A Transparent Window Into Biology: a Primer on Caenorhabditis Elegans* Ann K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis Elegans
HIGHLIGHTED ARTICLE | INVESTIGATION A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans William Dodd,*,1 Lanlan Tang,*,1 Jean-Christophe Lone,† Keon Wimberly,* Cheng-Wei Wu,* Claudia Consalvo,* Joni E. Wright,* Nathalie Pujol,†,2 and Keith P. Choe*,2 *Department of Biology, University of Florida, Gainesville, Florida 32611 and †Aix Marseille University, CNRS, INSERM, CIML, Marseille, France ORCID ID: 0000-0001-8889-3197 (N.P.) ABSTRACT Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/ Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT- 3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates de- toxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling. KEYWORDS damage sensor; collagen; detoxification; osmotic stress; antimicrobial response XTRACELLULAR matrices (ECMs) are ubiquitous features Internal and epidermal tissues secrete ECMs as mechanical Eof animal tissues composed of secreted fibrous proteins support. -
Web Resources for C. Elegans Studies* §
Web resources for C. elegans studies* § Raymond Lee , Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Table of Contents 1. Introduction ............................................................................................................................1 2. Portal and knowledge environment .............................................................................................. 2 2.1. WormBase ...................................................................................................................2 2.2. Caenorhabditis elegans WWW Server ..............................................................................3 3. Literature search ...................................................................................................................... 4 3.1. Textpresso ................................................................................................................... 4 3.2. NCBI PubMed ..............................................................................................................5 3.3. Caenorhabditis elegans WWW Server Worm Literature Index ............................................... 5 4. Gene function .........................................................................................................................6 4.1. WormBase Gene Summary ............................................................................................. 6 4.2. NCBI AceView ........................................................................................................... -
TGF-Β Signaling in C. Elegans * Tina L
TGF-β signaling in C. elegans * Tina L. Gumienny1 and Cathy Savage-Dunn2§ 1Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843 USA 2Department of Biology, Queens College, and the Graduate School and University Center, City University of New York, Flushing, NY 11367 USA Table of Contents 1. Overview ...............................................................................................................................2 2. DBL-1 pathway .......................................................................................................................4 2.1. Body size regulation ...................................................................................................... 5 2.2. Male tail development .................................................................................................... 6 2.3. Innate immunity ............................................................................................................ 6 2.4. Aging and longevity ...................................................................................................... 7 2.5. Mesodermal patterning ................................................................................................... 8 2.6. Chemosensation and neuronal function .............................................................................. 8 2.7. Ligand, receptors, and their modulators ............................................................................. 8 2.8. Intracellular -
Molecular Evolution Inferences from the C. Elegans Genome* Asher D
Molecular evolution inferences from the C. elegans genome* Asher D. Cutter§, Department of Ecology & Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3B2, Canada Table of Contents 1. Introduction ............................................................................................................................1 2. Mutation ................................................................................................................................2 3. Recombination ........................................................................................................................ 3 4. Natural Selection ..................................................................................................................... 4 5. Genetic Drift ...........................................................................................................................6 6. Population dynamics ................................................................................................................ 7 7. Summary ...............................................................................................................................7 8. Acknowledgements .................................................................................................................. 8 9. References ..............................................................................................................................8 Abstract An understanding of evolution at the molecular level requires the simultaneous -
The Biology of Strongyloides Spp.* Mark E
