Examples of Proofs by Induction

Total Page:16

File Type:pdf, Size:1020Kb

Examples of Proofs by Induction EXAMPLES OF PROOFS BY INDUCTION KEITH CONRAD 1. Introduction Mathematical induction is a method that allows us to prove infinitely many similar assertions in a systematic way, by organizing the results in a definite order and showing • the first assertion is correct (\base case") • whenever an assertion in the list is correct (\inductive hypothesis"), prove the next assertion in the list is correct (\inductive step"). This tells us every assertion in the list is correct, which is analogous to falling dominos. If dominos are close enough and each domino falling makes the next domino fall, then after the first domino falls all the dominos will fall. The most basic results that are proved by induction are summation identities, such as n(n + 1) (1.1) 1 + 2 + 3 + ··· + n = 2 for all positive integers n. Think about this identity as a separate statement for each n: S(1);S(2);S(3); and so on, where S(n) is the (as yet unproved) assertion in (1.1). Definitely S(1) is true, since the left side of (1.1) when n = 1 is 1 and the right side of (1.1) when n = 1 is 1(1 + 1)=2 = 1. Next, if S(n) is true for some n, then we can show S(n + 1) is true by writing 1 + 2 + ··· + n + (n + 1) in terms of 1 + 2 + ··· + n and using the truth of S(n): 1 + 2 + ··· + n + (n + 1) = (1 + 2 + ··· + n) + (n + 1) n(n + 1) = + (n + 1) since S(n) is assumed to be true 2 n(n + 1) + 2(n + 1) = 2 (n + 1)(n + 2) = : 2 The equality of the first and last expressions here is precisely what it means for S(n + 1) to be true. We have proved S(1) is true and proved that if S(n) is true then S(n + 1) is true, so all of S(1);S(2);S(3);::: are true, which proves (1.1) for all n. Another way to prove the inductive step (if S(n) is true then S(n + 1) is true) is to add n + 1 to both sides of (1.1): n(n + 1) n(n + 1) 1 + 2 + ··· + n = =) 1 + 2 + ··· + n + (n + 1) = + (n + 1) 2 2 n(n + 1) + 2(n + 1) =) 1 + 2 + ··· + n + (n + 1) = 2 (n + 1)(n + 2) =) 1 + 2 + ··· + n + (n + 1) = : 2 1 2 KEITH CONRAD Proofs of summation identities are not how proofs by induction usually look: we can't always convert a previously settled case into the next case. The inductive hypothesis (that is, the assumed truth of previously settled cases) should help us derive the next case by some method, and that method may or may not start with the inductive hypothesis itself. Becoming comfortable with induction proofs is mostly a matter of having lots of experi- ence. We will give proofs by induction from several parts of mathematics: linear algebra, polynomial algebra, and calculus. Pay attention to the point in the inductive step where the inductive hypothesis is used. 2. Linear Algebra Theorem 2.1. Suppose B = MAM −1, where A and B are n × n matrices and M is an invertible n × n matrix. Then Bk = MAkM −1 for all integers k ≥ 0. If A and B are invertible, this equation is true for all integers k. Proof. We argue by induction on k, the exponent. (Not on n, the size of the matrix!) The equation Bk = MAkM −1 is obvious for k = 0, when both sides equal the n × n identity matrix I. When k = 1, the equation Bk = MAkM −1 says MA1M −1 = B1, which is just the original condition MAM −1 = B. Let's now prove B2 = MA2M −1: B2 = B · B = (MAM −1) · (MAM −1) = MA(M −1M)AM −1 = MAIAM −1 = MAAM −1 = MA2M −1: Now assume Bk = MAkM −1 for some exponent k ≥ 0. Then Bk+1 = Bk · B = (MAkM −1) · (MAM −1) by inductive hypothesis = MAk(M −1M)AM −1 = MAkIAM −1 = MAk · AM −1 = MAk+1M −1: Thus, the desired result is true for exponent k + 1 if it is true for exponent k. Since the base case k = 1 is true, and if the k-th case is true then we showed the (k+1)-th case is true, the theorem is true for all integers k ≥ 0. If A and B are invertible, the result holds for negative integer exponents too: for k > 0 (MAkM −1) · (MA−kM −1) = MAk(M −1M)A−kM −1 = MAkIA−kM −1 = MAkA−kM −1 = MIM −1 = MM −1 = I; EXAMPLES OF PROOFS BY INDUCTION 3 and thus MA−kM −1 = inverse of MAkM −1 = inverse of Bk by the result for