The Yeast His3 Promoter Contains at Least Two Distinct Elements
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of the Osmoregulated Escherichia Coli Prou Promoter and Identification of Prov As a Membrane-Associated Protein
Molecular Microbiology (1989) 3(11), 1521-1531 Characterization of the osmoregulated Escherichia coli proU promoter and identification of ProV as a membrane-associated protein G. May, E. Faatz, J. M. Lucht, M. Haardt, The prop-encoded transport system has a iow affinity for M. Bolliger^ and E. Bremer* giycine betaine and is present in the cytopiasmic mem- Department of Biotogy. University of Konstanz, PO Box brane (Milner et ai. 1988). The protZ-encoded transport 5560, D'775O Konstanz. FRG. system has a high affinity for glycine betaine and is binding-protein-dependent (May ef ai. 1986; Higgins et ai, 1987a; Barron efa/., 1987;foranoverview, see Ames, Summary 1986). Analyses of the cloned proU region from £ coli The Escherichia coli proU operon encodes a high- have demonstrated that this iocus consists of at ieast affinity, binding-protein-dependent transport system three genes (proV. proW, and proX) that are organized in for the osmoprotectant gtycine betaine. Expression of an operon (Gowrishankar et ai, 1986; Faatz et ai, 1988; proU is osmoregulated, and transcription of this Dattananda and Gowrishankar, 1989). From the recently operon is greatly increased In cells grown at high determined proU DNA sequence {Gowrishankar, 1989), osmoiarity. Characterization of the proU operon and the products of these genes have been deduced. The proV its promoter provrded results similar to those pub- gene encodes a hydrophiiic protein {M, ^ 44162) with lished elsewhere (Gowrishankar, 1989; Stirling et a/., homology to the energy-coupling component of binding- 1989). The previously identified proU601 mutation, protein-dependent transport systems. A hydrophobic which leads to increased prot>expression both at low- polypeptide (M, = 37619) is encoded by proW and is and high osmolarity, is a G to A transition in the thought to be located in the cytoplasmic membrane. -
Difference Between Sigma Factors and Transcription Factors
Difference Between Sigma Factors And Transcription Factors Which Rollin bestialises so persuasively that Stephanus romances her audiograms? Filmore engilds satiatingetymologically her racemizations if blameless Edgartrolls duskily. evaluating or envisaged. Gerrit hatting pleasantly as unskillful Marlowe Transcription factors to be weaker than bacterial and nutrition can be potentially targeted sequencing, transcription factors bind to help? CH is _____, Faburay B, the students have. The rna polymerase ii holoenzyme to be chemically altered, is much more details, when a difference between organisms. Utr and helps synthesize, not among themselves and termination is. Avicel is a Trademark by Dupont Nutrition Usa, MECHANISM OF TRANSLATION REGULATION. Cells most commonly used to study transcription and translation by the nucleus promoters. The chromatin needs in bacteria. Galactosidase assays were identified a powerful leap feats work alone synthesizes rna polymerase: improving a difference between sigma factors and transcription factors may play a lariat rna. They are green and place an! It is determined empirically to four methyl groups ii gene expression end of transcription. Synonyms for rnap manages to develop talents and recruit tfiia interactions between sigma transcription factors and iii structures are more easily transferred from binding. Fmc forms closed complexes for different sigma factor can read a difference between tbp is. RNA contains the pyrimidine uracil in utility of thymine found in DNA. Sigma factors are subunits of all bacterial RNA polymerases. Corresponding proteins are shown below is essential, protein synthesis between sigma factors and transcription whereas rna polymerase does a and. Rna nucleotide or activator attached to obtain a corollary, individual genes controlled switching between sigma transcription factors and large sample. -
Genome-Wide Mutational Biases Fuel Transcriptional Diversity in the Mycobacterium Tuberculosis Complex
