LECTURE NOTES in CRYPTOGRAPHY Thomas Johansson 2005/2006

Total Page:16

File Type:pdf, Size:1020Kb

LECTURE NOTES in CRYPTOGRAPHY Thomas Johansson 2005/2006 1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic facts from number theory and abstract algebra. 1.1 Number theory The set of integers {...,−2, −1, 0, 1, 2,...} is denoted by Z. Definition 1.1. Let a, b ∈ Z. We say that a divides b (written a|b) if there exists an integer c such that b = ac. The following facts are easily checked. (i) a|a. (ii) If a|b and b|c then a|c. (iii) If a|b and a|c then a|(bx + cy) for any x, y ∈ Z. (iv) If a|b and b|a then a = ±b. Let a and b be integers with b ≥ 1. Then an ordinary long division of a by b yields two integers q and r such that a = qb + r, where 0 ≤ r<b. (1.1) The integers q and r are called the quotient and the remainder, respectively, and they are unique. Definition 1.2. The remainder ( r )ofa divided by b is denoted a mod b. The quotient ( q )ofa divided by b is denoted a div b. Example 1.1. Let a =47and b =7.Thena mod b =5and a div b =6. We call an integer c a common divisor of integers a and b if c|a and c|b. 3 4 Chapter 1. Abstract algebra and Number theory Definition 1.3. A non-negative integer d is called the greatest common divisor of integers a and b if (i) d is a common divisor of a and b. (ii) for every other common divisor c it hold that c|d. The greatest common divisor of integers a and b is denoted gcd(a, b). Clearly, gcd(a, b) is the largest positive integer dividing both a and b (except gcd(0, 0) = 0). Example 1.2. The common divisors of 28 and 42 are {±2, ±7, ±14} and gcd(28, 42) = 14. In a similar fashion as above we define the least common multiple. Definition 1.4. A non-negative integer d is called the least common multiple of integers a and b if (i) a|d and b|d. (ii) for every integer c such that a|c and b|c we have d|c. The least common multiple of integers a and b is denoted lcm(a, b). Clearly, lcm(a, b) is the smallest positive integer divisible by both a and b. The following relationship is often useful. If a and b are positive integers, then lcm(a, b) · gcd(a, b)=a · b. (1.2) Two integers a, b are called relatively prime if gcd(a, b)=1. Also, an integer p ≥ 2 is called prime if its only positive divisors are 1 and p.Otherwisep is called a composite. Prime numbers play a fundamental role in cryptography. Let us review some known facts about them. Let π(x) denote the number of primes ≤ x. Some known facts about primes. (i) There are infinitely many primes. π(x) (ii) limx→∞ x/ ln x =1. (iii) For x ≥ 17, x/ ln x<π(x) < 1.25506x/ ln x. The following theorem is a well known result. Theorem 1.1 (Unique factorization theorem). Every integer n ≥ 2 can be written as a product of prime powers, e1 e2 ek n = p1 p2 ···pk , where p1,p2,...,pk are distinct primes and e1,e2,...ek are positive integers. Furthermore, the factorization is unique up to rearrangement of factors. 5 The proof of this theorem is not as easy as it may seem. We refer to any textbook in number theory. The unique factorization theorem can be used to express the greatest common divisor and the least common multiple in a simple way. e1 e2 ek f1 f2 fk If a = p1 p2 ···pk and b = p1 p2 ···pk ,whereei,fi, i =1, 2,...k are now nonnegative integers, then min(e1,f1) min(e2,f2) min(ek,fk) gcd(a, b)=p1 p2 ···pk (1.3) and max(e1,f1) max(e2,f2) max(ek,fk) lcm(a, b)=p1 p2 ···pk . (1.4) Definition 1.5. For n ≥ 1,letφ(n) denote the number of integers in the interval [1,n] which are relatively prime to n. This