Generation of CRISPR Engineered Prostate Cancer Cell Line Models to Study Androgen Receptor Signalling in Advanced Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Generation of CRISPR Engineered Prostate Cancer Cell Line Models to Study Androgen Receptor Signalling in Advanced Prostate Cancer Generation of CRISPR engineered prostate cancer cell line models to study androgen receptor signalling in advanced prostate cancer Thesis submitted in partial fulfilment of the requirement of the degree of Doctor of Philosophy Evangelia Eirini Kounatidou Northern Institute for Cancer Research Faculty of Medical Sciences Newcastle University September 2019 Abstract Prostate cancer resistance to AR targeted therapies due to the emergence of AR point mutations and AR splice variants that cannot be targeted by the currently available agents comprise a major clinical challenge. There is paucity of models that accurately reflect the mechanisms of AR regulation in advanced disease. This highlights the high demand of generating novel disease relevant models. A CRISPR pipeline was developed to generate cell line models which harbour specific point mutations in the LBD of AR as well as stop codons in AR exon 5 which resulted in AR-FL knock-out so that the remaining endogenous AR-Vs could be studied discriminately of interfering AR-FL. Using a streptavidin-tagged Cas9 in conjugation with a biotinylated donor template resulted in high donor template knock-in efficiencies and yielded (i) an ARW741L CWR22Rv1 cell line derivative and (ii) an AR-FL knock-out cell line derivative called CWR22Rv1-AR-EK (Exon Knock-out). CWR22Rv1-AR-EK cells retained all endogenous AR-Vs following AR gene editing. AR-Vs acted unhindered following AR-FL deletion to drive cell growth and expression of androgenic genes. Global transcriptomics demonstrated that AR-Vs drive expression of a cohort of cell cycle and DNA damage response genes and depletion of AR-Vs sensitised cells to ionising radiation. To date, elimination of AR-Vs by pharmacological inhibition remains challenging. However, disruption of AR pre-mRNA splicing is nowadays a highly attractive option. A CRISPR-based approach, called CRIME (Cas9-directed Rapid Immunoprecipitation Mass Spectrometry of Endogenous proteins) was developed to isolate and identify the AR-V7-specific spliceosome, in association with a nuclease deficient Cas9 at AR cryptic exon 3. Mass spec-derived hits were screened for their ability to alter AR-V7 mRNA levels in CWR22Rv1 cells. SRSF3 was identified as a potential AR-V7 splicer which promotes cryptic exon 3 skipping in normal prostate. In CRPC, SRSF3 is significantly downregulated and hence cryptic exon 3 inclusion in the mature AR-V7 mRNA transcript is permitted leading to generation of AR-V7. i Acknowledgements First, I would like to thank my supervisor Dr Luke Gaughan for the opportunity he offered me to work in his group. Nothing would be possible without his constant guidance and support at difficult times. He is a true mentor and working alongside him was an incredible experience. I would also like to thank the members of the STTD group, especially, my co-supervisor Prof. Craig Robson, Dominic Jones, Lewis Chaytor, Laura Wilson and Alex Bainbridge for providing precious advice and help when needed. Special thanks to Prof. Scott Dehm, University of Minnesota, and Dr Lakis Liloglou, University of Liverpool who have significantly assisted with my PhD project by providing valuable advice and resources to achieve my scientific goals. Nobody can manage surviving a PhD without true friends. Therefore, I am eternally grateful to my lovely friends Katerina, Eirini, Argiro and Ricky who always had the patience to babysit and encourage me at times I thought I couldn’t make it. They all stood by my side despite their busy schedules and I feel extremely lucky to have them in my life. I cannot thank enough my incredible parents. They have both been by my side during this journey despite the thousands of miles that physically separate us. For this, and much more, I am beyond thankful. '' No amount of experimentation can ever prove me right; a single experiment can prove me wrong.'' A. Einstein ii iii Contents Abstract………………………………………………………………………………………………………………………………………………………… i Acknowledgements………………………………………………………………………………………………………………………………………. ii Abbreviations……………………………………………………………………………………………………………………………………………….. 1 List of Figures…………………………………………………………………………………………………………………………………………………6 List of Tables…………………………………………………………………………………………………………………………………………………. 9 Chapter 1. Introduction……………………………………………………………………………………………………………………………….. 10 1.1. Anatomy and function of the prostate ..................................................................................... 10 1.2. Development of the prostate ................................................................................................... 10 1.3. Prostate carcinogenesis ............................................................................................................ 11 1.3.1. Risk factors ........................................................................................................................ 11 1.3.2. Genomic landscape of PC .................................................................................................. 11 1.4. Prostate cancer incidence and mortality .................................................................................. 13 1.5. The androgen receptor ............................................................................................................. 14 1.5.1. The N-terminal domain ..................................................................................................... 15 1.5.2. The DNA binding domain .................................................................................................. 16 1.5.3. The Hinge region ............................................................................................................... 