general k > 0 = B−k: Theorem 2.2. Let A be a square matrix. Eigenvectors for A having distinct eigenvalues are linearly independent: if v1;:::; vr are eigenvectors for A, with Avi = λivi for distinct scalars λ1; : : : ; λr, then v1;:::; vr are linearly independent. Proof. We induct on r, the number of eigenvectors. The result is true if r = 1: eigenvectors are not 0 and a single nonzero vector is linearly independent. Suppose r > 1 and the result has been verified for all sets of fewer than r eigenvectors of A (with distinct eigenvalues). Given r eigenvectors vi of A with distinct eigenvalues λi, suppose (2.1) c1v1 + c2v2 + ··· + crvr = 0 for some scalars ci. We want to prove each ci is 0. Applying A to both sides of (2.1), we get (2.2) c1λ1v1 + c2λ2v2 + ··· + crλrvr = 0: Now multiply through (2.1) by λ1: (2.3) c1λ1v1 + c2λ1v2 + ··· + crλ1vr = 0: Subtracting (2.3) from (2.2) eliminates the first term: (2.4) c2(λ2 − λ1)v2 + ··· + cr(λr − λ1)vr = 0: By the inductive hypothesis, the r − 1 eigenvectors v2;:::; vr are linearly independent. Therefore (2.4) tells us that ci(λi − λ1) = 0 for i = 2; 3; : : : ; r. Since the eigenvalues are distinct, λi − λ1 6= 0, so ci = 0 for i = 2; 3; : : : ; r. Feeding this into (2.1) gives us c1v1 = 0, so c1 = 0 as well since v1 6= 0. Thus every ci is 0. 3. Polynomial algebra Theorem 3.1. Let f(x) be a nonconstant polynomial with real coefficients and degree d. Then f(x) has at most d real roots. We can't replace \at most d real roots" with \exactly d real roots" since there are nonconstant real polynomials like x2 + 1 that have no real roots. Proof. We induct on the degree d of f(x). Each step in the induction is about infinitely many polynomials: the theorem in degree 1, then in degree 2, then in degree 3, and so on. The base case has d = 1. A polynomial of degree 1 with real coefficients is of the form f(x) = ax + b, where a and b are real and a 6= 0. This has exactly one root, namely −b=a, and thus at most one real root. That settles the theorem for d = 1. Now assume the theorem is true for all polynomials of degree d with real coefficients. We will prove the theorem is true for all polynomials of degree d + 1 with real coefficients. A typical polynomial of degree d + 1 with real coefficients is d+1 d (3.1) f(x) = cd+1x + cdx + ··· + c1x + c0; 4 KEITH CONRAD where cj 2 R and cd+1 6= 0. If f(x) has no real roots, then we're done, since 0 ≤ d + 1. If f(x) has a real root, say r, then d+1 d (3.2) 0 = cd+1r + cdr + ··· + c1r + c0: Subtracting (3.2) from (3.1), the constant terms c0 cancel and we get d+1 d+1 d d (3.3) f(x) = cd+1(x − r ) + cd(x − r ) + ··· + c1(x − r): Each difference xj − rj for j = 1; 2; : : : ; d + 1 has x − r as a factor: xj − rj = (x − r)(xj−1 + rxj−2 + ··· + rixj−1−i + ··· + rj−2x + rj−1): Write the more complicated second factor, a polynomial of degree j − 1, as Qj;r(x). So j j (3.4) x − r = (x − r)Qj;r(x); and substituting (3.4) into (3.3) gives d+1 X f(x) = cj(x − r)Qj;r(x) j=1 d+1 X = (x − r) cjQj;r(x) j=1 degree d z }| { (3.5) = (x − r)(cd+1 Qd+1;r(x) + ··· + c1Q1;r(x)): |{z} | {z } 6=0 lower degree Since cd+1Qd+1;r(x) is a polynomial of degree d, and each lower degree polynomial does not decrease the degree when added to cd+1Qd+1;r(x), the second factor in (3.5) has degree d. Each root of f(x) is either r or a root of the second factor in (3.5). Each Qj;r(x) has real coefficients and all cj are real, so the second factor in (3.5) has real coefficients. We can therefore apply the inductive hypothesis to the second factor and conclude that the second factor in (3.5) has at most d real roots, so f(x) has at most d + 1 real roots. As f(x) was an arbitrary polynomial of degree d+1 with real coefficients, we have shown that the d-th case of the theorem being true implies the (d + 1)-th case is true. By induction on the degree, the theorem is true for all nonconstant polynomials. Our next two theorems use the truth of some earlier case to prove the next case, but not necessarily the truth of the immediately previous case to prove the next case.