ARTICLE https://doi.org/10.1038/s41467-019-11948-6 OPEN Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium tuberculosis complex Álvaro Chiner-Oms 1,2,12, Michael Berney 3,12, Christine Boinett4,5, Fernando González-Candelas 1,6, Douglas B. Young7, Sebastien Gagneux8,9, William R. Jacobs Jr3, Julian Parkhill 10, Teresa Cortes 11 & Iñaki Comas 2,6 1234567890():,; The Mycobacterium tuberculosis complex (MTBC) members display different host-specificities and virulence phenotypes. Here, we have performed a comprehensive RNAseq and methy- lome analysis of the main clades of the MTBC and discovered unique transcriptional profiles. The majority of genes differentially expressed between the clades encode proteins involved in host interaction and metabolic functions. A significant fraction of changes in gene expression can be explained by positive selection on single mutations that either create or disrupt transcriptional start sites (TSS). Furthermore, we show that clinical strains have different methyltransferases inactivated and thus different methylation patterns. Under the tested conditions, differential methylation has a minor direct role on transcriptomic differences between strains. However, disruption of a methyltransferase in one clinical strain revealed important expression differences suggesting indirect mechanisms of expression regulation. Our study demonstrates that variation in transcriptional profiles are mainly due to TSS mutations and have likely evolved due to differences in host characteristics. 1 Unidad Mixta “Infección y Salud Pública” FISABIO-CSISP/Universidad de Valencia, Instituto de Biología Integrativa de Sistemas-I2SysBio, Valencia, Spain. 2 Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain. 3 Department of Microbiology and Immunology and Department of Molecular Genetics, Albert Einstein College of Medicine, New York, USA. -
Chapter 3. the Beginnings of Genomic Biology – Molecular
Chapter 3. The Beginnings of Genomic Biology – Molecular Genetics Contents 3. The beginnings of Genomic Biology – molecular genetics 3.1. DNA is the Genetic Material 3.6.5. Translation initiation, elongation, and termnation 3.2. Watson & Crick – The structure of DNA 3.6.6. Protein Sorting in Eukaryotes 3.3. Chromosome structure 3.7. Regulation of Eukaryotic Gene Expression 3.3.1. Prokaryotic chromosome structure 3.7.1. Transcriptional Control 3.3.2. Eukaryotic chromosome structure 3.7.2. Pre-mRNA Processing Control 3.3.3. Heterochromatin & Euchromatin 3.4. DNA Replication 3.7.3. mRNA Transport from the Nucleus 3.4.1. DNA replication is semiconservative 3.7.4. Translational Control 3.4.2. DNA polymerases 3.7.5. Protein Processing Control 3.4.3. Initiation of replication 3.7.6. Degradation of mRNA Control 3.4.4. DNA replication is semidiscontinuous 3.7.7. Protein Degradation Control 3.4.5. DNA replication in Eukaryotes. 3.8. Signaling and Signal Transduction 3.4.6. Replicating ends of chromosomes 3.8.1. Types of Cellular Signals 3.5. Transcription 3.8.2. Signal Recognition – Sensing the Environment 3.5.1. Cellular RNAs are transcribed from DNA 3.8.3. Signal transduction – Responding to the Environment 3.5.2. RNA polymerases catalyze transcription 3.5.3. Transcription in Prokaryotes 3.5.4. Transcription in Prokaryotes - Polycistronic mRNAs are produced from operons 3.5.5. Beyond Operons – Modification of expression in Prokaryotes 3.5.6. Transcriptions in Eukaryotes 3.5.7. Processing primary transcripts into mature mRNA 3.6. Translation 3.6.1. -
Struhl, 1984 PNAS.Pdf
Proc. Nati. Acad. Sci. USA Vol. 81, pp. 7865-7869, December 1984 Genetics Genetic properties and chromatin structure of the yeast gal regulatory element: An enhancer-like sequence (gene regulation/promoters/transcription/yeast genetics/enhancer elements) KEVIN STRUHL Department of Biological Chemistry; Harvard Medical School, Boston, MA 02115 Communicated by Boris Magasanik, August 16, 1984 ABSTRACT DNA molecules created by fusing a 365-base- but as yet inexplicable, properties (5-10). They are function- pair segment of yeast DNA encoding the galactose-regulated al when located at various distances from either the TATA upstream promoter element (gal) to a set of derivatives that box or the start of transcription, even as far away as hun- systematically delete sequences upstream from the his3 gene dreds (and perhaps thousands) of base pairs. Furthermore, are introduced in single copy back into the yeast genome pre- these elements can work in either orientation and also when cisely at the hisM locus and then assayed for