17 1.5.4. The Ligand binding domain ............................................................................................... 17 1.6. AR signalling .............................................................................................................................. 18 1.7. Clinical management of PC ....................................................................................................... 19 1.8. Targeting the AR signalling pathway ......................................................................................... 20 1.8.1. Targeting androgen synthesis via the hypothalamic-pituitary-gonadal axis .................... 20 1.8.2. Targeting adrenal androgen synthesis .............................................................................. 20 1.8.3. Anti-androgen therapy ...................................................................................................... 21 1.9. Mechanisms of PC Resistance to Current AR-targeted Therapies ............................................ 23 1.9.1. AR Amplification ................................................................................................................ 25 1.9.2. Nuclear Receptor Cross-talk ............................................................................................. 25 1.9.3. AR co-regulator dysregulation .......................................................................................... 26 1.9.4. Gain-of-function mutations within the LBD of AR ............................................................ 27 1.10. AR splice variants .................................................................................................................. 30 1.10.1. Origin of AR splice variants ............................................................................................... 30 1.10.2. Generation of AR splice variants ....................................................................................... 31 1.11. CRISPR genome editing ......................................................................................................... 34 iv 1.11.1. Origin of CRISPR and its application in biomedicine ......................................................... 34 1.11.2. Mechanism of CRISPR editing ........................................................................................... 35 1.12. Expansion of the CRISPR toolbox .......................................................................................... 37 1.13. Mechanism of splicing .......................................................................................................... 39 1.14. Alternative splicing ................................................................................................................ 40 1.15. Co-transcriptional splicing .................................................................................................... 41 1.16. Alternative splicing in cancer ................................................................................................ 43 1.17. Splicing in PC ......................................................................................................................... 44 1.18. Therapeutic targeting of splicing .......................................................................................... 46 Chapter 2. Aims and Objectives……………………………………………………………………………………………………….48 Chapter 3. Materials and Methods…………………………………………………………………………………………………. 49 3.1. Mammalian cell culture - Cell maintenance and passaging ..................................................... 50 3.2. Cell lines .................................................................................................................................... 50 3.3. Compounds ..............................................................................................................................
Recommended publications
  • Mouse Mxra8 Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Mxra8 Knockout Project (CRISPR/Cas9) Objective: To create a Mxra8 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Mxra8 gene (NCBI Reference Sequence: NM_024263 ; Ensembl: ENSMUSG00000029070 ) is located on Mouse chromosome 4. 10 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 10 (Transcript: ENSMUST00000030947). Exon 1~10 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Phenotypic analysis of mice homozygous for a gene trap allele indicates this mutation has no notable phenotype in any parameter tested in a high-throughput screen. Exon 1 starts from about 0.08% of the coding region. Exon 1~10 covers 100.0% of the coding region. The size of effective KO region: ~3486 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 6 7 8 9 10 Legends Exon of mouse Mxra8 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of start codon is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis.
    [Show full text]
  • KIAA0556 Is a Novel Ciliary Basal Body Component Mutated in Joubert Syndrome Anna A
    Sanders et al. Genome Biology (2015) 16:293 DOI 10.1186/s13059-015-0858-z RESEARCH Open Access KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome Anna A. W. M. Sanders1†, Erik de Vrieze2,3†, Anas M. Alazami4†, Fatema Alzahrani4, Erik B. Malarkey5, Nasrin Sorusch6, Lars Tebbe6, Stefanie Kuhns1, Teunis J. P. van Dam7, Amal Alhashem8, Brahim Tabarki8, Qianhao Lu9,10, Nils J. Lambacher1, Julie E. Kennedy1, Rachel V. Bowie1, Lisette Hetterschijt2,3, Sylvia van Beersum3,11, Jeroen van Reeuwijk3,11, Karsten Boldt12, Hannie Kremer2,3,11, Robert A. Kesterson13, Dorota Monies4, Mohamed Abouelhoda4, Ronald Roepman3,11, Martijn H. Huynen7, Marius Ueffing12, Rob B. Russell9,10, Uwe Wolfrum6, Bradley K. Yoder5, Erwin van Wijk2,3*, Fowzan S. Alkuraya4,14* and Oliver E. Blacque1* Abstract Background: Joubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures. Results: Using autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556-/- null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Focus on the Small Heat Shock Protein HSPB1 Autofagie in De Erfelij
