Case Study on Policy Reforms to Promote Renewable Energy in Serbia Economic and Social Commission for Western Asia E/ESCWA/SDPD/2017/CP.12

Total Page:16

File Type:pdf, Size:1020Kb

Case Study on Policy Reforms to Promote Renewable Energy in Serbia Economic and Social Commission for Western Asia E/ESCWA/SDPD/2017/CP.12 Economic and Social Commission for Western Asia United Nations Development Account project on promoting renewable energy investments for climate change mitigation and sustainable development Case Study on Policy Reforms to Promote Renewable Energy in Serbia Economic and Social Commission for Western Asia E/ESCWA/SDPD/2017/CP.12 United Nations Development Account project on promoting renewable energy investments for climate change mitigation and sustainable development Case Study on Policy Reforms to Promote Renewable Energy in Serbia © 2018 United Nations All rights reserved worldwide Photocopies and reproductions of excerpts are allowed with proper credits. All queries on rights and licenses, including subsidiary rights, should be addressed to the United Nations Economic and Social Commission for Western Asia (ESCWA), e-mail: [email protected]. The findings, interpretations and conclusions expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations or its officials or Member States. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Links contained in this publication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. References have, wherever possible, been verified. Mention of commercial names and products does not imply the endorsement of the United Nations. References to dollars ($) are to United States dollars, unless otherwise stated. Symbols of United Nations documents are composed of capital letters combined with figures. Mention of such a symbol indicates a reference to a United Nations document. United Nations publication issued by ESCWA, United Nations House, Riad El Solh Square, P.O. Box: 11-8575, Beirut, Lebanon. Website: www.unescwa.org. 3 Preface This case-study report was prepared for the Sustainable Energy Division, United Nations Economic Commission for Europe (UNECE) within the framework of the United Nations Development Account (UNDA) project Promoting Renewable Energy Investments for Climate Change Mitigation and Sustainable Development. The project focused on capacity-building for policymakers and project developers in order to promote investments in renewable projects. The project was led by UN ESCWA and implemented in partnership with the UNECE. The UNDA project included case studies of the experience of renewable energy policy reforms in selected countries from each of the two regional commissions. Four countries were selected from each regional commission: Jordan, Lebanon, Morocco and the United Arab Emirates from UN ESCWA Member States; and Georgia, Kazakhstan, Serbia and Ukraine from UN-ECE Member States. The present report covers the case study for Serbia, and was prepared by Mr Milan Ristanovic (PhD), an Associate Professor of the Faculty of Mechanical Engineering at the University of Belgrade; currently is involved in the development of national policies on energy in Serbia. Mr. Viktor Badaker, Regional Adviser, Sustainable Energy Division (UNECE), helped review and finalize the document. 5 Table of Content Preface 3 4.1. Models used to assess potential energy production 21 4.2. Models used to assess potential CO2 reductions Table of Content 5 in energy production 24 List of Figures 5 V. Economic, environmental and policy analysis: an appraisal of the overall impact of the policy List of Tables 6 measures introduced 27 List of abbreviations 7 5.1. Electricity sector 27 5.2. Heating-energy sector 34 VI. Policy design considerations: implications for I. Sector characteristics 9 promoting this successful policy more widely on a 1.1. Serbian energy sector 9 national basis 35 1.2. Commitment of Serbia to reduce greenhouse-gas 6.1. Beginnings and obstacles 35 emissions 10 6.2. RES projects and programmes of the Ministry 1.3. Renewable energy sources 12 of Mining and Energy 36 6.3. Market conditions and normative conditions 38 II. Current policy: a summary of relevant policies 6.4. Liberalization of the electricity market 38 for renewable energy investments in place before 6.5. RES policy design considerations 39 the introduction of reforms 13 6.6. Further implications 42 III. Renewable energy potential: an assessment 7. Future national policy development and implications of CO emissions 18 2 for adoption of a similar approach in neighbouring IV. Assessment methodology: a description of the countries: conclusions and recommendations: 46 analytical tool or models used to assess potential energy production and CO2 reductions 21 List of figures Figure 1: Share of particular energy sources in gross inland Figure 9: Gross domestic product per capita in euros (2013) 32 consumption for Serbia in 2014 9 Figure 10: Variation of gross domestic product per capita in Figure 2: Share of various energy sources in Serbia since 1995 