Struhl, 2002 Nature.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Struhl, 2002 Nature.Pdf book reviews (which degrade critical ecosystem services) deserves more attention. On the positive side, I think that the development of countryside biogeography as a framework for enhancing the preser- vation of biodiversity in human-dominated ANUP SHAH/NATUREPL landscapes deserves attention alongside pros- pects for establishing large-scale reserves, which Wilson discusses very thoroughly. On a separate issue, I’m more sceptical about heritability estimates churned out by behavioural geneticists (often based on badly analysed twin studies) for such attri- butes as proneness to agoraphobia and fear of snakes. But these are trivial matters compared to the magisterial sweep of The Future of Life, and I find myself in total agreement with its major points. Wilson was recently attacked viciously in the pages of The Economist. He was critical of Bjørn Lomborg’s anti-environmental book The Skeptical Environmentalist, which the magazine and Cambridge University Press The same, only more so: gene regulation is similar for organisms have been heavily promoting. In my view, ranging from the elephant to the bacterium Escherichia coli. Wilson had accurately pointed out that busy scientists were having to waste a huge pioneered by François Jacob and Jacques confor- amount of time replying to the book’s dis- Monod in the early 1950s. By the mid-1960s, mational tortions. The Future of Life, by coincidence, three basic types of specific DNA sequence change in an inactive polymerase already is Wilson’s perfect response. It clearly lays that determine the level of expression under bound at the promoter, thereby stimulating out the reasons for his deep concern for the particular physiological conditions were transcription. And in a third mechanism, the human future (shared by the vast majority defined in the bacterium Escherichia coli. activator induces a conformational change of his colleagues) and why he thinks that Such regulatory DNA sequences turn out to in the promoter, effectively changing it from scientists and society have no time to waste. be specific binding sites for RNA polymer- an inactive to an active form. This section of KIM/SPL KWANGSHIN It also reveals him to be a thoughtful, caring, ase, repressor proteins and activator pro- the book presents the key experiments and life-loving human being. ■ teins. Regulation of an individual gene is arguments for these mechanisms in a manner Paul R. Ehrlich is in the Department of Biological determined by the quality of its polymerase that is exceptionally lucid and beautifully Sciences, Stanford University, Stanford, California binding site, the particular activator and/or illustrated. It is understandable to the non- 94305, USA. repressor proteins that bind in the vicinity expert, for whom it was intended, and is a of RNA polymerase, and the physiological ‘must read’ for anyone interested in gene conditions that modulate the function of regulation. the activators and/or repressors. Armed with these lessons from bacteria, From E. coli Monod once wrote that “anything that Ptashne and Gann consider yeast, a single- is true of E. coli must be true of elephants, celled eukaryote, and conclude that acti- to elephants except more so”. In a lucid and provocative vation occurs by regulated recruitment of Genes and Signals book, Mark Ptashne, a leading figure in the the transcription machinery (which contains by Mark Ptashne and Alexander Gann field for nearly 40 years, and Alexander more than 50 proteins and so is much Cold Spring Harbor Laboratory Press: 2002. Gann argue for a unifying principle of gene more complex than bacterial polymerases). 208 pp. $59, £43 (hbk); $39, £28 (pbk) regulation that centres on the concept of Again, the authors use the device of a Kevin Struhl regulated recruitment by means of adhesive well-chosen example for clarity, the brief interactions between proteins. They go on is convincingly argued, and the end result The regulation of gene expression is a funda- to argue that such regulated recruitment is illuminating to both the expert and the mental aspect of biological phenomena such is a general strategy used by many other novice. The emphasis on regulated recruit- as the response to environmental conditions, biological mechanisms involving enzyme ment is important for the overall theme of the development of multicellular organisms, specificity, regulatory