function is called the Euler phi function. Let us prove the following facts concerning the Euler phi function. Theorem 1.2. (i) If p is a prime, then φ(p)=p − 1. (ii) If gcd(a, b)=1then φ(ab)=φ(a)φ(b). e1 e2 ek (iii) If n = p1 p2 ···pk then e1 e1−1 e2 e2−1 ek ek−1 φ(n)=(p1 − p1 )(p2 − p2 ) ···(pk − pk ). Proof. The proof is left as an exercise. Let us consider the problem of computing the greatest common divisor between two integers. We could use the expression derived in (1.3), but this requires us to first find the prime factors of the two integers. This is not always an easy task, as we will see later. Fortunately, there is an easier and better way of calculating the greatest common divisor. It relies on the following simple fact. Lemma 1.3. If a and b are positive integers with a>b,thengcd(a, b)=gcd(b, a mod b). Proof. The proof is left as an exercise. Of course, we can now use the above lemma repeatedly until the problem is small enough to be trivially solved. This leads to the famous Euclidean algorithm for computing gcd(a, b). Algorithm 1.1 (Euclidean algorithm). INPUT: Two non-negative integers a, b where a ≥ b. OUTPUT: gcd(a, b) FLOW: 1. Set r0 ← a, r1 ← b, i ← 1. 2. While ri =0 do: 1.1 Set ri+1 ← ri−1 mod ri, i ← i +1. 2. Return(ri). 6 Chapter 1. Abstract algebra and Number theory In essence, the algorithm sets r0 = a, r1 = b and then computes the following set of long divisions, r0 = q1r1 + r2 r1 = q2r2 + r3 . ri−2 = qi−1ri−1 + ri ri−1 = qiri. Since gcd(a, b)=gcd(r0,r1)=gcd(r1,r2)=... = gcd(ri−1,ri)=ri, the algorithm terminates with the correct answer. Let us illustrate the Euclidean algorithm with an example. Example 1.3. Compute gcd(1495, 1365). We have 1495 = 1 · 1365 + 130 1365 = 10 · 130 + 65 130 = 2 · 65 + 0, and gcd(1495, 1365) = 65. The following fact is important. Theorem 1.4. Let a and b be two non-negative integers. Then there exist integers x, y such that gcd(a, b) canbewrittenas gcd(a, b)=ax + by. Proof. F ollowingthesetoflongdivisionsabovewehave gcd(a, b)=ri = ri−2 − qi−1ri−1 = ri−2 − qi−1(ri−3 − qi−2ri−2) . = r0x + r1y = ax + by, for some integers x, y ∈ Z. In the proof of the theorem, we see how we can calculate the integers x and y.Thereis also an extended version of Euclidean algorithm which returns not only gcd(a, b) but also the integers x, y. So when we need to calculate x, y we can either use Eulidean algorithm and then go “backwards” again, as in the proof, or we can use an extended version of the Eulidean algorithm. 7 Algorithm 1.2 (Extended Euclidean algorithm). INPUT: Two non-negative integers a, b where a ≥ b. OUTPUT: d =gcd(a, b) and two integers x, y such that d = ax + by. FLOW: 1. If b =0then return(a,x ← 1,y ← 0). 2. Set x2 ← 1,x1 ← 0,y2 ← 0,y1 ← 1. 3. While b>0 do: 3.1 q ← adiv b, r ← a − qb, x ← x2 − qx1,y ← y2 − qy1, 3.2 a ← b, b ← r, x2 ← x1,x1 ← x, y2 ← y1,y1 ← y. 4. Set d ← a, x ← x2, y ← y2 and Return(d, x, y). Example 1.4. Compute gcd(1495, 1365) and find two integers x, y such that gcd(1495, 1365) = 1495x + 1365y. qr xy a b x2 x1 y2 y1 1495 1365 1 0 0 1 1 130 1 -1 1365 130 0 1 1 -1 10 65 -10 11 130 65 1 -10 -1 11 2 0 21 -23 65 0 -10 21 11 -23 So gcd(1495, 1365) = 65 = 1495 · (−10) + 1365 · 11. If we instead of using the extended version of the Euclidean algorithm would use the standard version and then go backwards, we would get 1495 = 1 · 1365 + 130 1365 = 10 · 130 + 65 130 = 2 · 65 + 0 and backwards 65 = 1365 − 10 · 130 = 1365 − 10 · (1495 − 1 · 1365) =11· 1365 − 10 · 1495. 