33 electricity production 9 Figure 11: Gross final energy consumption (2012) 35 Figure 3: Share of different energy sources in total final energy consumption 10 Figure 12: Electricity market in Serbia 39 Figure 4: Share of different energy sources in energy Figure 13: The number of all types of renewable-energy- consumption of district heating systems 10 fuelled power plants from introducing the system of incentives with feed-in tariffs 41 Figure 5: Total available technical potential (Mtoe/year) 13 Figure 14: Installed capacities of all types of renewable- Figure 6: Total unused available technical potential energy-fuelled power plants from introducing the (Mtoe/year) 13 system of incentives with feed-in tariffs 41 Figure 7: EU Member States implementing retroactive Figure 15: Number of status of temporary and privileged changes to laws and unplanned reductions in producers issued from introducing the system of the acceptance of electricity produced from incentives with feed-in tariffs 42 renewable energy sources 30 Figure 16: EU actual and approximated progress to interim Figure 8: Review of the goals of the renewable energy and 2020 targets 42 sources action plan for Serbia for 2020 under the section of electricity and their implementation Figure 17: The main support schemes expose renewable- by 2016 32 energy-sourced electrictiy producers to different levels of risk 44 6 CASE STUDY ON POLICY REFORMS TO PROMOTE RENEWABLE ENERGY IN SERBIA List of tables Table 1: Greenhouse-gas emission scenarios Table 7: Net reduction of CO2 in the case of substituting in Serbia up to 20201 11 heating energy in existing conditions with the maximum technically possible production of heat Table 2: Overview of technically usable potential of energy from renewable energy sources 20 renewable energy sources 12 Table 8: Net reduction of CO2 in the case of fossil-fuel Table 3: Expected gross final energy consumption in Serbia substitution in the transport sector (diesel and petrol) in the areas of heating and cooling, electricity and with maximum technically possible production transport until 2020, taking into account the impact of biodiesel and bioethanol 20 of energy efficiency and energy-saving measures 2010–2020 (ktoe) 15 Table 9: Recently built power plants 26 Table 4: Feed-in tariffs for electricity production (2016) 16 Table 10: Thermal power plants and combined heat and power plants in Serbia 28 Table 5: Preliminary list of old large combustion plants from “network-energy“ sector in Serbia envisaged Table 11: Hydropower plants and PSHPP in Serbia 28 for “opt-out” mechanism 18 Table 12: Overview of the planned (in line with the National Table 6: Net reduction of CO2 in the case of substitution Renewable Energy Action Plan) and constructed from electricity produced by existing TPP with power plants in the field of renewable energy maximum technically possible production sources 40 of electricity from RES 19 7 List of abbreviations BAU business as usual MW megawatt BFPE MWel BM build margin NHSS National Hydrometeorological Service of Serbia CDM Clean Development Mechanism (Kyoto Protocol, UNFCCC) NERP National Emission Reduction Plan CHP combined heat and power NREAP National Renewable Energy Action Plan CM combined margin OIE CO2 carbon dioxide OM operating margin EnC Energy Community PE ENTSO-E PFS ETS Emissions Trading System or Scheme (EU) PSHP pumped storage hydropower plant EU European Union PPA power purchase agreement FIP feed-in premiums PPP privileged power producer FIT feed-in tariffs PU EMS Public utility Elektromreže Srbije, independent transmission system and GHG greenhouse gas market operator GWth PU EPS Public utility Elektroprivreda Srbije, HPP hydrower plant vertically integrated public utility IED Directive 2010/75/EU of the European PV photovoltaic Parliament and of the Council of 24 RED November 2010 on industrial emissions (integrated pollution prevention RES renewable energy sources and control) RES Directive Directive 2009/28/EC — promoting the IPA use of energy from renewable sources ITC Inter-Transmission System Operator SHPP small hydropower plant Compensation (EU) SPP solar power plant JP EPS TEEnC Treaty establishing the Energy ktoe thousand tons of oil equivalent Community LCP directive Directive 2001/80/EC of the European TJ terajoule Parliament and of the Council of 23 TPP thermal power plant October 2001 on the limitation of emissions of certain pollutants into TPPP temporary privileged power producer the air from large combustion plants UNFCCC United Nations Framework Convention LSU local self-government units on Climate Change MFI WPP wind power plant Mtoe million tons of oil equivalent 9 I. Sector characteristics Figure 1: Share of particular energy sources in gross inland consumption for Serbia in 2014 1.1. Serbian energy sector Serbia has diverse energy supplies. Energy generation 24% Crude oil relies largely on lignite reserves, which are estimated Oil derivatives at 3.1 billion tons (excluding reserves in Kosovo and Natural gas Metohija).