precision and evolu- the book, and it is certainly true that this morphology and disease. Gene regulatory tionary flexibility. mechanism predominates in yeast cells. patterns are extraordinarily diverse and Using a few well-chosen examples, However, in emphasizing the funda- complex, yet the regulation of each gene is Ptashne and Gann first describe three distinct mental similarities between bacteria and precise with respect to when and how much mechanisms of transcriptional activation in eukaryotes, Ptashne and Gann have made expression occurs. Gene regulation is also bacteria. In one mechanism, DNA-binding an unconventional choice in classifying remarkably flexible, both to rapidly alter the activator proteins stimulate gene expression chromatin-modifying activities as part of constellation of genes expressed in response by recruiting RNA polymerase to the pro- the transcription machinery. Chromatin to new conditions, and to accommodate moter sequences that lie just upstream of and chromatin-modifying enzymes affect evolutionary demands. At most, a few thou- the gene. Recruitment is mediated by short all eukaryotic processes involving DNA, sand proteins account for the complexity ‘adhesive’ surfaces between the activator and are typically considered as part of the and precision of gene regulation in humans. and polymerase, and the adhesive proper- DNA template, rather than the transcrip- How is this accomplished? ties per se are sufficient for activation. In a tion machinery. So although activators and Molecular studies of gene regulation were second mechanism, the activator induces a repressors use adhesive surfaces for regu- 22 © 2002 Macmillan Magazines Ltd NATURE | VOL 417 | 2 MAY 2002 | www.nature.com book reviews lated recruitment of chromatin-modifying activities, such recruitment does not directly Science in culture affect transcription and indeed is analogous to (although mechanistically distinct from) Seeing stains the bacterial mechanism in which activators Mary Osborn’s immunofluorescence images modify promoter structure. In eukaryotes, of cellular structures. the basic chromatin structure renders core Martin Kemp promoters inherently inactive in the absence Stains (and those who have pioneered their use) of an activator, whereas bacterial promoters are the unsung heroes of microscopy — well are generally accessible to the polymerase. known to microbiologists, certainly, but not In my view, chromatin fundamentally affects generally enjoying a high public profile. New the logic of gene regulation in eukaryotes, instruments for seeing ever smaller details but fundamentalism is in the belief of the seem to present more eye-catching examples of beholder. scientific advance. The only disappointing part of the book The story began with the progress from the is the brief section on higher eukaryotes. primitive microscopes of the seventeenth century, Unlike the rest of this book, and unlike in the hands of such pioneers of discriminating Colour coding: an immunofluorescence Ptashne’s previous influential monograph seeing as Anthony von Leeuwenhoek and Robert micrograph of epithelial and fibroblastic cells. A Genetic Switch, this section covers many Hooke, and the gradual refining of optical different phenomena (all very interesting resolution to its theoretical limits. Then came the disclose microtubules and intermediate filaments and important) in a rather sketchy fashion. non-optical revelations of electron microscopes, as functional components in cells. This subject calls for another book, although as developed by Vladimir Zworykhin and others, The story of the microtubules vividly shows it is probably premature to write one at the and the molecular marvels disclosed by the how optical and electron microscopy need to level to which we have become, and wish to scanning tunnelling microscope devised by work hand in hand, and how the greater remain, accustomed. Gerd Binning and Heinrich Rohrer. Yet without magnification of the latter does not necessarily In the grand scheme, the principles of selective staining and other marking techniques deliver fully coherent results when visualizing regulated recruitment through weak, adhe- we would not be able adequately to differentiate the structural continuities of forms that extend sive interactions between proteins are applied key components in the tiny structures. across the cell. In the late 1970s there was an to other examples of enzyme