1.2 The integers modulo n Let n be a positive integer. If a and b are integers, then a is said to be congruent to b modulo n, which is written a ≡ b (mod n),ifn divides (a − b).Wecalln the modulus of the congruence. We can check the following properties. Theorem 1.5. For a, a1,b,b1,c∈ Z we have 8 Chapter 1. Abstract algebra and Number theory (i) a ≡ b (mod n) if and only if a and b leaves the same remainder when divided by n. (ii) a ≡ a (mod n). (iii) If a ≡ b (mod n) then b ≡ a (mod n). iv) If a ≡ b (mod n) and b ≡ c (mod n),thena ≡ c (mod n). v) If a ≡ a1 (mod n) and b ≡ b1 (mod n),thena + b ≡ a1 + b1 (mod n) and ab ≡ a1b1 (mod n). The properties ii), iii), and iv) are called reflexivity, symmetry and transitivity, respec- tively.
Recommended publications
  • F[X] Be an Irreducible Cubic X 3 + Ax 2 + Bx + Cw
    Math 404 Assignment 3. Due Friday, May 3, 2013. Cubic equations. Let f(x) F [x] be an irreducible cubic x3 + ax2 + bx + c with roots ∈ x1, x2, x3, and splitting field K/F . Since each element of the Galois group permutes the roots, G(K/F ) is a subgroup of S3, the group of permutations of the three roots, and [K : F ] = G(K/F ) divides (S3) = 6. Since [F (x1): F ] = 3, we see that [K : F ] equals ◦ ◦ 3 or 6, and G(K/F ) is either A3 or S3. If G(K/F ) = S3, then K has a unique subfield of dimension 2, namely, KA3 . We have seen that the determinant J of the Jacobian matrix of the partial derivatives of the system a = (x1 + x2 + x3) − b = x1x2 + x2x3 + x3x1 c = (x1x2x3) − equals (x1 x2)(x2 x3)(x1 x3). − − − Formula. J 2 = a2b2 4a3c 4b3 27c2 + 18abc F . − − − ∈ An odd permutation of the roots takes J =(x1 x2)(x2 x3)(x1 x3) to J and an even permutation of the roots takes J to J. − − − − 1. Let f(x) F [x] be an irreducible cubic polynomial. ∈ (a). Show that, if J is an element of K, then the Galois group G(L/K) is the alternating group A3. Solution. If J F , then every element of G(K/F ) fixes J, and G(K/F ) must be A3, ∈ (b). Show that, if J is not an element of F , then the splitting field K of f(x) F [x] has ∈ Galois group G(K/F ) isomorphic to S3.
    [Show full text]
  • January 10, 2010 CHAPTER SIX IRREDUCIBILITY and FACTORIZATION §1. BASIC DIVISIBILITY THEORY the Set of Polynomials Over a Field
    January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION §1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics. A polynomials is irreducible iff it cannot be factored as a product of polynomials of strictly lower degree. Otherwise, the polynomial is reducible. Every linear polynomial is irreducible, and, when F = C, these are the only ones. When F = R, then the only other irreducibles are quadratics with negative discriminants. However, when F = Q, there are irreducible polynomials of arbitrary degree. As for the integers, we have a division algorithm, which in this case takes the form that, if f(x) and g(x) are two polynomials, then there is a quotient q(x) and a remainder r(x) whose degree is less than that of g(x) for which f(x) = q(x)g(x) + r(x) . The greatest common divisor of two polynomials f(x) and g(x) is a polynomial of maximum degree that divides both f(x) and g(x). It is determined up to multiplication by a constant, and every common divisor divides the greatest common divisor. These correspond to similar results for the integers and can be established in the same way. One can determine a greatest common divisor by the Euclidean algorithm, and by going through the equations in the algorithm backward arrive at the result that there are polynomials u(x) and v(x) for which gcd (f(x), g(x)) = u(x)f(x) + v(x)g(x) .
