Introduction to Nematode Evolution and Ecology* David H.A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis Elegans
HIGHLIGHTED ARTICLE | INVESTIGATION A Damage Sensor Associated with the Cuticle Coordinates Three Core Environmental Stress Responses in Caenorhabditis elegans William Dodd,*,1 Lanlan Tang,*,1 Jean-Christophe Lone,† Keon Wimberly,* Cheng-Wei Wu,* Claudia Consalvo,* Joni E. Wright,* Nathalie Pujol,†,2 and Keith P. Choe*,2 *Department of Biology, University of Florida, Gainesville, Florida 32611 and †Aix Marseille University, CNRS, INSERM, CIML, Marseille, France ORCID ID: 0000-0001-8889-3197 (N.P.) ABSTRACT Extracellular matrix barriers and inducible cytoprotective genes form successive lines of defense against chemical and microbial environmental stressors. The barrier in nematodes is a collagenous extracellular matrix called the cuticle. In Caenorhabditis elegans, disruption of some cuticle collagen genes activates osmolyte and antimicrobial response genes. Physical damage to the epidermis also activates antimicrobial responses. Here, we assayed the effect of knocking down genes required for cuticle and epidermal integrity on diverse cellular stress responses. We found that disruption of specific bands of collagen, called annular furrows, coactivates detoxification, hyperosmotic, and antimicrobial response genes, but not other stress responses. Disruption of other cuticle structures and epidermal integrity does not have the same effect. Several transcription factors act downstream of furrow loss. SKN-1/ Nrf and ELT-3/GATA are required for detoxification, SKN-1/Nrf is partially required for the osmolyte response, and STA-2/Stat and ELT- 3/GATA for antimicrobial gene expression. Our results are consistent with a cuticle-associated damage sensor that coordinates de- toxification, hyperosmotic, and antimicrobial responses through overlapping, but distinct, downstream signaling. KEYWORDS damage sensor; collagen; detoxification; osmotic stress; antimicrobial response XTRACELLULAR matrices (ECMs) are ubiquitous features Internal and epidermal tissues secrete ECMs as mechanical Eof animal tissues composed of secreted fibrous proteins support. -
A Transparent Window Into Biology: a Primer on Caenorhabditis Elegans* Ann K
A Transparent window into biology: A primer on Caenorhabditis elegans* Ann K. Corsi1§, Bruce Wightman2§, and Martin Chalfie3§ 1Biology Department, The Catholic University of America, Washington, DC 20064 2Biology Department, Muhlenberg College, Allentown, PA 18104 3Department of Biological Sciences, Columbia University, New York, NY 10027 Table of Contents 1. Introduction ............................................................................................................................2 2. C. elegans basics .....................................................................................................................4 2.1. Growth and maintenance ................................................................................................ 4 2.2. Sexual forms and their importance .................................................................................... 5 2.3. Life cycle ....................................................................................................................7 3. C. elegans genetics ...................................................................................................................8 4. Why choose C. elegans? ......................................................................................................... 10 5. C. elegans tissues ................................................................................................................... 11 5.1. Epidermis: a model for extracellular matrix production, wound healing, and cell fusion ............ 12 5.2. Muscles—controlling -
Nematode Management for Bedding Plants1 William T
ENY-052 Nematode Management for Bedding Plants1 William T. Crow2 Florida is the “land of flowers.” Surely, one of the things that Florida is known for is the beauty of its vegetation. Due to the tropical and subtropical environment, color can abound in Florida landscapes year-round. Unfortunately, plants are not the only organisms that enjoy the mild climate. Due to warm temperatures, sandy soil, and humidity, Florida has more than its fair share of pests and pathogens that attack bedding plants. Plant-parasitic nematodes (Figure 1) can be among the most damaging and hard-to-control of these organisms. What are nematodes? Nematodes are unsegmented roundworms, different from earthworms and other familiar worms that are segmented (annelids) or in some cases flattened and slimy (flatworms). Many kinds of nematodes may be found in the soil of any landscape. Most are beneficial, feeding on bacteria, fungi, or other microscopic organisms, and some may be used as biological control organisms to help manage important insect pests. Plant-parasitic nematodes are nematodes that Figure 1. Diagram of a generic plant-parasitic nematode. feed on live plants (Figure 1). Credits: R. P. Esser, Florida Department of Agriculture and Consumer Services, Division of Plant Industry; used with permission. Plant-parasitic nematodes are very small and most can only be seen using a microscope (Figure 2). All plant-parasitic nematodes have a stylet or mouth-spear that is similar in structure and function to a hypodermic needle (Figure 3). 1. This document is ENY-052, one of a series of the Department of Entomology and Nematology, UF/IFAS Extension. -