specificity One of the most elegant and widely acrimonious debate about the length and and regulation (such as splicing, proteolysis applicable techniques, immunofluorescence, number of microtubules. Weber and Osborn and signal transduction), where diversity, has, as its name suggests, ingeniously adopted were even accused of “painting white lines” on precision, and evolutionary flexibility are techniques from immunology. Albert Coons their images. Only when the same cell was paramount. Some may consider this section used it to reveal pneumococci in infected mouse visualized by the Göttingen group, both with to be a statement of the obvious, namely that tissues in 1942. But its power in visualizing immunofluorescence staining
Recommended publications
  • Struhl, 1984 PNAS.Pdf
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 7865-7869, December 1984 Genetics Genetic properties and chromatin structure of the yeast gal regulatory element: An enhancer-like sequence (gene regulation/promoters/transcription/yeast genetics/enhancer elements) KEVIN STRUHL Department of Biological Chemistry; Harvard Medical School, Boston, MA 02115 Communicated by Boris Magasanik, August 16, 1984 ABSTRACT DNA molecules created by fusing a 365-base- but as yet inexplicable, properties (5-10). They are function- pair segment of yeast DNA encoding the galactose-regulated al when located at various distances from either the TATA upstream promoter element (gal) to a set of derivatives that box or the start of transcription, even as far away as hun- systematically delete sequences upstream from the his3 gene dreds (and perhaps thousands) of base pairs. Furthermore, are introduced in single copy back into the yeast genome pre- these elements can work in either orientation and also when cisely at the hisM locus and then assayed for transcription. Fu- located downstream from the transcriptional initiation site. sions of the gal regulatory element to hisM derivatives contain- In some cases, enhancer sequences are also regulatory ing all normal mRNA coding sequences but lacking essentially sites-i.e., they activate transcription only under certain the entire promoter region fail to express his3 under any physiological conditions, such as in response to hormones growth conditions. Fusions to derivatives lacking the his3 up- (8), or only in specific cell types (9, 10). From these proper- stream promoter element but containing the "TATA box" ties, it is popularly supposed that enhancer sequences are place his3 expression under gal control-i.e., extremely high the critical elements that regulate gene expression during RNA levels in galactose-containing medium and essentially no normal and abnormal development of multicellular orga- his3 RNA in glucose-containing medium.
    [Show full text]
  • Transcription Regulation in Eukaryotes HFSP Workshop Reports
    Transcription Regulation in Eukaryotes HFSP Workshop Reports Senior editor: Jennifer Altman Assistant editor: Chris Coath I. Coincidence Detection in the Nervous System, eds A. Konnerth, R. Y. Tsien, K. Mikoshiba and J. Altman (1996) II. Vision and Movement Mechanisms in the Cerebral Cortex, eds R. Caminiti, K.-P. Hoffmann, F. Laquaniti and J. Altman (1996) III. Genetic Control of Heart Development, eds R. P. Harvey, E. N. Olson, R. A. Schulz and J. S. Altman (1997) IV. Central Synapses: Quantal Mechanisms and Plasticity, eds D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson and J. S. Altman (1998) V. Brain and Mind: Evolutionary Perspectives, eds M. S. Gazzaniga and J. S. Altman (1998) VI. Cell Surface Proteoglycans in Signalling and Development, eds A. Lander, H. Nakato, S. B. Selleck, J. E. Turnbull and C. Coath (1999) VII. Transcription Regulation in Eukaryotes, eds P. Chambon, T. Fukasawa, R. Kornberg and C. Coath (1999) Forthcoming VIII. Replicon Theory and Cell Division, eds M. Kohiyama, W. Fangman, T. Kishimoto and C. Coath IX. The Regulation of Sleep, eds A. A. Borbély, O. Hayaishi, T. Sejnowski and J. S. Altman X. Axis Formation in the Vertebrate Embryo, eds S. Ang, R. Behringer, H. Sasaki, J. S. Altman and C. Coath XI. Neuroenergetics: Relevance for Functional Brain Imaging, eds P. J. Magistretti, R. G. Shulman, R. S. J. Frackowiak and J. S. Altman WORKSHOP VII Transcription Regulation in Eukaryotes Copyright © 1999 by the Human Frontier Science Program Please use the following format for citations: “Transcription Regulation in Eukaryotes” Eds P. Chambon, T. Fukasawa, R.