Recommended publications
  • Potentials and Prospects for Implementation of Renewable Energy Sources in Serbia
    Dragović, Nj. M., et al.: Potentials and Prospects for Implementation of Renewable ... THERMAL SCIENCE: Year 2019, Vol. 23, No. 5B, pp. 2895-2907 2895 POTENTIALS AND PROSPECTS FOR IMPLEMENTATION OF RENEWABLE ENERGY SOURCES IN SERBIA by Njegoš M. DRAGOVIĆ *, Milovan D. VUKOVIĆ, and Dejan T. RIZNIĆ Technical Faculty in Bor, University of Belgrade, Bor, Serbia Original scientific paper https://doi.org/10.2298/TSCI170312056D Serbia is dependent on imports of crude-oil and natural gas, but is endowed by reserves of lignite and the potential of renewable energy sources. Serbia has a strategy to reduce greenhouse gas emissions in the energy sector and to increase the share of renewable in gross final energy production 27% by 2020. Serbia’s total estimated technically usable potential of renewable energy sources is 5.65 Mtoe per year. Biomass has the highest potential for use in Serbia (3.448 Mtoe), followed by hydro power (1.679 Mtoe), solar energy (0.240 Mtoe), geother- mal energy (0.180 Mtoe), and wind energy (0.103 Mtoe). This paper presents the potential of renewable energy sources available in Serbia, with current status of their use and prospects for further exploitation. Key words: renewable energy, potential, utilization, sustainability, strategies Introduction There are global problems with pollution, GHG emissions, rising energy demand and dependency on energy imports. Energy resources have been classified into non-renewable (fos- sil fuels, uranium, nuclear, etc.) and renewable resources (solar, wind, biomass, geothermal, etc.). Limitations in the production of crude-oil, price changes, environmental pollution and unstable situation in the oil-exporting countries result in an ever growing interest to use RES.
    [Show full text]
  • Geothermal Energy Use, Country Update for Serbia
    European Geothermal Congress 2019 Den Haag, The Netherlands, 11-14 June 2019 Geothermal Energy Use, Country Update for Serbia Sibela Oudech1, Ivan Djokic1. 1 Geco-inzenjering, Vardarska 14, Belgrade, Serbia [email protected] Keywords: Serbia, geothermal energy, all renewable energy sources in the final energy hydrogeothermal systems, renewable energy resources. consumption by the end of 2020. ABSTRACT The territory of Serbia has favourable geothermal characteristics. There are more than eighty hydrogeothermal systems within four geothermal provinces. According to the recent data in Serbia in 2018 514.91 GWth was produced from geothermal sources with total capacity 128.45 MWth, where 480.55 GWth was in geothermal direct use with thermal capacity 112.86 MWth, and 34.37 GWth from shallow geothermal systems using heat pumps of total capacity 15.59 MWth. The commonest use of geothermal energy in Serbia is the traditional ones: balneology and recreation. However, there is a growing interest in using the geothermal energy from shallow systems using heat pumps since these systems are less expensive and more secure comparing to deep hydrogeothermal systems. Republic of Serbia has as Figure 1: Geographical location of Serbia. well obliged to apply EU Directives about renewable energy sources and set the scope to increase total share 2. GEOLOGY BACKGROUND of all renewable energy sources in gross final energy In the territory of Serbia rocks of different age occur, consumption to 27%, by the end of 2020. from Precambrian to Quaternary age, and of all types regarding their lithology. There are 5 great geotectonic 1. INTRODUCTION units (Fig 2): Dinarides, Serbian-Macedonian massif, Serbia is situated in the central part of the Balkan Carpatho-Balkanides and Pannonian Basin, and very Peninsula (Fig 1) and covers the surface of 88361 km2.