transcription. Fu- located downstream from the transcriptional initiation site. sions of the gal regulatory element to hisM derivatives contain- In some cases, enhancer sequences are also regulatory ing all normal mRNA coding sequences but lacking essentially sites-i.e., they activate transcription only under certain the entire promoter region fail to express his3 under any physiological conditions, such as in response to hormones growth conditions. Fusions to derivatives lacking the his3 up- (8), or only in specific cell types (9, 10). From these proper- stream promoter element but containing the "TATA box" ties, it is popularly supposed that enhancer sequences are place his3 expression under gal control-i.e., extremely high the critical elements that regulate gene expression during RNA levels in galactose-containing medium and essentially no normal and abnormal development of multicellular orga- his3 RNA in glucose-containing medium. -
Transcription Regulation in Eukaryotes HFSP Workshop Reports
Transcription Regulation in Eukaryotes HFSP Workshop Reports Senior editor: Jennifer Altman Assistant editor: Chris Coath I. Coincidence Detection in the Nervous System, eds A. Konnerth, R. Y. Tsien, K. Mikoshiba and J. Altman (1996) II. Vision and Movement Mechanisms in the Cerebral Cortex, eds R. Caminiti, K.-P. Hoffmann, F. Laquaniti and J. Altman (1996) III. Genetic Control of Heart Development, eds R. P. Harvey, E. N. Olson, R. A. Schulz and J. S. Altman (1997) IV. Central Synapses: Quantal Mechanisms and Plasticity, eds D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson and J. S. Altman (1998) V. Brain and Mind: Evolutionary Perspectives, eds M. S. Gazzaniga and J. S. Altman (1998) VI. Cell Surface Proteoglycans in Signalling and Development, eds A. Lander, H. Nakato, S. B. Selleck, J. E. Turnbull and C. Coath (1999) VII. Transcription Regulation in Eukaryotes, eds P. Chambon, T. Fukasawa, R. Kornberg and C. Coath (1999) Forthcoming VIII. Replicon Theory and Cell Division, eds M. Kohiyama, W. Fangman, T. Kishimoto and C. Coath IX. The Regulation of Sleep, eds A. A. Borbély, O. Hayaishi, T. Sejnowski and J. S. Altman X. Axis Formation in the Vertebrate Embryo, eds S. Ang, R. Behringer, H. Sasaki, J. S. Altman and C. Coath XI. Neuroenergetics: Relevance for Functional Brain Imaging, eds P. J. Magistretti, R. G. Shulman, R. S. J. Frackowiak and J. S. Altman WORKSHOP VII Transcription Regulation in Eukaryotes Copyright © 1999 by the Human Frontier Science Program Please use the following format for citations: “Transcription Regulation in Eukaryotes” Eds P. Chambon, T. Fukasawa, R. -
Nucleotide Sequence and Transcriptional Mapping of the Yeast Pets6-His3dedl Gene Region
Research Volume 13 Number 23 1985 Nucleic Acids Research Nucleotide sequence and transcriptional mapping of the yeast petS6-his3dedl gene region Kevin Struhl Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA Received 28 August 1985; Revised 24 October 1985; Accepted 29 October 1985 ABSTRACT Genes of the baker's yeast Saccharomyces cerevisiae are densely clustered on 16 linear chromosomes. Here, I characterize a 1.8 kb region of chromosome XV containing the entire structural gene for the histidine biosynthetic enzyme imidazoleglycerolphosphate (IGP) dehydratase (his3) as well as the promoter sequences and 5'-proximal mRNA coding regions for the adjacent genes. The his3 gene encodes several mRNA species averaging 820 bases in length, all of which contain an open reading frame of 219 codons. The location of this open reading frame coincides with the his3 gene as defined by functional criteria, suggesting that the primary translation product of yeast IGP dehydratase has a molecular weight of 23,850. Phenotypic analysis of mutations constructed in vitro indicate that one of the adjacent genes (pet56) is required for mitochondrial function, whereas the other gene (dedl) is essential for cell viability. The petS6 and his3 genes are transcribed divergently from initiation sites that are separated by only 192 bp. Transcription of the dedl gene is initiated only 130 bp beyond the 3'-end of the his3 mRNA coding region. These results suggest that these unrelated genes are located extremely close together and that the spacer regions between them consist largely ofpromoter and teminator sequences. INTRODUCTION The genome of the yeast Saccharomyces cerevisiae contains approximately 10,000 kb of DNA, about half of which is transcribed under normal growth conditions (1,2). -