    [Show full text]
  • Selecting Polynomials for the Function Field Sieve
    Selecting polynomials for the Function Field Sieve Razvan Barbulescu Université de Lorraine, CNRS, INRIA, France [email protected] Abstract The Function Field Sieve algorithm is dedicated to computing discrete logarithms in a finite field Fqn , where q is a small prime power. The scope of this article is to select good polynomials for this algorithm by defining and measuring the size property and the so-called root and cancellation properties. In particular we present an algorithm for rapidly testing a large set of polynomials. Our study also explains the behaviour of inseparable polynomials, in particular we give an easy way to see that the algorithm encompass the Coppersmith algorithm as a particular case. 1 Introduction The Function Field Sieve (FFS) algorithm is dedicated to computing discrete logarithms in a finite field Fqn , where q is a small prime power. Introduced by Adleman in [Adl94] and inspired by the Number Field Sieve (NFS), the algorithm collects pairs of polynomials (a; b) 2 Fq[t] such that the norms of a − bx in two function fields are both smooth (the sieving stage), i.e having only irreducible divisors of small degree. It then solves a sparse linear system (the linear algebra stage), whose solutions, called virtual logarithms, allow to compute the discrete algorithm of any element during a final stage (individual logarithm stage). The choice of the defining polynomials f and g for the two function fields can be seen as a preliminary stage of the algorithm. It takes a small amount of time but it can greatly influence the sieving stage by slightly changing the probabilities of smoothness.
    [Show full text]
  • Effective Noether Irreducibility Forms and Applications*
    Appears in Journal of Computer and System Sciences, 50/2 pp. 274{295 (1995). Effective Noether Irreducibility Forms and Applications* Erich Kaltofen Department of Computer Science, Rensselaer Polytechnic Institute Troy, New York 12180-3590; Inter-Net: [email protected] Abstract. Using recent absolute irreducibility testing algorithms, we derive new irreducibility forms. These are integer polynomials in variables which are the generic coefficients of a multivariate polynomial of a given degree. A (multivariate) polynomial over a specific field is said to be absolutely irreducible if it is irreducible over the algebraic closure of its coefficient field. A specific polynomial of a certain degree is absolutely irreducible, if and only if all the corresponding irreducibility forms vanish when evaluated at the coefficients of the specific polynomial. Our forms have much smaller degrees and coefficients than the forms derived originally by Emmy Noether. We can also apply our estimates to derive more effective versions of irreducibility theorems by Ostrowski and Deuring, and of the Hilbert irreducibility theorem. We also give an effective estimate on the diameter of the neighborhood of an absolutely irreducible polynomial with respect to the coefficient space in which absolute irreducibility is preserved. Furthermore, we can apply the effective estimates to derive several factorization results in parallel computational complexity theory: we show how to compute arbitrary high precision approximations of the complex factors of a multivariate integral polynomial, and how to count the number of absolutely irreducible factors of a multivariate polynomial with coefficients in a rational function field, both in the complexity class . The factorization results also extend to the case where the coefficient field is a function field.