Nematicidal Properties of Some Algal Aqueous Extracts Against Root-Knot Nematode, Meloidogyne Incognita in Vitro
6 Egypt. J. Agronematol., Vol. 15, No.1, PP. 67-78 (2016) Nematicidal properties of some algal aqueous extracts against root-knot nematode, Meloidogyne incognita in vitro Ahmed H. Nour El-Deen(*,***)and Ahmed A. Issa(**,***) * Nematology Research Unit, Agricultural Zoology Dept., Faculty of Agriculture, Mansoura University, Egypt. ** Department of Botany, Faculty of Science, Assiut University, Assiut , Egypt. *** Biology Dept., Faculty of Science, Taif University, Saudi Arabia. Corresponding author: [email protected] Abstract The effectiveness of aqueous extracts derived from nine algal species at different concentrations on egg hatching and mortality of Meloidogyne incognita (Kofoid and White) Chitwood juveniles after various exposure times were determined in vitro. Results indicated that Enteromorpha flexuosa at the concentration of 80% was the best treatment for suppressing the egg hatching with value of 2 % after 5 days of exposure, followed by Dilsea carnosa extract (3%) and Codium fragile (4%) at the same concentration and exposure time. Likewise, application of C. fragile, D. carnosa , E. flexuosa and Cystoseira myrica extracts at the concentrations of 80 and 60% were highly toxic to the nematodes, killing more than 90 % of nematode larva after 72 hours of exposure while the others gave quite low mortalities. The characteristic appearances in shape of the nematodes killed by C. fragile, D. carnosa , C. myrica, E. flexuosa and Sargassum muticum was sigmoid (∑-shape) with some curved shape; whereas, the nematodes killed by other algal species mostly followed straight or bent shapes. The present study proved that four species of algae C. fragile, D. carnosa, C. myrica and E. flexuosa could be used for the bio-control of root-knot nematodes. -
Control Root-Knot Nematodes in Your Garden
Agriculture and Natural Resources FSA7529 Control Root-Knot Nematodes in Your Garden Stephen Vann Introduction plants to any extent. A female Assistant Professor root-knot nematode (Figure 2) can lay Urban Plant Pathologist Root-knot nematodes are up to 500 eggs at a time, and root microscopic worms that live in soil damage results from the sheer T.L. Kirkpatrick and feed on the roots of many common number of nematodes feeding on roots Professor - garden crops (Figures 1 and 2). The by the end of the summer. Root-knot Plant Pathologist nematode gets its name because its nematodes tend to be more of a feeding causes galls (swellings or problem in sandy soils. Rick Cartwright “knots”) to form on the roots of infected Professor plants (Figure 3). Root-knot nematodes Symptoms Plant Pathologist are scientifically classified in the genus Meloidogyne. There are several species So how do you tell if root-knot of Meloidogyne, but M. incognita, also nematodes are a problem in your known as the southern root-knot garden? nematode, is the most common one in gardens in Arkansas. First, look for plants that are not performing well. Usually, not all of Some of the crops that may be your plants will be affected to the severely damaged are tomato, pepper, same degree, and some will be “more okra, watermelon, cantaloupe, onion, sick” than others. Symptoms can pumpkin, squash, sweet potato, sweet include stunting, yellowing, wilting corn, carrot, eggplant, bean and pea. during the heat of the day with recov Root-knot nematodes also feed and ery at night, fewer and smaller fruit multiply on many garden weeds, and general decline – usually during although they may not injure these the summer as the plants get bigger. -
Worms, Nematoda
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 2001 Worms, Nematoda Scott Lyell Gardner University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Gardner, Scott Lyell, "Worms, Nematoda" (2001). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 78. https://digitalcommons.unl.edu/parasitologyfacpubs/78 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Encyclopedia of Biodiversity, Volume 5 (2001): 843-862. Copyright 2001, Academic Press. Used by permission. Worms, Nematoda Scott L. Gardner University of Nebraska, Lincoln I. What Is a Nematode? Diversity in Morphology pods (see epidermis), and various other inverte- II. The Ubiquitous Nature of Nematodes brates. III. Diversity of Habitats and Distribution stichosome A longitudinal series of cells (sticho- IV. How Do Nematodes Affect the Biosphere? cytes) that form the anterior esophageal glands Tri- V. How Many Species of Nemata? churis. VI. Molecular Diversity in the Nemata VII. Relationships to Other Animal Groups stoma The buccal cavity, just posterior to the oval VIII. Future Knowledge of Nematodes opening or mouth; usually includes the anterior end of the esophagus (pharynx). GLOSSARY pseudocoelom A body cavity not lined with a me- anhydrobiosis A state of dormancy in various in- sodermal epithelium. -