    [Show full text]
  • Potentials of Renewable Energy Sources in the Republic of Serbia
    POTENTIALS OF RENEWABLE ENERGY SOURCES IN THE REPUBLIC OF SERBIA WITH A DETAILED REVIEW OF THE EXPLOITATION OF GEOTHERMAL RESOURCES IN THE AUTONOMOUS PROVINCE OF VOJVODINA Zoran Stipi ć City of Subotica Urban Planning Institute, Trg Republike 16, Subotica, Serbia [email protected] Slobodan Vidovi ć Tehnoproing , Gogoljeva 13,Novi Sad, Serbia, [email protected] Mom čilo Spasojevi ć Faculty of Technical Sciences, Trg D.Obradovi ća 6, Novi Sad, Serbia, [email protected] Abstract: Energy supply is one of the basic issues in the contemporary world’s sustainable development. By adopting the Kyoto Protocol and implementing its mechanisms, it is expected that the use of conventional energy sources shall stabilise and decrease on global level. The European Union’s legal framework, through its appropriate directives, sets very clear objectives for the use of renewable energy sources for member states. Serbia is a country with significant potentials in renewable energy sources, which are, regretfully, underused. Renewable energy source potentials are featured by very favourable indicators in matters of both capacity and distribution. The status is especially favourable in the field of geothermal energy potentials in the Autonomous Province of Vojvodina, situated in the Pannonian Basin, where there are significant sources of this fuel. The paper presents the basic forms and characteristics of renewable energy sources in Serbia and provides an overview of the possibilities for their use. Key words: Renewable energy sources, potentials, capacities, resources, geothermal energy, Serbia, Vojvodina. 1. INTRODUCTION Solving global energy problems implies an interdisciplinary approach and considering the issues from different perspectives. Decreasing overall energy consumption, increasing energy efficiency, modernising the installation, using alternative energy sources and adopting and implementing a number of legal regulations and international covenants are the points of departure in solving this exceptionally complex issue.
    [Show full text]
  • CBD First National Report
    FIRST NATIONAL REPORT OF THE REPUBLIC OF SERBIA TO THE UNITED NATIONS CONVENTION ON BIOLOGICAL DIVERSITY July 2010 ACRONYMS AND ABBREVIATIONS .................................................................................... 3 1. EXECUTIVE SUMMARY ........................................................................................... 4 2. INTRODUCTION ....................................................................................................... 5 2.1 Geographic Profile .......................................................................................... 5 2.2 Climate Profile ...................................................................................................... 5 2.3 Population Profile ................................................................................................. 7 2.4 Economic Profile .................................................................................................. 7 3 THE BIODIVERSITY OF SERBIA .............................................................................. 8 3.1 Overview......................................................................................................... 8 3.2 Ecosystem and Habitat Diversity .................................................................... 8 3.3 Species Diversity ............................................................................................ 9 3.4 Genetic Diversity ............................................................................................. 9 3.5 Protected Areas .............................................................................................10
    [Show full text]
  • Energy Sector Development Strategy of the Republic of Serbia for the Period by 2025 with Projections by 2030