Recommended publications
  • F[X] Be an Irreducible Cubic X 3 + Ax 2 + Bx + Cw
    Math 404 Assignment 3. Due Friday, May 3, 2013. Cubic equations. Let f(x) F [x] be an irreducible cubic x3 + ax2 + bx + c with roots ∈ x1, x2, x3, and splitting field K/F . Since each element of the Galois group permutes the roots, G(K/F ) is a subgroup of S3, the group of permutations of the three roots, and [K : F ] = G(K/F ) divides (S3) = 6. Since [F (x1): F ] = 3, we see that [K : F ] equals ◦ ◦ 3 or 6, and G(K/F ) is either A3 or S3. If G(K/F ) = S3, then K has a unique subfield of dimension 2, namely, KA3 . We have seen that the determinant J of the Jacobian matrix of the partial derivatives of the system a = (x1 + x2 + x3) − b = x1x2 + x2x3 + x3x1 c = (x1x2x3) − equals (x1 x2)(x2 x3)(x1 x3). − − − Formula. J 2 = a2b2 4a3c 4b3 27c2 + 18abc F . − − − ∈ An odd permutation of the roots takes J =(x1 x2)(x2 x3)(x1 x3) to J and an even permutation of the roots takes J to J. − − − − 1. Let f(x) F [x] be an irreducible cubic polynomial. ∈ (a). Show that, if J is an element of K, then the Galois group G(L/K) is the alternating group A3. Solution. If J F , then every element of G(K/F ) fixes J, and G(K/F ) must be A3, ∈ (b). Show that, if J is not an element of F , then the splitting field K of f(x) F [x] has ∈ Galois group G(K/F ) isomorphic to S3.
    [Show full text]
  • January 10, 2010 CHAPTER SIX IRREDUCIBILITY and FACTORIZATION §1. BASIC DIVISIBILITY THEORY the Set of Polynomials Over a Field
    January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION §1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics. A polynomials is irreducible iff it cannot be factored as a product of polynomials of strictly lower degree. Otherwise, the polynomial is reducible. Every linear polynomial is irreducible, and, when F = C, these are the only ones. When F = R, then the only other irreducibles are quadratics with negative discriminants. However, when F = Q, there are irreducible polynomials of arbitrary degree. As for the integers, we have a division algorithm, which in this case takes the form that, if f(x) and g(x) are two polynomials, then there is a quotient q(x) and a remainder r(x) whose degree is less than that of g(x) for which f(x) = q(x)g(x) + r(x) . The greatest common divisor of two polynomials f(x) and g(x) is a polynomial of maximum degree that divides both f(x) and g(x). It is determined up to multiplication by a constant, and every common divisor divides the greatest common divisor. These correspond to similar results for the integers and can be established in the same way. One can determine a greatest common divisor by the Euclidean algorithm, and by going through the equations in the algorithm backward arrive at the result that there are polynomials u(x) and v(x) for which gcd (f(x), g(x)) = u(x)f(x) + v(x)g(x) .