Examine Clematis Roots for Nematode Infestation, Vol.4, Issue 3
OREGON H.J. Jensen December 1960 AND Plant Pathology Department ORNAMENTAL Vol. 4, Issue 3 Oregon State College NURSERY DIGEST Pages 1,2 Corvallis, OR EXAMINE CLEMATIS ROOTS FOR NEMATODE INFESTATION Clematis, like many other flowers, has its share of mutilating pests and disfiguring plant diseases. One of the most devastating pests is a root knot nematode. Meloidogyne hapla, which commonly afflicts this choice flowering shrub wherever grown. The first sign of imminent disaster is usually pronounced stunting which during warm weather is accompanied by excessive wilting. Frequently these symptoms are associated with chlorotic foliage. In general, however, foliage symptoms alone are not necessarily specific for root-feeding nematodes, but do indicate the probability of a disorder due to activities of these pests. A much more accurate diagnosis is made by examining the root system. If small, bead-like swellings occur on roots, root knot nematodes are most likely responsible. Verification can be made easily by routine microscopic examination. These swellings, usually called "galls" or "knots," vary somewhat in size depending upon the population density and age of nematodes in root tissues. A recent invasion of nematodes is hardly noticeable because plant tissues have barely had time to react to this penetration. By the time nematodes complete their lifespan, galls are very conspicuous, and may contain several white, pear-shaped objects which are the adult females. Each female may produce 300 eggs from which hatch a new generation of young nematodes. Since these pests complete a life cycle in approximately two months, vast numbers build up rapidly during a single year. -
Parasitology Group Annual Review of Literature and Horizon Scanning Report 2018
APHA Parasitology Group Annual Review of Literature and Horizon Scanning Report 2018 Published: November 2019 November 2019 © Crown copyright 2018 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.3. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to us at [email protected] Year of publication: 2019 The Animal and Plant Health Agency (APHA) is an executive agency of the Department for Environment, Food & Rural Affairs, and also works on behalf of the Scottish Government and Welsh Government. November 2019 Contents Summary ............................................................................................................................. 1 Fasciola hepatica ............................................................................................................. 1 Rumen fluke (Calicophoron daubneyi) ............................................................................. 2 Parasitic gastro-enteritis (PGE) ........................................................................................ 2 Anthelmintic resistance .................................................................................................... 4 Cestodes ......................................................................................................................... -
Web Resources for C. Elegans Studies* §
Web resources for C. elegans studies* § Raymond Lee , Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA Table of Contents 1. Introduction ............................................................................................................................1 2. Portal and knowledge environment .............................................................................................. 2 2.1. WormBase ...................................................................................................................2 2.2. Caenorhabditis elegans WWW Server ..............................................................................3 3. Literature search ...................................................................................................................... 4 3.1. Textpresso ................................................................................................................... 4 3.2. NCBI PubMed ..............................................................................................................5 3.3. Caenorhabditis elegans WWW Server Worm Literature Index ............................................... 5 4. Gene function .........................................................................................................................6 4.1. WormBase Gene Summary ............................................................................................. 6 4.2. NCBI AceView ........................................................................................................... -