    REPUBLIC OF SERBIA MINISTRY OF MINING AND ENERGY ENERGY SECTOR DEVELOPMENT STRATEGY OF THE REPUBLIC OF SERBIA FOR THE PERIOD BY 2025 WITH PROJECTIONS BY 2030 Belgrade 2016 Energy Sector Development Strategy of the Republic of Serbia for the period by 2025 with projections by 2030 Republic of Serbia Ministry of Mining and Energy Belgrade, 2016 Publisher: Republic of Serbia Ministry of Mining and Energy Department for strategic planning in energy sector Print: Kosmos Ltd Belgrade Print run: 500 copies TABLE OF CONTENTS 1. ENERGY SECTOR DEVELOPMENT STRATEGY OF THE REPUBLIC OF SERBIA FOR THE PERIOD BY 2025 WITH PROJECTIONS BY 2030 ........................................................................................5 1. Introduction ���������������������������������������������������������������������������������������������������������������������������������������������������������������������������7 1.1. Energy Sector and Economic Development ...............................................................................................................7 1.2. Sustainability as an Energy Sector Development Challenge ...............................................................................8 2. ENERGY RESOURCES AND POTENTIALS OF THE REPUBLIC OF SERBIA .............................................................9 2.1. Coal ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 11 2.2. Oil and natural gas
    [Show full text]
  • Consumption of Wood Fuels in Households in Serbia – Present … THERMAL SCIENCE, Year 2011, Vol
    Glavonji}, B. D.: Consumption of Wood Fuels in Households in Serbia – Present … THERMAL SCIENCE, Year 2011, Vol. 15, No. 3, pp. 571-585 571 CONSUMPTION OF WOOD FUELS IN HOUSEHOLDS IN SERBIA – PRESENT STATE AND POSSIBLE CONTRIBUTION TO THE CLIMATE CHANGE MITIGATION by Branko D. GLAVONJI] Faculty of Forestry, University of Belgrade, Belgrade, Serbia Review paper UDC: 662.71/.74:504.7 DOI: 10.2289/TSCI1103571G The paper presents results of the research in wood fuels consumption for house- hold needs in Serbia. Research was performed during the period from October 2010 until April 2011, i. e. in the period of heating season in order to get the ac- tual situation regarding the presence of certain fuel types in the consumption of households with special highlight on types and amounts of wood fuels. For this purpose, an adequate methodological concept was defined with the aim to pri- marily get relevant and reliable data on wood fuels consumption and afterwards, by using FAO WISDOM methodology and adequate GIS software packages to perform their analysis, mapping, and graphic representation. One of the most significant elements of the adopted methodological concept was field research- questionnaire of households which was conducted on the sample of 36.946 households out of which 20.725 urban and 16.221 rural in 22 municipalities in Serbia, which was 1.46% of the total number of households in Serbia. Results of the survey showed that 23.2% of the total number of households in Serbia used district heating system (based on conventional fossil fuels as dominant), 25.3% used electricity, and 10.6% used gas for heating purposes.
    [Show full text]
  • Analysis of the Development Opportunities of Solar Systems in Serbia
    IS NN 2083 -1587; e-IS NN 2449 -5999 2019,Vol. 2 3,No.2, pp.85-92 Agricultural Engineering DOI: 10.1515/agriceng-2019-0019 www. wir.ptir. org ANALYSIS OF THE DEVELOPMENT OPPORTUNITIES OF SOLAR SYSTEMS IN SERBIA Jasna Tolmaca*, Slavica Prvulovica, Marija Nedica, Dragisa Tolmacb a Technical Faculty “Mihajlo Pupin”, University of Novi Sad, Serbia, ORCID --- b Faculty of Management, University of Nikola Tesla, Belgrade, Serbia, ORCID --- * Corresponding author: e-mail: [email protected] ARTICLE INFO ABSTRACT Article history: The paper analyzes the development opportunities of solar systems in Received: May 2019 the Republic of Serbia. Renewable energy sources and their energy Received in the revised form: potential, such as solar energy, should be considered in order to meet June 2019 the needs of consumers. Solar energy can be considered the most Accepted: June 2019 modern renewable energy whose utility is still developing, and it is Key words: not represented as the utilization of hydro energy sources. Researches Sun, show that Serbia is a country with a high RES potential and that it has renewable energy sources (RES), favorable conditions for production of electrical and heat energy from solar energy, renewable sources. The aim of this paper is to present the possibilities solar potential, solar radiation of using solar energy in Serbia. Energy supply from renewable energy sources is a key factor for each country's strategy, because it directly contributes to reducing the negative effect on the environment. Introduction Renewable energy sources are those energy sources that do not cause pollution, and therefore they include energy of water, wind energy and energy of the Sun.