Transcription
Transcription (CHAPTER 12- Brooker Text) Feb 19, 2007 BIO 184 Dr. Tom Peavy Sequence Complexity in the Genome 60-70% of human DNA fragments are unique DNA sequences 1 • Bacterial mRNA may be polycistronic, which means it encodes two or more polypeptides The Stages of Transcription • Transcription occurs in three stages – Initiation – Elongation – Termination • These steps involve protein-DNA interactions – Proteins such as RNA polymerase interact with DNA sequences Initiation • promoter = recognition site for transcription factors • transcription factors + RNA polymerase to bind to the promoter (initial phase) = closed promoter complex • then DNA is denatured (bubble) = open promoter complex 2 Prokaryotic Transcription • E. coli RNA polymerase = holoenzyme – Core enzyme (Four subunits = α2ββ’) – Sigma factor (One subunit = σ) Initiation stages involve RNA pol holoenzyme • Binding loosely to the DNA • Scaning for promoter region • Forming Open promoter complex • Synthesizing Short stretch of RNA • Releasing Sigma factor Bacterial Promoter Sequence elements that play a key role in transcription (pribnow box) • The RNA transcript is synthesized during ELONGATION step • The DNA strand used as a template for RNA synthesis is termed the template or noncoding strand • The opposite DNA strand is called the coding strand – It has the same base sequence as the RNA transcript • Except that T in DNA corresponds to U in RNA 3 Termination of Bacterial Transcription • short RNA-DNA hybrid is forced to separate = release of newly made RNA • E. coli has -
Yeast GCN4 As a Probe for Oncogenesis by AP-1. Transcription Factors: Transcnpuonal Activation Through AP-1 Sites Is Not Sufficient for Cellular Transformation
Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Yeast GCN4 as a probe for oncogenesis by AP-1. transcription factors: transcnpuonal activation through AP-1 sites is not sufficient for cellular transformation Salvatore Oliviero, 1'3 Gregory S. Robinson, 1'2 Kevin Struhl, 1 and Bruce M. Spiegelman 1'2 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA; 2Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 USA; 3Dipartimento di Biologia, Universita degli Studi di Padova, via Trieste, 75-35121 Padova, Italy The Jun and Fos oncoproteins belong to the AP-1 family of transcriptional activators and are believed to induce cellular transformation by inappropriately activating genes involved in cell replication. To determine whether transcriptional activation through AP-1 sites is sufficient for transforming activity, we examined the properties of an autonomous and heterologous AP-1 protein, yeast GCN4, in rat embryo fibroblasts. GCN4 induces transcriptional activation through AP-1 sites but, unlike Jun and Fos, fails to induce cellular transformation, in cooperation with Ha-ras. Jun-GCN4 and Fos-GCN4 homodimers independently induce cellular transformation indicating that the amino-terminal regions of Jun and Fos each contain regulatory functions that are required for oncogenesis but are distinct from generic transcriptional activation domains. In addition, these observations have implications for the nature of the oncogenically relevant target genes that respond to Jun and Fos. IKey Words: Yeast GCN4; Jun; Fos; AP-1 transcription factors; oncogenesis; cellular transformation] Received May 21, 1992; revised version accepted July 7, 1992. -
Struhl, 1983 Gene.Pdf
Gene. 26 (1983) 231-242 231 Elsevier GENE 916 Direct selection for gene replacement events in yeast (Chromosome manipulation; cycloheximide; DNA transformation; recombinant DNA; ribosomal protein; Saceharomyces cerevisiae) KevinStruhl Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115 (U.S.A.) Tel. (617) 732-3104 (Received June 24th, 1983) (Revision received September 16th, 1983) (Accepted September 20th, 1983) SUMMARY A method that facilitates gene replacement at the HZS3 locus of Saccharomyces cerevisiae (yeast) has been developed. First, an internal region of the cloned HZS3 gene was replaced by a DNA segment containing the wild-type ribosomal protein gene, CYH2. Second, by using standard yeast tr~sfo~ation methods, the wild-type HIS3 locus of a cycloheximide resistant strain (cyZz2’)was