    [Show full text]
  • Generation of Irreducible Polynomials from Trinomials Over GF(2). I
    INFORMATION AND CONTROL 30, 396-'407 (1976) Generation of Irreducible Polynomials from Trinomials over GF(2). I B. G. BAJOGA AND rvV. J. WALBESSER Department of Electrical Engineering, Ahmadu Bello University, Zaria, Nigeria Methods of generating irreducible polynomials from a given minimal polynomial are known. However, when dealing with polynomials of large degrees many of these methods are laborious, and computers have to be used. In this paper the problem of generating irreducible polynomials from trinomials is investigated. An efficient technique of computing the minimum polynomial of c~k over GF(2) for certain values of k, when the minimum polynomial of c~ is of the form x m 4- x + 1, is developed, and explicit formulae are given. INTRODUCTION The generation of irreducible polynomials over GF(2) has been a subject of a number of investigations mainly because these polynomials are important not only in the study of linear sequencies but also in BCH coding and decoding. Many results have been obtained (Albert, 1966; Daykin, 1960). Computational methods for generating minimal polynomials from a given irreducible polynomial have been developed. These have been described by Berlekamp (1968), Golomb (1967), and Lempel (1971), among others. Berlekamp observed that all these methods are helpful for hand calculation only if the minimal polynomial from which others are generated is of low degree. He further pointed out that it proves easiest to compute polynomials of large degree by computer using the matrix method. In addition these methods use algorithms. Seldom do they provide results of a general nature. However, utilizing the underlying ideas of the matrix method, some general results on generating irreducible polynomials from a large class of trinomials are derived in this paper.
    [Show full text]
  • Optimal Irreducible Polynomials for GF(2M) Arithmetic
    Optimal Irreducible Polynomials for GF(2m) arithmetic Michael Scott School of Computing Dublin City University GF(2m) polynomial representation A polynomial with coefficients either 0 or 1 (m is a small prime) Stored as an array of bits, of length m, packed into computer words Addition (and subtraction) – easy – XOR. No reduction required as bit length does not increase. GF(2m) arithmetic 1 Squaring, easy, simply insert 0 between coefficients. Example 110101 → 10100010001 Multiplication – artificially hard as instruction sets do not support “binary polynomial” multiplication, or “multiplication without carries” – which is actually simpler in hardware than integer multiplication! Really annoying! GF(2m) arithmetic 2 So we use Comb or Karatsuba methods… Squaring or multiplication results in a polynomial with 2m-1 coefficients. This must be reduced with respect to an irreducible polynomial, to yield a field element of m bits. For example for m=17, x17+x5+1 GF(2m) arithmetic 3 This trinomial has no factors (irreducible) Reduction can be performed using shifts and XORs x17+x5+1 = 100000000000100001 Example – reduce 10100101010101101010101 GF(2m) arithmetic 4 10100101010101101010101 100000000000100001 ⊕ 00100101010110000110101 ← 100101010110000110101 100000000000100001 ⊕ 000101010110100111101 ← 101010110100111101 100000000000100001 ⊕ 001010110100011100 ← 1010110100011100 → result! Reduction in software - 1 Consider the standard pentanomial x163+x7+x6+x3+1 Assume value to be reduced is represented as 11 32-bit words g[.] To
    [Show full text]
  • Tests and Constructions of Irreducible Polynomials Over Finite Fields
    Tests and Constructions of Irreducible Polynomials over Finite Fields 1 2 Shuhong Gao and Daniel Panario 1 Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-1907, USA E-mail: [email protected] 2 Department of Computer Science, UniversityofToronto, Toronto, Canada M5S-1A4 E-mail: [email protected] Abstract. In this pap er we fo cus on tests and constructions of irre- ducible p olynomials over nite elds. We revisit Rabin's 1980 algo- rithm providing a variant of it that improves Rabin's cost estimate by a log n factor. We give a precise analysis of the probability that a ran- dom p olynomial of degree n contains no irreducible factors of degree less than O log n. This probability is naturally related to Ben-Or's 1981 algorithm for testing irreducibility of p olynomials over nite elds. We also compute the probability of a p olynomial b eing irreducible when it has no irreducible factors of low degree. This probability is useful in the analysis of various algorithms for factoring p olynomials over nite elds. We present an exp erimental comparison of these irreducibility metho ds when testing random p olynomials. 1 Motivation and results For a prime power q and an integer n 2, let IF be a nite eld with q q n elements, and IF be its extension of degree n. Extensions of nite elds are q imp ortant in implementing cryptosystems and error correcting co des. One way of constructing extensions of nite elds is via an irreducible p olynomial over the ground eld with degree equal to the degree of the extension.