    [Show full text]
  • Utilization of Geothermal Energy in Serbia M
    International Geothermal Conference, Reykjavík, Sept. 2003 Session #10 Utilization of geothermal energy in Serbia M. Milivojevic1) and M. Martinovic1) 1) Faculty of Mining and Geology, Geothermal Research Laboratory, Belgrade E-mail: [email protected] Abstract In Serbia, there are more than 60 hydrogeothermal low-temperature convective systems (T<150oC), as well as a large hydrogeothermal system in the Serbian part of the Pannonian basin. Estimated energy reserves of geothermal resources are about 800 MWt, but utilization of this is low, only about 80 MWt. Utilization of geothermal energy is mostly of the cascade type, with a few examples of integrated utilization. Integrated utilization combines the use of gas, oil, and electric power for heat pumps. According to the installations already built, utilization of geothermal energy is mostly for balneological purposes and tourism. From an energy point of view, utilization of geothermal energy is mostly for heating of greenhouses. Geothermal energy is now used for the heating of greenhouses only in three localities in Serbia. Eight ha. are heated by geothermal energy while the total area of other greenhouses heated by crude oil and gas totals around 64 ha. According to the potential of geothermal resources, near future development should focus on cascade and integrated utilization of geothermal energy. Keywords: geothermal resources, Serbia, utilization, balneology, greenhouse, heat pump. 1 Introduction Serbia is relatively small (about 80,000 km2), but her geological and tectonic structures are very complex. Because of that, geothermal characteristics are interesting. On two-thirds of Serbian territory, values of the heat flow density are greater than average values for the continental part of Europe; and on half of its territory they are around l00 mW/m2 (Milivojevic, l989).
    [Show full text]
  • Territorial and Socio-Economic Analysis of the Programme Area
    TERRITORIAL AND SOCIO-ECONOMIC ANALYSIS OF THE PROGRAMME AREA 1 TERRITORIAL AND SOCIO-ECONOMIC ANALYSIS OF THE PROGRAMME AREA Table of content: 1. Executive summary ........................................................................................................................ 5 2. Methodology................................................................................................................................... 8 3. Analysis of current state, challenges and needs with potentials for development ................... 11 3.1. General analysis of the area - key indicators....................................................................... 11 3.2. Smarter Europe .................................................................................................................... 14 Description of current state in key analysis areas ...................................................................... 14 3.2.1. Research and innovation ............................................................................................. 14 a. Croatia: ......................................................................................................................... 14 b. Serbia: ........................................................................................................................... 15 c. Programme area level: ................................................................................................. 16 3.2.2. Digitisation of society ..................................................................................................
    [Show full text]
  • Western Balkans Security Observer No. 4
    WESTERN BALKANS Contents SECURITY EDITORIAL NOTE. 3 OBSERVER Journal of the CAN SERBS AND ALBANIANS LIVE TOGETHER? . 4 Belgrade School of Patrick Hondus Security Studies PRIVATIZATION OF SECURITY No. 4 JANUARY–MARCH 2007 PRIVATIZING SECURITY IN SERBIA . 13 Predrag Petrović Publisher: Centre for Civil- GREY SECURITY ZONE . 22 Military Relations Jelena Unijat Editor in chief: ENERGY SECURITY Miroslav Hadžić Editors: IS SERBIA ENERGY SECURE? . 30 Sonja Stojanović Marko Savković Filip Ejdus SECURITIZATION OF ENERGY AS A PRELUDE Illustrations: TO ENERGY SECURITY DILEMMA . 36 Marko Milošević Jelena Radoman Proofreading: PUBLIC POLICY ANALYSIS Milorad Timotić Design GENDARMERIE OR LOCAL MULTIETHNIC POLICE?. 45 Saša Janjić Đorđe Popović Computer typesetting: STICK AND CARROT: ALL YOU WANTED TO Časlav Bjelica KNOW ABOUT THE POLICY OF CONDITIONALITY BUT DIDN'T DARE TO ASK . 54 Printed by: Jelena Petrović GORAGRAF, Beograd AND GOD CREATED CIVIL RIGHTS: SERBIAN RESISTENCE TO THE INTRODUCTION OF BIOMETRIC I.D. CARDS . 62 Circulation: Filip Ejdus 200 copies SECURITY TOPICS IN THE 2007 PARLIAMENTARY ELECTIONS CAMPAIGN IN SERBIA . 69 Belgrade School of Zorana Atanasović Security Studies is REVIEWS . 79 established with the assistance of the Kingdom of Norway. Its functioning was supported by the Balkan Trust for Democracy. This journal is financed by NATO The Centre for Civil-Military Relations promotes the public and responsible participation of civil society in increasing the security of the citizens and state based on modern democratic principles, as well as security coopera- tion with neighbouring countries and Serbia’s integration into the Euro-Atlantic community. Belgrade School of Security Studies is a special divi- sion of the Centre for Civil-Military Relations set up to carry out systematic research and promote academic advance- ment of young researchers thus contributing to the develop- ment of security studies in Serbia.