TGF-Β Signaling in C. Elegans * Tina L
TGF-β signaling in C. elegans * Tina L. Gumienny1 and Cathy Savage-Dunn2§ 1Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX 77843 USA 2Department of Biology, Queens College, and the Graduate School and University Center, City University of New York, Flushing, NY 11367 USA Table of Contents 1. Overview ...............................................................................................................................2 2. DBL-1 pathway .......................................................................................................................4 2.1. Body size regulation ...................................................................................................... 5 2.2. Male tail development .................................................................................................... 6 2.3. Innate immunity ............................................................................................................ 6 2.4. Aging and longevity ...................................................................................................... 7 2.5. Mesodermal patterning ................................................................................................... 8 2.6. Chemosensation and neuronal function .............................................................................. 8 2.7. Ligand, receptors, and their modulators ............................................................................. 8 2.8. Intracellular -
Using Beneficial Nematodes for Grub Control
28 STATE HOUSE STATION AUGUSTA, ME 04333 TEL: 207.287.2731 [email protected] WWW.YARDSCAPING.ORG Using Beneficial Nematodes for Grub Control Nematode Biology Nematodes are microscopic, non-segmented worms which occur naturally in soil all over the world. Thousands of strains exist with different lifestyles. Beneficial nematodes attack only soil-dwelling insects and leave plants alone. Beneficial nematodes and the bacteria they spread are not known to be harmful to humans, animals, plants, earthworms and other non-target organisms, but they do aggressively pursue insects like grubs. When they sense the temperature and carbon dioxide emissions of soil-borne insects, beneficial nematodes move toward their prey and enter the pest through its body openings. The nematodes carry an associated bacterium (Photorhabdus species) that kills insects fast (within 48 hours). Several generations of nematodes may live and breed within the dead pest; they emerge and seek more pests in the soil. Beneficial nematodes have been shown to be as much as 96% effective against Japanese beetle grubs in field studies. Nematode Use Guide Although many species of beneficial nematodes are available, Heterorhabditis bacteriophora (Hb) nematodes are most effective against Japanese beetles, European chafers and other grubs that are lawn pests. They are more efficient than the Steinernema carpocapsae. Hb nematodes work better because they are cruiser nematodes that burrow down in the soil searching for deep soil-dwelling pests. They also have a special “tooth” that helps them get into the grub. Nematodes are shipped in the infectious juvenile stage of their life cycle and can be stored in the refrigerator for up to 2 - 3 weeks. -
Nematode Management in Lawns
Agriculture and Natural Resources FSA6141 Nematode Management in Lawns Aaron Patton Nematodes are pests of lawns in Assistant Professor - Arkansas, particularly in sandy soils. Turfgrass Specialist Nematodes are microscopic, unseg mented roundworms, 1/300 to 1/3 inch David Moseley in length (8) (Figure 1), that live in County Extension Agent the soil and can parasitize turfgrasses. Agriculture Ronnie Bateman Pest Management Anus Program Associate Figure 2. Parasitic nematode feeding on Head a plant root (Photo by U. Zunke, Nemapix Tail Vol. 2) Terry Kirkpatrick Stylet Professor - Nematologist There are six stages in the nematode life cycle including an egg stage and the adult. There are four Figure 1. Schematic drawing of a plant juvenile stages that allow the parasitic nematode (Adapted from N.A. nematode to increase in size and in Cobb, Nemapix Vol. 2) some species to change shape. These juvenile stages are similar to the Although most nematodes are larval stages found in insects. beneficial and feed on fungi, bacteria Nematodes are aquatic animals and, and insects or help in breaking down therefore, require water to survive. organic matter, there are a few Nematodes live and move in the water species that parasitize turfgrasses and film that surrounds soil particles. Soil cause damage, especially in sandy type, particularly sand content, has a soils. All parasitic nematodes have a major impact on the ability of nema stylet (Figure 1), a protruding, needle todes to move, infect roots and repro like mouthpart, which is used to punc duce. For most nematodes that are a ture the turfgrass root and feed problem in turf, well-drained sandy (Figure 2).