    Faculteit Faculteit Farmaceutische, Biomedische en Diergeneeskundige wetenschappen Biochemie en Biotechnologie Autophagy in inherited peripheral neuropathies: Focus on the small heat shock protein HSPB1 Autofagie in de erfelijke perifere neuropathieën: Focus op de kleine heat shock proteïne HSPB1 Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen: Biochemie en Biotechnologie aan de Universiteit Antwerpen. te verdedigen door Mansour HAIDAR Promotor Prof. Dr. Vincent Timmerman Antwerpen, 2018 1 2 “Haud igitur redit ad Nihilum res ulla, sed omnes Discidio redeunt in corpora materiai” Lucretius, De Rerum Natura, Book I. 250 3 4 Members of the jury Chair Prof. Dr. Wim Vanden Berghe, PhD (UA, Antwerp, Belgium) Promotor Prof. Dr. Vincent Timmerman, PhD (UA, Antwerp, Belgium) Internal jury member Prof. Dr. Wim Martinet, PhD (UA, Antwerp, Belgium) External jury members Prof. Dr. Joy Irobi (UHasselt, Hasselt, Belgium) Prof. Dr. Maurizio D’Antonio (San Raffaele Institute, Milan, Italy) Prof. Dr. Ir. Winnok De Vos (UA, Antwerp, Belgium) 5 6 Table of Contents Summary/Samenvatting 9 Rationale and Aims 13 Introduction Chapter 1 Autophagy as an emerging common pathomechanism in inherited 15 peripheral neuropathies Chapter 2 Small heat shock proteins: Their role in proteostasis 79 and neurodegeneration Results Chapter 3 HSPB1 is required for Autophagy: Insights from CMT-causing mutations 103 Chapter 4 An interactomics study of HSPB1 wild-type and mutant links it to the 129 autophagy receptor P62 Discussion 179 List of abbreviations 195 Curriculum Vitae 199 Acknowledgements 203 7 8 Summary Inherited peripheral neuropathies (IPNs) are genetically heterogeneous disorders affecting mainly the peripheral nervous system and with over 1500 mutations in more than 80 affected genes discovered so far.
    [Show full text]
  • Tissue-Specific Pathways and Networks Underlying Sexual
    Kurt et al. Biology of Sex Differences (2018) 9:46 https://doi.org/10.1186/s13293-018-0205-7 RESEARCH Open Access Tissue-specific pathways and networks underlying sexual dimorphism in non- alcoholic fatty liver disease Zeyneb Kurt1, Rio Barrere-Cain1, Jonnby LaGuardia1, Margarete Mehrabian2, Calvin Pan2, Simon T Hui2, Frode Norheim2, Zhiqiang Zhou2, Yehudit Hasin2, Aldons J Lusis2* and Xia Yang1* Abstract Background: Non-alcoholic fatty liver disease (NAFLD) encompasses benign steatosis and more severe conditions such as non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. This chronic liver disease has a poorly understood etiology and demonstrates sexual dimorphisms. We aim to examine the molecular mechanisms underlying sexual dimorphisms in NAFLD pathogenesis through a comprehensive multi-omics study. We integrated genomics (DNA variations), transcriptomics of liver and adipose tissue, and phenotypic data of NAFLD derived from female mice of ~ 100 strains included in the hybrid mouse diversity panel (HMDP) and compared the NAFLD molecular pathways and gene networks between sexes. Results: We identified both shared and sex-specific biological processes for NAFLD. Adaptive immunity, branched chain amino acid metabolism, oxidative phosphorylation, and cell cycle/apoptosis were shared between sexes. Among the sex-specific pathways were vitamins and cofactors metabolism and ion channel transport for females, and phospholipid, lysophospholipid, and phosphatidylinositol metabolism and insulin signaling for males. Additionally, numerous lipid and insulin-related pathways and inflammatory processes in the adipose and liver tissue appeared to show more prominent association with NAFLD in male HMDP. Using data-driven network modeling, we identified plausible sex-specific and tissue-specific regulatory genes as well as those that are shared between sexes.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • A Recombinant Virus and Reporter Mouse System to Study Chronic Chikungunya Virus Pathogenesis Alissa Roxanne Young Washington University in St
    Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2018 A Recombinant Virus and Reporter Mouse System to Study Chronic Chikungunya Virus Pathogenesis Alissa Roxanne Young Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, Medical Immunology Commons, and the Virology Commons Recommended Citation Young, Alissa Roxanne, "A Recombinant Virus and Reporter Mouse System to Study Chronic Chikungunya Virus Pathogenesis" (2018). Arts & Sciences Electronic Theses and Dissertations. 1705. https://openscholarship.wustl.edu/art_sci_etds/1705 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Molecular Microbiology and Microbial PatHogenesis Dissertation Examination Committee: DeboraH J. Lenschow, Chair Adrianus C. M. Boon Michael S. Diamond Robyn S. Klein THaddeus S. StaPPenbeck David Wang A Recombinant Virus and RePorter Mouse System to Study CHronic CHikungunya Virus PatHogenesis by Alissa Roxanne Young A dissertation
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • Mice Lacking the Mitochondrial Exonuclease MGME1 Accumulate Mtdna Deletions Without Developing Progeria
    ARTICLE DOI: 10.1038/s41467-018-03552-x OPEN Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria Stanka Matic1, Min Jiang1, Thomas J. Nicholls2, Jay P. Uhler2, Caren Dirksen-Schwanenland1, Paola Loguercio Polosa3, Marie-Lune Simard1, Xinping Li4, Ilian Atanassov 4, Oliver Rackham 5, Aleksandra Filipovska5, James B. Stewart 1, Maria Falkenberg2, Nils-Göran Larsson 1,6 & Dusanka Milenkovic 1 1234567890():,; Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary drama- tically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA. 1 Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany. 2 Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg 405 30, Sweden. 3 Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy.