    [Show full text]
  • Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation Vs
    energies Article Nuclear Power Risk Perception in Serbia: Fear of Exposure to Radiation vs. Social Benefits Vladimir M. Cvetkovi´c 1,* , Adem Öcal 2 , Yuliya Lyamzina 3 , Eric K. Noji 4, Neda Nikoli´c 5 and Goran Miloševi´c 6 1 Faculty of Security Studies, University of Belgrade, 11040 Belgrade, Serbia 2 Independent Researcher, Ankara 06500, Turkey; [email protected] 3 Louis Pasteur Center for Medical Research, Kyoto 606-8225, Japan; [email protected] 4 College of Medicine, King Saud University Hospitals, Riyadh 11451, Saudi Arabia; [email protected] 5 Faculty of Tehnical Science in Caˇcak,Universityˇ of Kragujevac, 32000 Caˇcak,Serbia;ˇ [email protected] 6 Faculty of Law, University of Novi Sad, Trg Dositeja Obradovi´ca1, 21000 Novi Sad, Serbia; [email protected] * Correspondence: [email protected] Abstract: Nuclear power remains one of the most accessible choices in addressing environmental and social concerns due to the continuously increasing energy needs around the world. While it remains an excellent source of energy due to its low price and low level of emissions, potential accidents remain a serious problem. An example of such is the most recent accident in the Fukushima Daiichi Nuclear Power Plant (2011), which reminded the world of the potential risks of nuclear energy and the consequences of which continue to have a lasting effect. There is no nuclear power plant in Serbia, but there are about 15 nuclear power stations scattered within its neighboring countries. Therefore, the Serbian Government decided to study how the Serbian public perceives the risks related to the potential construction of nuclear power stations in the country, nuclear energy in general, and its Citation: Cvetkovi´c,V.M.; Öcal, A.; Lyamzina, Y.; Noji, E.K.; Nikoli´c,N.; possible benefits and risks.
    [Show full text]
  • World Bank Document
    Document of The World Bank Public Disclosure Authorized FOR OFFICIAL USE ONLY Report No: 2792 1-W Public Disclosure Authorized PROJECT APPRAISAL DOCUMENT ON A PROPOSED CREDIT IN THE AMOUNT OF SDR 14.1 MILLION (US$2 1 MILLION EQUIVALENT) TO SERBIA AND MONTENEGRO FOR A Public Disclosure Authorized SERBIA ENERGY EFFICIENCY PROJECT FEBRUARY 18,2004 Infrastructure and Energy Department South East Europe Country Unit Europe and Central Asia Region This document has a restricted distribution and may be used by recipients only in the performance of their Public Disclosure Authorized official duties. Its contents may not otherwise be disclosed without World Bank authorization. 1 CURRENCY EQUIVALENTS (Exchange Rate Effective February 18, 2004) Currency Unit = Dinar (YUD) YUD 1.00 = US$0.017 US$l.OO = YUD 57.60 FISCAL YEAR January 1 -- December 31 ABBREVIATIONS AND ACRONYMS CHP Combined Heat and Power ccs Clinical Center of Serbia EAR European Agency for Reconstruction EBRD European Bank for Reconstruction and Development EIB European Investment Bank GOS Government of Serbia ICB Intemational Competitive Bidding IDA International Development Association KfW Kreditanstalt fur Wiederaufbau (Bank for Reconstruction) MOES Ministry ofEducation and Sports MOF Ministry of Finance MOH Ministry ofHealth MOME Ministry of Mining and Energy NCB National Competitive Bidding NGO Non Governmental Organization PIP Project Implementation Plan PMR Project Monitoring Report PSC Project Steering Committee QCBS Quality- and Cost-Based Selection RFP Request for Proposals S aM Serbia and Montenegro SEEA Serbian Energy Efficiency Agency SIDA Swedish Intemational Development Agency SOE Statement of Expenses TORS Terms of Reference USAID United States Agency for International Development Vice President: Shigeo Katsu, ECAVP Acting Country ManagerDirector: Nancy Cooke, ECCU4 Sector ManagedDirector: Henk Busz, ECSIE Task Team Leader/Task Manager: Mohinder Gulati, ECSIE FOR OFFICIAL USE ONLY SERBIA AND MONTENEGRO SERBIA ENERGY EFFICIENCY PROJECT CONTENTS A.
    [Show full text]