The biology of Strongyloides spp.* Mark E. Viney1§ and James B. Lok2 1School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK 2Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6008, USA Table of Contents 1. Strongyloides is a genus of parasitic nematodes ............................................................................. 1 2. Strongyloides infection of humans ............................................................................................... 2 3. Strongyloides in the wild ...........................................................................................................2 4. Phylogeny, morphology and taxonomy ........................................................................................ 4 5. The life-cycle ..........................................................................................................................6 6. Sex determination and genetics of the life-cycle ............................................................................. 8 7. Controlling the life-cycle ........................................................................................................... 9 8. Maintaining the life-cycle ........................................................................................................ 10 9. The parasitic phase of the life-cycle ........................................................................................... 10 10. Life-cycle plasticity ............................................................................................................. -
Natural Variation and Population Genetics of Caenorhabditis Elegans* §
Natural variation and population genetics of Caenorhabditis elegans* § Antoine Barrière and Marie-Anne Félix , Institut Jacques Monod, CNRS - Universities of Paris, 75251 Paris cedex 05, France Table of Contents 1. Molecular polymorphisms and population genetics ......................................................................... 2 1.1. Low molecular diversity of C. elegans ...............................................................................2 1.2. Population structure and geographic differentiation .............................................................. 7 1.3. Comparison with C. briggsae and C. remanei .....................................................................8 1.4. Outcrossing versus selfing in C. elegans ............................................................................9 2. Phenotypic diversity ............................................................................................................... 11 2.1. Phenotypic change upon mutation accumulation ................................................................ 11 2.2. Polymorphic phenotypes ............................................................................................... 11 2.3. Genetic analysis of a natural phenotypic variation .............................................................. 14 3. References ............................................................................................................................ 16 Abstract C. elegans presents a low level of molecular diversity, which may be explained -
The C. Elegans Eggshell* Kathryn K
The C. elegans eggshell* Kathryn K. Stein1,2 and Andy Golden1,§ 1Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA 2Translational Genomics Research Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA Table of Contents 1. Overview of the structure of the C. elegans eggshell ....................................................................... 2 2. Timeline for eggshell formation .................................................................................................. 3 3. Layer one: the vitelline layer ...................................................................................................... 4 4. Layer two: the chitin layer ......................................................................................................... 4 4.1. CHS-1 .........................................................................................................................5 4.2. GNA-2 ........................................................................................................................6 4.3. EGG-1, EGG-2 ............................................................................................................. 6 4.4. EGG-3, EGG-4, EGG-5 .................................................................................................. 6 4.5. SPE-11 ........................................................................................................................7 -
Wormbase: a Comprehensive Resource for Nematode Research Todd W
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2010 Wormbase: A comprehensive resource for nematode research Todd W. Harris Ontario Institute for Cancer Research Igor Antoshechkin California Institute of Technology Tamberlyn Bieri Washington University School of Medicine in St. Louis Darin Blasiar Washington University School of Medicine in St. Louis Juancarlos Chan California Institute of Technology See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Harris, Todd W.; Antoshechkin, Igor; Bieri, Tamberlyn; Blasiar, Darin; Chan, Juancarlos; Chen, Wen J.; De La Cruz, Norie; Davis, Paul; Duesbury, Margaret; Fang, Ruihua; Fernandes, Jolene; Han, Michael; Kishore, Ranjana; Lee, Raymond; Muller, Hans-Michael; Nakamura, Cecilia; Ozersky, Philip; Petcherski, Andrei; Rangarajan, Arun; Rogers, Anthony; Schindelman, Gary; Schwarz, Erich M.; Tuli, Mary Ann; Van Auken, Kimberly; Wang, Daniel; Wang, Xiaodong; Williams, Gary; Yook, Karen; Durbin, Richard; Stein, Lincoln D.; Spieth, John; and Sternberg, Paul W., ,"Wormbase: A comprehensive resource for nematode research." Nucleic Acids Research.,. D463-D467. (2010). https://digitalcommons.wustl.edu/open_access_pubs/110 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Todd W. Harris, Igor Antoshechkin, Tamberlyn Bieri, Darin Blasiar, Juancarlos Chan, Wen J. Chen, Norie De La Cruz, Paul Davis, Margaret Duesbury, Ruihua Fang, Jolene Fernandes, Michael Han, Ranjana Kishore, Raymond Lee, Hans-Michael Muller, Cecilia Nakamura, Philip Ozersky, Andrei Petcherski, Arun Rangarajan, Anthony Rogers, Gary Schindelman, Erich M. -
Genetic Suppression* §