    [Show full text]
  • A Casual Primer on Finite Fields
    A very brief introduction to finite fields Olivia Di Matteo December 10, 2015 1 What are they and how do I make one? Definition 1 (Finite fields). Let p be a prime number, and n ≥ 1 an integer. A finite field n n n of order p , denoted by Fpn or GF(p ), is a collection of p objects and two binary operations, addition and multiplication, such that the following properties hold: 1. The elements are closed under addition modulo p, 2. The elements are closed under multiplication modulo p, 3. For all non-zero elements, there exists a multiplicative inverse. 1.1 Prime dimensions Nothing much to see here. In prime dimension p, the finite field Fp is very simple: Fp = Zp = f0; 1; : : : ; p − 1g: (1) 1.2 Power of prime dimensions and field extensions Fields of prime-power dimension are constructed by extending a field of smaller order using a primitive polynomial. See section 2.1.2 in [1]. 1.2.1 Primitive polynomials Definition 2. Consider a polynomial n q(x) = a0 + a1x + ··· + anx ; (2) having degree n and coefficients ai 2 Fq. Such a polynomial is called monic if an = 1. Definition 3. A polynomial n q(x) = a0 + a1x + ··· + anx ; ai 2 Fq (3) is called irreducible if q(x) has positive degree, and q(x) = u(x)v(x); (4) 1 and either u(x) or v(x) a constant polynomial. In other words, the equation n q(x) = a0 + a1x + ··· + anx = 0 (5) has no solutions in the field Fq. Example 1 (Irreducible polynomial).
    [Show full text]
  • Section V.4. the Galois Group of a Polynomial (Supplement)
    V.4. The Galois Group of a Polynomial (Supplement) 1 Section V.4. The Galois Group of a Polynomial (Supplement) Note. In this supplement to the Section V.4 notes, we present the results from Corollary V.4.3 to Proposition V.4.11 and some examples which use these results. These results are rather specialized in that they will allow us to classify the Ga- lois group of a 2nd degree polynomial (Corollary V.4.3), a 3rd degree polynomial (Corollary V.4.7), and a 4th degree polynomial (Proposition V.4.11). In the event that we are low on time, we will only cover the main notes and skip this supple- ment. However, most of the exercises from this section require this supplemental material. Note. The results in this supplement deal primarily with polynomials all of whose roots are distinct in some splitting field (and so the irreducible factors of these polynomials are separable [by Definition V.3.10, only irreducible polynomials are separable]). By Theorem V.3.11, the splitting field F of such a polynomial f K[x] ∈ is Galois over K. In Exercise V.4.1 it is shown that if the Galois group of such polynomials in K[x] can be calculated, then it is possible to calculate the Galois group of an arbitrary polynomial in K[x]. Note. As shown in Theorem V.4.2, the Galois group G of f K[x] is iso- ∈ morphic to a subgroup of some symmetric group Sn (where G = AutKF for F = K(u1, u2,...,un) where the roots of f are u1, u2,...,un).
    [Show full text]
  • Type-II Optimal Polynomial Bases
    Type-II Optimal Polynomial Bases Daniel J. Bernstein1 and Tanja Lange2 1 Department of Computer Science (MC 152) University of Illinois at Chicago, Chicago, IL 60607{7053, USA [email protected] 2 Department of Mathematics and Computer Science Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands [email protected] Abstract. In the 1990s and early 2000s several papers investigated the relative merits of polynomial-basis and normal-basis computations for F2n . Even for particularly squaring-friendly applications, such as implementations of Koblitz curves, normal bases fell behind in performance unless a type-I normal basis existed for F2n . In 2007 Shokrollahi proposed a new method of multiplying in a type-II normal basis. Shokrol- lahi's method efficiently transforms the normal-basis multiplication into a single multiplication of two size-(n + 1) polynomials. This paper speeds up Shokrollahi's method in several ways. It first presents a simpler algorithm that uses only size-n polynomials. It then explains how to reduce the transformation cost by dynamically switching to a `type-II optimal polynomial basis' and by using a new reduction strategy for multiplications that produce output in type-II polynomial basis. As an illustration of its improvements, this paper explains in detail how the multiplication over- head in Shokrollahi's original method has been reduced by a factor of 1:4 in a major cryptanalytic computation, the ongoing attack on the ECC2K-130 Certicom challenge. The resulting overhead is also considerably smaller than the overhead in a traditional low-weight-polynomial-basis ap- proach. This is the first state-of-the-art binary-elliptic-curve computation in which type-II bases have been shown to outperform traditional low-weight polynomial bases.