    [Show full text]
  • Nucleotide Sequence and Transcriptional Mapping of the Yeast Pets6-His3dedl Gene Region
    Research Volume 13 Number 23 1985 Nucleic Acids Research Nucleotide sequence and transcriptional mapping of the yeast petS6-his3dedl gene region Kevin Struhl Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA Received 28 August 1985; Revised 24 October 1985; Accepted 29 October 1985 ABSTRACT Genes of the baker's yeast Saccharomyces cerevisiae are densely clustered on 16 linear chromosomes. Here, I characterize a 1.8 kb region of chromosome XV containing the entire structural gene for the histidine biosynthetic enzyme imidazoleglycerolphosphate (IGP) dehydratase (his3) as well as the promoter sequences and 5'-proximal mRNA coding regions for the adjacent genes. The his3 gene encodes several mRNA species averaging 820 bases in length, all of which contain an open reading frame of 219 codons. The location of this open reading frame coincides with the his3 gene as defined by functional criteria, suggesting that the primary translation product of yeast IGP dehydratase has a molecular weight of 23,850. Phenotypic analysis of mutations constructed in vitro indicate that one of the adjacent genes (pet56) is required for mitochondrial function, whereas the other gene (dedl) is essential for cell viability. The petS6 and his3 genes are transcribed divergently from initiation sites that are separated by only 192 bp. Transcription of the dedl gene is initiated only 130 bp beyond the 3'-end of the his3 mRNA coding region. These results suggest that these unrelated genes are located extremely close together and that the spacer regions between them consist largely ofpromoter and teminator sequences. INTRODUCTION The genome of the yeast Saccharomyces cerevisiae contains approximately 10,000 kb of DNA, about half of which is transcribed under normal growth conditions (1,2).
    [Show full text]
  • Yeast GCN4 As a Probe for Oncogenesis by AP-1. Transcription Factors: Transcnpuonal Activation Through AP-1 Sites Is Not Sufficient for Cellular Transformation
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Yeast GCN4 as a probe for oncogenesis by AP-1. transcription factors: transcnpuonal activation through AP-1 sites is not sufficient for cellular transformation Salvatore Oliviero, 1'3 Gregory S. Robinson, 1'2 Kevin Struhl, 1 and Bruce M. Spiegelman 1'2 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA; 2Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 USA; 3Dipartimento di Biologia, Universita degli Studi di Padova, via Trieste, 75-35121 Padova, Italy The Jun and Fos oncoproteins belong to the AP-1 family of transcriptional activators and are believed to induce cellular transformation by inappropriately activating genes involved in cell replication. To determine whether transcriptional activation through AP-1 sites is sufficient for transforming activity, we examined the properties of an autonomous and heterologous AP-1 protein, yeast GCN4, in rat embryo fibroblasts. GCN4 induces transcriptional activation through AP-1 sites but, unlike Jun and Fos, fails to induce cellular transformation, in cooperation with Ha-ras. Jun-GCN4 and Fos-GCN4 homodimers independently induce cellular transformation indicating that the amino-terminal regions of Jun and Fos each contain regulatory functions that are required for oncogenesis but are distinct from generic transcriptional activation domains. In addition, these observations have implications for the nature of the oncogenically relevant target genes that respond to Jun and Fos. IKey Words: Yeast GCN4; Jun; Fos; AP-1 transcription factors; oncogenesis; cellular transformation] Received May 21, 1992; revised version accepted July 7, 1992.
    [Show full text]
  • Struhl, 1983 Gene.Pdf
    Gene. 26 (1983) 231-242 231 Elsevier GENE 916 Direct selection for gene replacement events in yeast (Chromosome manipulation; cycloheximide; DNA transformation; recombinant DNA; ribosomal protein; Saceharomyces cerevisiae) KevinStruhl Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115 (U.S.A.) Tel. (617) 732-3104 (Received June 24th, 1983) (Revision received September 16th, 1983) (Accepted September 20th, 1983) SUMMARY A method that facilitates gene replacement at the HZS3 locus of Saccharomyces cerevisiae (yeast) has been developed. First, an internal region of the cloned HZS3 gene was replaced by a DNA segment containing the wild-type ribosomal protein gene, CYH2. Second, by using standard yeast tr~sfo~ation methods, the wild-type HIS3 locus of a cycloheximide resistant strain (cyZz2’)was replaced by this h&3-CYH2 substitution. The resulting strain is sensitive to cycloheximide because CYH2 is dominant to cyh2’. Third, his3 mutations cloned into integrating or replicating vectors were introduced into this strain by selecting transformants via the vector-encoded marker. Selection for cycloheximide-resistant colonies resulted in the replacement of the his3-CYH2 allele by newly introduced his3 alleles. Thus, this scheme provides for the direct selection of gene replacement events at the HZS3 locus independently of the phenotype of the cloned his3 derivatives. In principle, it can be extended to any region of the yeast genome. INTRODUCTION Gene replacement depends upon homologous A major attraction for studies on the yeast S. cere- recombination between transforming DNA se- Mae is the ability to replace normal chromosomal quences and their host genomic counterparts (Morse sequences with mutated derivatives constructed in et al., 1956).
