Finite Field Polynomial Multiplier with Linear Feedback Shift Register
Tamkang Journal of Science and Engineering, Vol. 10, No. 3, pp. 253-264 (2007) 253 Finite Field Polynomial Multiplier with Linear Feedback Shift Register Che-Wun Chiou1*, Chiou-Yng Lee2 and Jim-Min Lin3 1Department of Computer Science and Information Engineering, Ching Yun University, Chung-Li, Taiwan 320, R.O.C. 2Department of Computer Information and Network Engineering, Lung Hwa University of Science & Technology, Taoyuan, Taiwan 333, R.O.C. 3Department of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan 407, R.O.C. Abstract We will present an one-dimensional polynomial basis array multiplier for performing multiplications in finite field GF(2m). A linear feedback shift register is employed in our proposed multiplier for reducing space complexity. As compared to other existing two-dimensional polynomial basis multipliers, our proposed linear array multiplier drastically reduces the space complexity from O(m2) to O(m). A new two-dimensional systolic array version of the proposed array multiplier is also included in this paper. The proposed two-dimensional systolic array multiplier saves about 30% of space complexity and 27% of time complexity while comparing with other two-dimensional systolic array multipliers. Key Words: Finite Field, Multiplication, Polynomial Basis, Systolic Array, Cryptography 1. Introduction of implementing multiplication operations depends on the representation of the field elements. There are three Arithmetic operations in a finite field play an in- main representation types of bases over GF(2m) fields, creasingly important role in error-correcting codes [1], namely, normal basis (NB), dual basis (DB), and polyno- cryptography [2], digital signal processing [3,4], and mial basis (PB).
[Show full text]