    [Show full text]
  • Selecting Polynomials for the Function Field Sieve
    Selecting polynomials for the Function Field Sieve Razvan Barbulescu Université de Lorraine, CNRS, INRIA, France [email protected] Abstract The Function Field Sieve algorithm is dedicated to computing discrete logarithms in a finite field Fqn , where q is a small prime power. The scope of this article is to select good polynomials for this algorithm by defining and measuring the size property and the so-called root and cancellation properties. In particular we present an algorithm for rapidly testing a large set of polynomials. Our study also explains the behaviour of inseparable polynomials, in particular we give an easy way to see that the algorithm encompass the Coppersmith algorithm as a particular case. 1 Introduction The Function Field Sieve (FFS) algorithm is dedicated to computing discrete logarithms in a finite field Fqn , where q is a small prime power. Introduced by Adleman in [Adl94] and inspired by the Number Field Sieve (NFS), the algorithm collects pairs of polynomials (a; b) 2 Fq[t] such that the norms of a − bx in two function fields are both smooth (the sieving stage), i.e having only irreducible divisors of small degree. It then solves a sparse linear system (the linear algebra stage), whose solutions, called virtual logarithms, allow to compute the discrete algorithm of any element during a final stage (individual logarithm stage). The choice of the defining polynomials f and g for the two function fields can be seen as a preliminary stage of the algorithm. It takes a small amount of time but it can greatly influence the sieving stage by slightly changing the probabilities of smoothness.
    [Show full text]
  • Effective Noether Irreducibility Forms and Applications*
    Appears in Journal of Computer and System Sciences, 50/2 pp. 274{295 (1995). Effective Noether Irreducibility Forms and Applications* Erich Kaltofen Department of Computer Science, Rensselaer Polytechnic Institute Troy, New York 12180-3590; Inter-Net: [email protected] Abstract. Using recent absolute irreducibility testing algorithms, we derive new irreducibility forms. These are integer polynomials in variables which are the generic coefficients of a multivariate polynomial of a given degree. A (multivariate) polynomial over a specific field is said to be absolutely irreducible if it is irreducible over the algebraic closure of its coefficient field. A specific polynomial of a certain degree is absolutely irreducible, if and only if all the corresponding irreducibility forms vanish when evaluated at the coefficients of the specific polynomial. Our forms have much smaller degrees and coefficients than the forms derived originally by Emmy Noether. We can also apply our estimates to derive more effective versions of irreducibility theorems by Ostrowski and Deuring, and of the Hilbert irreducibility theorem. We also give an effective estimate on the diameter of the neighborhood of an absolutely irreducible polynomial with respect to the coefficient space in which absolute irreducibility is preserved. Furthermore, we can apply the effective estimates to derive several factorization results in parallel computational complexity theory: we show how to compute arbitrary high precision approximations of the complex factors of a multivariate integral polynomial, and how to count the number of absolutely irreducible factors of a multivariate polynomial with coefficients in a rational function field, both in the complexity class . The factorization results also extend to the case where the coefficient field is a function field.
    [Show full text]
  • Generation of Irreducible Polynomials from Trinomials Over GF(2). I
    INFORMATION AND CONTROL 30, 396-'407 (1976) Generation of Irreducible Polynomials from Trinomials over GF(2). I B. G. BAJOGA AND rvV. J. WALBESSER Department of Electrical Engineering, Ahmadu Bello University, Zaria, Nigeria Methods of generating irreducible polynomials from a given minimal polynomial are known. However, when dealing with polynomials of large degrees many of these methods are laborious, and computers have to be used. In this paper the problem of generating irreducible polynomials from trinomials is investigated. An efficient technique of computing the minimum polynomial of c~k over GF(2) for certain values of k, when the minimum polynomial of c~ is of the form x m 4- x + 1, is developed, and explicit formulae are given. INTRODUCTION The generation of irreducible polynomials over GF(2) has been a subject of a number of investigations mainly because these polynomials are important not only in the study of linear sequencies but also in BCH coding and decoding. Many results have been obtained (Albert, 1966; Daykin, 1960). Computational methods for generating minimal polynomials from a given irreducible polynomial have been developed. These have been described by Berlekamp (1968), Golomb (1967), and Lempel (1971), among others. Berlekamp observed that all these methods are helpful for hand calculation only if the minimal polynomial from which others are generated is of low degree. He further pointed out that it proves easiest to compute polynomials of large degree by computer using the matrix method. In addition these methods use algorithms. Seldom do they provide results of a general nature. However, utilizing the underlying ideas of the matrix method, some general results on generating irreducible polynomials from a large class of trinomials are derived in this paper.