    [Show full text]
  • The.Roles of TBP and a Flexible Linker in Placing TFIIIB on Trna Genes
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Alternative outcomes in assembly of promoter complexes: the.roles of TBP and a flexible linker in placing TFIIIB on tRNA genes Clfiudio A.P. Joazeiro, 1 George A. Kassavetis, and E. Peter Geiduschek Department of Biology and Center for Molecular Genetics, University of California at San Diego, La Jolla, California 92093-0634 USA Saccharomyces cerevisiae transcription factor (TF) IIIB, a TATA-binding protein (TBP)-containing multisubunit factor, recruits RNA polymerase (Pol) III for multiple rounds of transcription. TFIIIC is an assembly factor for TFIIIB on TATA-less tRNA gene promoters. To investigate the role of TBP-DNA interactions in tRNA gene transcription, we generated sequence substitutions in the SUP4 tRNA TM gene TFIIIB binding site. Purified transcription proteins were used to analyze the selection of transcription initiation sites and the physical structures of the protein complexes formed on these mutant genes. We show that the association of TFIIIB with tRNA genes proceeds through an initial step of binding-site selection that is codirected by its TBP subunit and by TFIIIC. TFIIIB is assembled in a predominantly metric manner with regard to box A, the start site-proximal binding site of TFIIIC, but TFIIIC opens a window within which wild-type TBP can select the TFIIIB-binding site. Despite its clear preference for AT-rich sequences, TBP can mediate TFIIIB assembly at diverse DNA sequences, including stretches containing only G and C. However, a mutant TBP, m3, which recognizes TATAAA and TGTAAA and is active for Pol III transcription, utilizes other sequences only poorly.
    [Show full text]
  • Conserved and Nonconserved Functions of the Yeast and Human TATA-Binding Proteins
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Conserved and nonconserved functions of the yeast and human TATA-binding proteins Brendan P. Cormack, 1 Michel Strubin, 2 Laurie A. Stargell, and Kevin Struhl 3 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA Although the TATA-binding protein (TBP) is highly conserved throughout the eukaryotic kingdom, human TBP cannot functionally replace yeast TBP for cell viability. To investigate the basis of this species specificity, we examine the in vivo transcriptional activity of human TBP at different classes of yeast promoters. Consistent with previous results, analysis of yeast/human hybrid TBPs indicates that growth defects are not correlated with the ability to promote TATA-dependent polymerase II (Pol II) transcription or to respond to acidic activator proteins. Human TBP partially complements the growth defects of a yeast TBP mutant with altered TATA element-binding specificity, suggesting that it carries out sufficient Pol II function to support viability. However, human TBP does not complement the defects of yeast TBP mutants that are specifically defective in transcription by RNA polymerase III. Three independently isolated derivatives of human TBP that permit yeast cell growth replace arginine 231 with lysine; the corresponding amino acid in yeast TBP (lysine 133) has been implicated in RNA polymerase III transcription. Transcriptional analysis indicates that human TBP functions poorly at promoters recognized by RNA polymerases I and III and at RNA Pol II promoters lacking a conventional TATA element. These observations suggest that species specificity of TBP primarily reflects evolutionarily diverged interactions with TBP-associated factors (TAFs) that are necessary for recruitment to promoters lacking TATA elements.