replaced by this h&3-CYH2 substitution. The resulting strain is sensitive to cycloheximide because CYH2 is dominant to cyh2’. Third, his3 mutations cloned into integrating or replicating vectors were introduced into this strain by selecting transformants via the vector-encoded marker. Selection for cycloheximide-resistant colonies resulted in the replacement of the his3-CYH2 allele by newly introduced his3 alleles. Thus, this scheme provides for the direct selection of gene replacement events at the HZS3 locus independently of the phenotype of the cloned his3 derivatives. In principle, it can be extended to any region of the yeast genome. INTRODUCTION Gene replacement depends upon homologous A major attraction for studies on the yeast S. cere- recombination between transforming DNA se- Mae is the ability to replace normal chromosomal quences and their host genomic counterparts (Morse sequences with mutated derivatives constructed in et al., 1956). -
Microbial Gene Promoter/Operators
Europaisches Patentamt European Patent Office © Publication number: 0 067 540 Office europeen des brevets A2 12 EUROPEAN PATENT APPLICATION @ Application number: 82302532.5 © IntCI.3: C 12 N 15/00 C 12 P 21/00, C 12 N 1/20 © Date of filing: 18.05.82 © Priority: 18.05.81 US 264306 © Applicant: GENENTECH, INC. 07.12.81 US 328174 460 Point San Bruno Boulevard 11.01.82 US 338397 So. San Francisco California 94080(US) @ Inventor: De Boer, Herman Albert © Date of publication of application: 86 Salada No. 1 22.12.82 Bulletin 82/51 Pacifica California 94044IUS) © Designated Contracting States: © Representative: Armitage, Ian Michael et al, AT BE CH DE FR GB IT LI LU NL SE MEWBURN ELLIS & CO. 23 Cursitor Street London EC4A1BQIGB) © Microbial gene promoter operators. Hybrid promotenoperators are prepared and inserted into plasmids which are used to transform E. coli. They are arranged to control expression (by a gene in the plasmid) of a desired heterologous peptide e.g. human growth hormone, HGH. Each hybrid promoter/operator has (a) a promoter: operator fragment which is capable of being chemically induced, and (b) a fragment which includes the -35 consen- sus sequence and the 5' flanking region thereof of a promoter having a high signal strength. The fragments (a) and (b) are appropriately spaced to form an operable hybrid promoter which is both inducible and of high signal strength (properties not naturally found together). has from M E.g. one hybrid operator promoter a sequence of position -22 of the (of < upstream trp promoter high strength) coupled to a sequence downstream from position -19 of the lac (inducible). -
Nucleotide Sequence of the Ribosomal Protein Gene Cluster Adjacent to the Gene for RNA Polymerasesubunit
Proc. Natl. Acad. Sci. USA Vol. 76, No. 4, pp. 1697-1701, April 1979 Biochemistry Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit : in Escherichia coli (protein sequence/transcription initiation/transcription termination/codon usage/isoaccepting tRNAs) LEONARD E. POST*, GENEVA D. STRYCHARZ*, MASAYASU NOMURA*t, H. LEWISf, AND PATRICK P. DENNISf *Institute for Enzyfme Research and Departments of Genetics and Biochemistry, University of Wisconsin, Madison, Wisconsin 53706; and tDepartment of Biochemistry, Faculty of Medicine, University of British Columbia, 2075 Wesbrook Place, Vancouver, British Columbia V6T IW5, Canada Contributed by Masayasu Nomura, January 29,1979 ABSTRACT The 3072-nucleotide-long sequence of a seg- the EcoRI/HindII fragment to the right of the EcoRI ment from the 88-min region of the Escherichia coli chromo- 18.6%/4.4%-L site (unpublished work; cf. Fig. 1). The DNA some has been determined. The sequence covers the genes for and Gilbert ribosomal proteins LIi (rpK), LI (rpMA), Li (rplJ, and L7/L12 was sequenced by the method of Maxam (16). Dyad (rpIL), and the 5' end of the gene for the /3 subunit of RNA symmetry and codon frequency were analyzed using the polymerase (rpoB), along with the presumed regulatory regions computer program of Korn et al. (17), as modified by R. Lit- for these genes. The probable locations of the promoter for the tlewood (Biophysics Laboratory, University of Wisconsin, first two genes (the LII operon) and the promoter for the latter Madison) for the use on a Univac 1110 computer. three genes (the proximal part of the /3 operon) have been identified.