    [Show full text]
  • Optimal Irreducible Polynomials for GF(2M) Arithmetic
    Optimal Irreducible Polynomials for GF(2m) arithmetic Michael Scott School of Computing Dublin City University GF(2m) polynomial representation A polynomial with coefficients either 0 or 1 (m is a small prime) Stored as an array of bits, of length m, packed into computer words Addition (and subtraction) – easy – XOR. No reduction required as bit length does not increase. GF(2m) arithmetic 1 Squaring, easy, simply insert 0 between coefficients. Example 110101 → 10100010001 Multiplication – artificially hard as instruction sets do not support “binary polynomial” multiplication, or “multiplication without carries” – which is actually simpler in hardware than integer multiplication! Really annoying! GF(2m) arithmetic 2 So we use Comb or Karatsuba methods… Squaring or multiplication results in a polynomial with 2m-1 coefficients. This must be reduced with respect to an irreducible polynomial, to yield a field element of m bits. For example for m=17, x17+x5+1 GF(2m) arithmetic 3 This trinomial has no factors (irreducible) Reduction can be performed using shifts and XORs x17+x5+1 = 100000000000100001 Example – reduce 10100101010101101010101 GF(2m) arithmetic 4 10100101010101101010101 100000000000100001 ⊕ 00100101010110000110101 ← 100101010110000110101 100000000000100001 ⊕ 000101010110100111101 ← 101010110100111101 100000000000100001 ⊕ 001010110100011100 ← 1010110100011100 → result! Reduction in software - 1 Consider the standard pentanomial x163+x7+x6+x3+1 Assume value to be reduced is represented as 11 32-bit words g[.] To
    [Show full text]
  • Tests and Constructions of Irreducible Polynomials Over Finite Fields
    Tests and Constructions of Irreducible Polynomials over Finite Fields 1 2 Shuhong Gao and Daniel Panario 1 Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-1907, USA E-mail: [email protected] 2 Department of Computer Science, UniversityofToronto, Toronto, Canada M5S-1A4 E-mail: [email protected] Abstract. In this pap er we fo cus on tests and constructions of irre- ducible p olynomials over nite elds. We revisit Rabin's 1980 algo- rithm providing a variant of it that improves Rabin's cost estimate by a log n factor. We give a precise analysis of the probability that a ran- dom p olynomial of degree n contains no irreducible factors of degree less than O log n. This probability is naturally related to Ben-Or's 1981 algorithm for testing irreducibility of p olynomials over nite elds. We also compute the probability of a p olynomial b eing irreducible when it has no irreducible factors of low degree. This probability is useful in the analysis of various algorithms for factoring p olynomials over nite elds. We present an exp erimental comparison of these irreducibility metho ds when testing random p olynomials. 1 Motivation and results For a prime power q and an integer n 2, let IF be a nite eld with q q n elements, and IF be its extension of degree n. Extensions of nite elds are q imp ortant in implementing cryptosystems and error correcting co des. One way of constructing extensions of nite elds is via an irreducible p olynomial over the ground eld with degree equal to the degree of the extension.
    [Show full text]
  • Section V.4. the Galois Group of a Polynomial (Supplement)
    V.4. The Galois Group of a Polynomial (Supplement) 1 Section V.4. The Galois Group of a Polynomial (Supplement) Note. In this supplement to the Section V.4 notes, we present the results from Corollary V.4.3 to Proposition V.4.11 and some examples which use these results. These results are rather specialized in that they will allow us to classify the Ga- lois group of a 2nd degree polynomial (Corollary V.4.3), a 3rd degree polynomial (Corollary V.4.7), and a 4th degree polynomial (Proposition V.4.11). In the event that we are low on time, we will only cover the main notes and skip this supple- ment. However, most of the exercises from this section require this supplemental material. Note. The results in this supplement deal primarily with polynomials all of whose roots are distinct in some splitting field (and so the irreducible factors of these polynomials are separable [by Definition V.3.10, only irreducible polynomials are separable]). By Theorem V.3.11, the splitting field F of such a polynomial f K[x] ∈ is Galois over K. In Exercise V.4.1 it is shown that if the Galois group of such polynomials in K[x] can be calculated, then it is possible to calculate the Galois group of an arbitrary polynomial in K[x]. Note. As shown in Theorem V.4.2, the Galois group G of f K[x] is iso- ∈ morphic to a subgroup of some symmetric group Sn (where G = AutKF for F = K(u1, u2,...,un) where the roots of f are u1, u2,...,un).