    [Show full text]
  • Struhl, 1987 Mcb.Pdf
    MOLECULAR AND CELLULAR BIOLOGY, Mar. 1987, p. 1300-1303 Vol. 7, No. 3 0270-7306/87/031300-04$02.00/0 Copyright C) 1987, American Society for Microbiology Effect of Deletion and Insertion on Double-Strand-Break Repair in Saccharomyces cerevisiae KEVIN STRUHL Department of Biological Chemistry, Harvard Medical School, Boston, Massachusetts 02115 Received 4 August 1986/Accepted 11 December 1986 I investigated double-strand-break repair in Saccharomyces cerevisiae cells by measuring the frequencies and types of integration events at the PET56-HIS3-DEDI chromosomal region associated with the introduction of linearized plasmid DNAs containing homologous sequences. In general, the integration frequencies observed in strains containing a wild-type region, a 1-kilobase (kb) deletion, or a 5-kb insertion were similar, provided that the cleavage site in the plasmid DNA was present in the host genome. Cleavage at a plasmid DNA site corresponding to a region deleted in the chromosome caused a 10-fold reduction in the integration frequency even when the site was close to regions of homology. However, although the integration frequency was normal even when cleavage occurred only 25 base pairs (bp) outside the deletion breakpoint, 98% of the events were associated not with the usual heterogenote structure, but instead with a homogenote structure containing two copies of the deletion allele separated by vector sequences. Similarly, when cleavage occurred 80 bp outside the 5-kb substitution breakpoint, 40% of the integration events were associated with homogenote structures. From these observations, I suggest that (i) exonuclease and polymerase activities are not rate-limiting steps in double-strand-break repair, (ii) exonuclease activity is coupled to the initiation step, (iii) the integration frequency is strongly influenced by the amount of homology near the recombinogenic ends, (iv) both ends of a linear DNA molecule might interact with the host chomosome before significant exonuclease or polymerase action, and (v) the average repair tract is about 600 bp.
    [Show full text]
  • Yeast GCN4 Transcriptional Activator Protein Interacts with RNA
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 2652-2656, April 1989 Biochemistry Yeast GCN4 transcriptional activator protein interacts with RNA polymerase II in vitro (gene regulation/promoters/affinity chromatography/mRNA initiation/eukaryotic transcription) CHRISTOPHER J. BRANDL AND KEVIN STRUHL Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115 Communicated by Howard Green, February 1, 1989 ABSTRACT Regulated transcription by eukaryotic RNA related to the jun oncoprotein (15-17), an oncogenic version polymerase II (Pol II) requires the functional interaction of of the vertebrate AP-1 transcription factor (18, 19). multiple protein factors, some of which presumably interact It has been proposed that GCN4, like other yeast activator directly with the polymerase. One such factor, the yeast GCN4 proteins, stimulates transcription by directly contacting other activator protein, binds to the upstream promoter elements of components of the transcriptional machinery (5, 13, 20, 21). many amino acid biosynthetic genes and induces their tran- Evidence against the idea that upstream activator proteins scription. Through the use of affinity chromatography involv- function by increasing chromatin accessibility comes from ing GCN4- or Pol II-Sepharose columns, we show that GCN4 the observation that GAL4 cannot stimulate transcription by interacts specifically with Pol II in vitro. Purified Pol II is bacteriophage T7 RNA polymerase in yeast (22). In contrast, retained on the GCN4-Sepharose column under conditions in a poly(dA-dT) sequence, which is hypothesized to cause a which the vast majority of proteins flow through. Moreover, local disruption in chromatin structure, enhances transcrip- Pol II can be selectively isolated from more complex mixtures tion by T7 RNA polymerase (22).
