Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China b National Institute of Biological Sciences, Beijing 102206, PR China article info abstract Article history: The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam Received for publication 12 April 2010 cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this Revised 4 June 2010 study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, Accepted 1 July 2010 plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in Available online 17 July 2010 retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression Keywords: Heterochronic gene pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the dcr-1 heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated lit-1 silencing of target heterochronic genes. We further show that loss of function of other components of Wnt Wnt signaling signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. - 
												
												The Biology of Strongyloides Spp.* Mark E
The biology of Strongyloides spp.* Mark E. Viney1§ and James B. Lok2 1School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK 2Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6008, USA Table of Contents 1. Strongyloides is a genus of parasitic nematodes ............................................................................. 1 2. Strongyloides infection of humans ............................................................................................... 2 3. Strongyloides in the wild ...........................................................................................................2 4. Phylogeny, morphology and taxonomy ........................................................................................ 4 5. The life-cycle ..........................................................................................................................6 6. Sex determination and genetics of the life-cycle ............................................................................. 8 7. Controlling the life-cycle ........................................................................................................... 9 8. Maintaining the life-cycle ........................................................................................................ 10 9. The parasitic phase of the life-cycle ........................................................................................... 10 10. Life-cycle plasticity ............................................................................................................. - 
												
												Natural Variation and Population Genetics of Caenorhabditis Elegans* §
Natural variation and population genetics of Caenorhabditis elegans* § Antoine Barrière and Marie-Anne Félix , Institut Jacques Monod, CNRS - Universities of Paris, 75251 Paris cedex 05, France Table of Contents 1. Molecular polymorphisms and population genetics ......................................................................... 2 1.1. Low molecular diversity of C. elegans ...............................................................................2 1.2. Population structure and geographic differentiation .............................................................. 7 1.3. Comparison with C. briggsae and C. remanei .....................................................................8 1.4. Outcrossing versus selfing in C. elegans ............................................................................9 2. Phenotypic diversity ............................................................................................................... 11 2.1. Phenotypic change upon mutation accumulation ................................................................ 11 2.2. Polymorphic phenotypes ............................................................................................... 11 2.3. Genetic analysis of a natural phenotypic variation .............................................................. 14 3. References ............................................................................................................................ 16 Abstract C. elegans presents a low level of molecular diversity, which may be explained - 
												
												The C. Elegans Eggshell* Kathryn K
The C. elegans eggshell* Kathryn K. Stein1,2 and Andy Golden1,§ 1Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA 2Translational Genomics Research Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA Table of Contents 1. Overview of the structure of the C. elegans eggshell ....................................................................... 2 2. Timeline for eggshell formation .................................................................................................. 3 3. Layer one: the vitelline layer ...................................................................................................... 4 4. Layer two: the chitin layer ......................................................................................................... 4 4.1. CHS-1 .........................................................................................................................5 4.2. GNA-2 ........................................................................................................................6 4.3. EGG-1, EGG-2 ............................................................................................................. 6 4.4. EGG-3, EGG-4, EGG-5 .................................................................................................. 6 4.5. SPE-11 ........................................................................................................................7 - 
												
												Non-Canonical Apical Constriction Shapes Emergent Matrices in C
bioRxiv preprint doi: https://doi.org/10.1101/189951; this version posted January 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Non-canonical apical constriction shapes emergent matrices in C. elegans Sophie S. Katz1 and Alison R. Frand1 1Department of Biological Chemistry David Geffen School of Medicine University of California, Los Angeles Los Angeles, CA 90095 *To whom correspondence should be addressed: [email protected] Keywords: Actomyosin cytoskeleton, adherens junctions, epidermal morphogenesis, cuticle patterning, C. elegans molting cycle bioRxiv preprint doi: https://doi.org/10.1101/189951; this version posted January 1, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY We describe a morphogenetic mechanism that integrates apical constriction with remodeling apical extracellular matrices. Therein, a pulse of anisotropic constriction generates transient epithelial protrusions coupled to an interim apical matrix, which then patterns long durable ridges on C. elegans cuticles. ABSTRACT Specialized epithelia produce intricate apical matrices by poorly defined mechanisms. To address this question, we studied the role of apical constriction in patterning the acellular cuticle of C. elegans. Knocking-down epidermal actin, non-muscle myosin II or alpha-catenin led to the formation of mazes, rather than long ridges (alae) on the midline; yet, these same knockdowns did not appreciably affect the pattern of circumferential bands (annuli). Imaging epidermal F- actin and cell-cell junctions revealed that longitudinal apical-lateral and apical-medial AFBs, in addition to cortical meshwork, assemble when the fused seam narrows rapidly; and that discontinuous junctions appear as the seam gradually widens.