    [Show full text]
  • Examples of Proofs by Induction
    EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction Mathematical induction is a method that allows us to prove infinitely many similar assertions in a systematic way, by organizing the results in a definite order and showing • the first assertion is correct (\base case") • whenever an assertion in the list is correct (\inductive hypothesis"), prove the next assertion in the list is correct (\inductive step"). This tells us every assertion in the list is correct, which is analogous to falling dominos. If dominos are close enough and each domino falling makes the next domino fall, then after the first domino falls all the dominos will fall. The most basic results that are proved by induction are summation identities, such as n(n + 1) (1.1) 1 + 2 + 3 + ··· + n = 2 for all positive integers n. Think about this identity as a separate statement for each n: S(1);S(2);S(3); and so on, where S(n) is the (as yet unproved) assertion in (1.1). Definitely S(1) is true, since the left side of (1.1) when n = 1 is 1 and the right side of (1.1) when n = 1 is 1(1 + 1)=2 = 1. Next, if S(n) is true for some n, then we can show S(n + 1) is true by writing 1 + 2 + ··· + n + (n + 1) in terms of 1 + 2 + ··· + n and using the truth of S(n): 1 + 2 + ··· + n + (n + 1) = (1 + 2 + ··· + n) + (n + 1) n(n + 1) = + (n + 1) since S(n) is assumed to be true 2 n(n + 1) + 2(n + 1) = 2 (n + 1)(n + 2) = : 2 The equality of the first and last expressions here is precisely what it means for S(n + 1) to be true.
    [Show full text]
  • Eisenstein and the Discriminant
    Extra handout: The discriminant, and Eisenstein’s criterion for shifted polynomials Steven Charlton, Algebra Tutorials 2015–2016 http://maths.dur.ac.uk/users/steven.charlton/algebra2_1516/ Recall the Eisenstein criterion from Lecture 8: n Theorem (Eisenstein criterion). Let f(x) = anx + ··· + a1x + a0 ∈ Z[x] be a polynomial. Suppose there is a prime p ∈ Z such that • p | ai, for 0 ≤ i ≤ n − 1, • p - an, and 2 • p - a0. Then f(x) is irreducible in Q[x]. p−1 p−2 You showed the cyclotomic polynomial Φp(X) = x + x + ··· + x + 1 is irreducible by applying Eisenstein to the shift Φp(x + 1). Tutorial 2, Question 1 asks you to find a shift of x2 + x + 2, for which Eisenstein works. How can we tell what shifts to use, and what primes might work? We can use the discriminant of a polynomial. 1 Discriminant n The discriminant of a polynomial f(x) = anx + ··· + a1x + a0 ∈ C[x] is a number ∆(f), which gives some information about the nature of the roots of f. It can be defined as n 2n−2 Y 2 ∆(f) := an (ri − rj) , 1≤i<j≤n where ri are the roots of f(x). Example. 1) Consider the quadratic polynomial f(x) = ax2 + bx + c. The roots of this polynomial are √ 1 2 r1, r2 = a −b ± b − 4ac , √ 1 2 so r1 − r2 = a b − 4ac. We get that the discriminant is √ 2 2·2−2 1 2 2 ∆(f) = a a b − 4ac = b − 4ac , as you probably well know. 1 2) The discriminant of a cubic polynomial f(x) = ax3 + bx2 + cx + d is given by ∆(f) = b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd .
    [Show full text]