Genetic suppression* § Jonathan Hodgkin , Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK Table of Contents 1. Introduction ............................................................................................................................2 2. Intragenic suppression by same site replacement ............................................................................ 2 3. Intragenic suppression by compensatory second site mutation .......................................................... 2 4. Intragenic suppression by altered splicing ..................................................................................... 2 5. Intragenic suppression of dominant mutations by loss-of-function in cis. ............................................2 6. Extragenic suppression — overview ............................................................................................ 3 7. Informational suppression — overview ........................................................................................ 4 8. Nonsense suppression ............................................................................................................... 4 9. Extragenic suppression by modified splicing ................................................................................. 5 10. Suppression by loss of NMD (Nonsense Mediated Decay) ............................................................. 6 11. Extragenic suppression by non-specific physiological effects ......................................................... -
Maintenance of C. Elegans* §
Maintenance of C. elegans* § Theresa Stiernagle , Caenorhabditis Genetics Center, University of Minnesota, Minneapolis, MN 55455 USA Table of Contents 1. Introduction ............................................................................................................................1 2. Acquiring strains from the Caenorhabditis Genetics Center (CGC) ................................................... 1 2.1. The CGC .....................................................................................................................1 2.2. Requesting strains ......................................................................................................... 2 2.3. Mailing strains .............................................................................................................. 2 3. Preparation of growth media ...................................................................................................... 3 3.1. Preparation of bacterial food source .................................................................................. 3 3.2. Preparation of NGM petri plates ....................................................................................... 3 3.3. Seeding NGM plates ...................................................................................................... 4 4. Culturing C. elegans on petri plates ............................................................................................. 4 4.1. Transferring worms grown on NGM plates ........................................................................ -
Biotechnology Explorer™ C
Biotechnology Explorer™ C. elegans Behavior Kit Instruction Manual explorer.bio-rad.com Catalog #166-5120EDU This kit contains temperature-sensitive reagents. Open immediately and see individual components for storage temperature. Please see redemption instructions on how to receive your C. elegans. Duplication of any part of this document is permitted for classroom use only. Please visit explorer.bio-rad.com to access our selection of language translations for Biotechnology Explorer kit curricula. Dear Educator, One of the greatest challenges in studying the biology of how human cells and organ systems function is that experimentation on humans is expensive, complex, and often unethical. It is because of this that scientists worldwide have adopted the use of model organisms that share much of the cellular machinery present in human cells, and study these organisms to help improve our understanding of the nature of our own cellular functions. In this kit, students will be introduced to one of the most widely used model organisms, the microscopic nematode Caenorhabditis elegans. Students will utilize C. elegans to understand the function of a conserved protein phosphatase, DAF-18. As with most C. elegans genes, daf-18 has a human homolog, PTEN, which is involved in a number of human pathologies such as cancer, autism, and learning disorders. While cancer is not a phenotype that is easily studied in C. elegans, because their short life span does not allow for the cellular progression often seen in humans, this kit does explore the role of daf-18 in learning and behavioral disorders. Students will be provided with two strains of C. -
Past and Recent Endeavours to Simulate Caenorhabditis Elegans
Past and Recent Endeavours to Simulate Caenorhabditis elegans Alexey Petrushin, Lorenzo Ferrara and Axel Blau Dept. of Neuroscience and Brain Technologies (NBT), Italian Institute of Technology (IIT), 16163 Genoa, Italy Keywords: Brain-Inspired Computation, Nervous System Emulation, Soft Body Simulation, Virtual Embodiment, Neurocomputational Response Models on Field-Programmable Gate Arrays (Fpgas). Abstract: Biological nervous systems are robust and highly adaptive information processing entities that excel current computer architectures in almost all aspects of sensory-motor integration. While they are slow and inefficient in the serial processing of stimuli or data chains, they outperform artificial computational systems in seemingly ordinary pattern recognition, orientation or navigation tasks. Even one of the simplest nervous systems in nature, that of the hermaphroditic nematode Caenorhabditis elegans with just 302 neurons and less than 8,000 synaptic connections, gives rise to a rich behavioural repertoire that – among controlling vital functions - encodes different locomotion modalities (crawling, swimming and jumping). It becomes evident that both robotics and information and computation technology (ICT) would strongly benefit if the working principles of nervous systems could be extracted and applied to the engineering of brain-mimetic computational architectures. C. elegans, being one of the five best-characterized animal model systems, promises to serve as the most manageable organism to elucidate the information coding and control mechanisms that give rise to complex behaviour. This short paper reviews past and present endeavours to reveal and harvest the potential of nervous system function in C. elegans. 1 INTRODUCTION 2 PAST PROJECTS ON SIMULATING C. elegans Caenorhabditis elegans, a tiny roundworm (L: 1 mm, Ø 80 µm) with a life span of a few weeks, is With the advent of sufficiently powerful among the five best characterized organisms in computational resources in the 80’s of the last nature (Epstein and Shakes, 1995).