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • DEGS2 Polymorphism Associated with Cognition in Schizophrenia Is Associated with Gene Expression in Brain
    OPEN Citation: Transl Psychiatry (2015) 5, e550; doi:10.1038/tp.2015.45 www.nature.com/tp ORIGINAL ARTICLE DEGS2 polymorphism associated with cognition in schizophrenia is associated with gene expression in brain K Ohi1,2, G Ursini1,MLi1, JH Shin1,TYe1, Q Chen1,RTao1, JE Kleinman1, TM Hyde1,3,4, R Hashimoto2,5 and DR Weinberger1,3,4,6,7 A genome-wide association study of cognitive deficits in patients with schizophrenia in Japan found association with a missense genetic variant (rs7157599, Asn8Ser) in the delta(4)-desaturase, sphingolipid 2 (DEGS2) gene. A replication analysis using Caucasian samples showed a directionally consistent trend for cognitive association of a proxy single-nucleotide polymorphism (SNP), rs3783332. Although the DEGS2 gene is expressed in human brain, it is unknown how DEGS2 expression varies during human life and whether it is affected by psychiatric disorders and genetic variants. To address these questions, we examined DEGS2 messenger RNA using next-generation sequencing in postmortem dorsolateral prefrontal cortical tissue from a total of 418 Caucasian samples including patients with schizophrenia, bipolar disorder and major depressive disorder. DEGS2 is expressed at very low levels prenatally and increases gradually from birth to adolescence and consistently expressed across adulthood. Rs3783332 genotype −3 was significantly associated with the expression across all subjects (F3,348 = 10.79,P= 1.12 × 10 ), particularly in control subjects − 4 (F1,87 = 13.14, P = 4.86 × 10 ). Similar results were found with rs715799 genotype. The carriers of the risk-associated minor allele at both loci showed significantly lower expression compared with subjects homozygous for the non-risk major allele and this was a consistent finding across all diagnostic groups.
    [Show full text]
  • Investigation of Adiposity Phenotypes in AA Associated with GALNT10 & Related Pathway Genes
    Investigation of Adiposity Phenotypes in AA Associated With GALNT10 & Related Pathway Genes By Mary E. Stromberg A Dissertation Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY In Molecular Genetics and Genomics December 2018 Winston-Salem, North Carolina Approved by: Donald W. Bowden, Ph.D., Advisor Maggie C.Y. Ng, Ph.D., Advisor Timothy D. Howard, Ph.D., Chair Swapan Das, Ph.D. John P. Parks, Ph.D. Acknowledgements I would first like to thank my mentors, Dr. Bowden and Dr. Ng, for guiding my learning and growth during my years at Wake Forest University School of Medicine. Thank you Dr. Ng for spending so much time ensuring that I learn every detail of every protocol, and supporting me through personal difficulties over the years. Thank you Dr. Bowden for your guidance in making me a better scientist and person. I would like to thank my committee for their patience and the countless meetings we have had in discussing this project. I would like to say thank you to the members of our lab as well as the Parks lab for their support and friendship as well as their contributions to my project. Special thanks to Dean Godwin for his support and understanding. The umbrella program here at WFU has given me the chance to meet some of the best friends I could have wished for. I would like to also thank those who have taught me along the way and helped me to get to this point of my life, with special thanks to the late Dr.
    [Show full text]