    [Show full text]
  • Requirements for RNA Polymerase II Preinitiation Complex Formation in Vivo Natalia Petrenko1†, Yi Jin1†, Liguo Dong2, Koon Ho Wong3*, Kevin Struhl1*
    RESEARCH ARTICLE Requirements for RNA polymerase II preinitiation complex formation in vivo Natalia Petrenko1†, Yi Jin1†, Liguo Dong2, Koon Ho Wong3*, Kevin Struhl1* 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States; 2Faculty of Health Sciences, University of Macau, Macau, China; 3Institute of Translational Medicine, University of Macau, Macau, China Abstract Transcription by RNA polymerase II requires assembly of a preinitiation complex (PIC) composed of general transcription factors (GTFs) bound at the promoter. In vitro, some GTFs are essential for transcription, whereas others are not required under certain conditions. PICs are stable in the absence of nucleotide triphosphates, and subsets of GTFs can form partial PICs. By depleting individual GTFs in yeast cells, we show that all GTFs are essential for TBP binding and transcription, suggesting that partial PICs do not exist at appreciable levels in vivo. Depletion of FACT, a histone chaperone that travels with elongating Pol II, strongly reduces PIC formation and transcription. In contrast, TBP-associated factors (TAFs) contribute to transcription of most genes, but TAF-independent transcription occurs at substantial levels, preferentially at promoters containing TATA elements. PICs are absent in cells deprived of uracil, and presumably UTP, suggesting that transcriptionally inactive PICs are removed from promoters in vivo. DOI: https://doi.org/10.7554/eLife.43654.001 *For correspondence: [email protected] (KHW); [email protected] (KS) Introduction Transcription by RNA polymerase (Pol) II requires assembly of a preinitiation complex (PIC) com- †These authors contributed equally to this work posed of general transcription factors (GTFs) bound at the core promoter (Conaway and Conaway, 1993; Buratowski, 1994; Orphanides et al., 1996; Roeder, 1996).
    [Show full text]
  • The Transition from Transcriptional Initiation to Elongation Joseph T Wade1 and Kevin Struhl2
    Available online at www.sciencedirect.com The transition from transcriptional initiation to elongation Joseph T Wade1 and Kevin Struhl2 Transcription is the first step in gene expression, and its varies between promoters and between species, and how regulation underlies multicellular development and the it is regulated by proteins and small molecules. response to environmental changes. Most studies of transcriptional regulation have focused on the recruitment of The transition from transcriptional initiation to RNA polymerase to promoters. However, recent work has elongation in bacteria shown that, for many promoters, post-recruitment steps in In eubacterial species, transcription of all genes is transcriptional initiation are likely to be rate limiting. The rate at mediated by a core RNAP complex, typically a 5-subunit 0 which RNA polymerase transitions from transcriptional (a2bb v) enzyme. However, in order to recognize pro- initiation to elongation varies dramatically between promoters moter DNA sequences, this core enzyme must associate and between organisms and is the target of multiple regulatory with a s factor to form RNAP holoenzyme [4]. Initiation proteins that can function to both repress and activate occurs at a site that is a fixed distance from the s transcription. recognition sequences. Eubacterial species typically con- tain multiple s factors that form distinct classes of RNAP Addresses 1 holoenzymes that recognize different promoter Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States sequences and regulate distinct classes of genes [4]. s 2 Department Biological Chemistry and Molecular Pharmacology, does not usually associate with elongating RNAP in vivo, Harvard Medical School, Boston, MA 02115, United States although this can occur at a minority of genes under certain environmental conditions [5,6].
    [Show full text]
  • Yeast and Human Tfiids Are Interchangeable for the Response to Acidic Transcriptional Activators in Vitro
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro Raymond J. Kelleher III,* Peter M. Flanagan/ Daniel I. Chasman/ Alfred S. Ponticelli/ Kevin Struhl/ and Roger D. Romberg*'^ 'Department of Cell Biology, Stanford University School of Medicine, Stanford, California 94305 USA; ^Departments of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA Previous work showed that human TFIID fails to support yeast cell growth, although it is nearly identical to yeast TFIID in a carboxy-terminal region of the molecule that suffices for basal, TATA-element-dependent transcription in vitro. These and other findings raised the possibility that TFIID participates in species-specific interactions, possibly with mediator factors, required for activated transcription. Here, we report that human TFIID and amino-terminally truncated derivatives of yeast TFIID are fully functional in support of both basal transcription and the response to acidic activator proteins in a yeast in vitro transcription system. Conversely, and in contrast to previously published results, yeast TFIID supports both basal and activated transcription in reactions reconstituted with human components. This functional interchangeability of yeast and human TFIIDs argues strongly against species specificity with regard to TFIID function in basal transcription and the response to acidic activator proteins. In addition, our results suggest that any intermediary factors between acidic activators and TFIID are conserved from yeast to man. [Key Words: Mediator; TFIID; transcriptional activation; acidic activators; in vitro transcription] Received October 24, 1991; revised version accepted December 16, 1991.
    [Show full text]