    [Show full text]
  • Eisenstein and the Discriminant
    Extra handout: The discriminant, and Eisenstein’s criterion for shifted polynomials Steven Charlton, Algebra Tutorials 2015–2016 http://maths.dur.ac.uk/users/steven.charlton/algebra2_1516/ Recall the Eisenstein criterion from Lecture 8: n Theorem (Eisenstein criterion). Let f(x) = anx + ··· + a1x + a0 ∈ Z[x] be a polynomial. Suppose there is a prime p ∈ Z such that • p | ai, for 0 ≤ i ≤ n − 1, • p - an, and 2 • p - a0. Then f(x) is irreducible in Q[x]. p−1 p−2 You showed the cyclotomic polynomial Φp(X) = x + x + ··· + x + 1 is irreducible by applying Eisenstein to the shift Φp(x + 1). Tutorial 2, Question 1 asks you to find a shift of x2 + x + 2, for which Eisenstein works. How can we tell what shifts to use, and what primes might work? We can use the discriminant of a polynomial. 1 Discriminant n The discriminant of a polynomial f(x) = anx + ··· + a1x + a0 ∈ C[x] is a number ∆(f), which gives some information about the nature of the roots of f. It can be defined as n 2n−2 Y 2 ∆(f) := an (ri − rj) , 1≤i<j≤n where ri are the roots of f(x). Example. 1) Consider the quadratic polynomial f(x) = ax2 + bx + c. The roots of this polynomial are √ 1 2 r1, r2 = a −b ± b − 4ac , √ 1 2 so r1 − r2 = a b − 4ac. We get that the discriminant is √ 2 2·2−2 1 2 2 ∆(f) = a a b − 4ac = b − 4ac , as you probably well know. 1 2) The discriminant of a cubic polynomial f(x) = ax3 + bx2 + cx + d is given by ∆(f) = b2c2 − 4ac3 − 4b3d − 27a2d2 + 18abcd .
    [Show full text]
  • Constructing Irreducible Polynomials Over Finite Fields
    MATHEMATICS OF COMPUTATION Volume 81, Number 279, July 2012, Pages 1663–1668 S 0025-5718(2011)02567-6 Article electronically published on November 15, 2011 CONSTRUCTING IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS SAN LING, ENVER OZDEMIR, AND CHAOPING XING Abstract. We describe a new method for constructing irreducible polyno- mials modulo a prime number p. The method mainly relies on Chebotarev’s density theorem. Introduction Finite fields are the main tools in areas of research such as coding theory and cryptography. In order to do operations in an extension field of degree n over a given base field, one first needs to construct an irreducible polynomial of degree n over the base field. That task is not tedious for fields of small characteristic. In fact, for such fields, it is common to use the Conway polynomials which provide standard notation for extension fields. However, for finite fields with large characteristic, it is time consuming to find Conway polynomials even for small degrees [8]. Hence finding irreducible polynomials in finite fields with large characteristic is still an important task. There are some algorithms presented for this problem ([1], [11], [12]). For example, one of the efficient methods described in [12] constructs an irreducible polynomial through the factorization of some special polynomials over finite fields. However, the method that is mostly used in practice for fields of larger characteristic is the trial-and-error method. Since the density of irreducible polynomials of degree n modulo a prime number p is around 1/n,themethodis efficient especially for small degrees. The method that we present here is also similar to the trial-and-error method.
    [Show full text]
  • Galois Groups of Cubics and Quartics in All Characteristics
    GALOIS GROUPS OF CUBICS AND QUARTICS IN ALL CHARACTERISTICS KEITH CONRAD 1. Introduction Treatments of Galois groups of cubic and quartic polynomials usually avoid fields of characteristic 2. Here we will discuss these Galois groups and allow all characteristics. Of course, to have a Galois group of a polynomial we will assume our cubic and quartic polynomials are separable, and to avoid reductions to lower degree polynomials we will assume they are irreducible as well. So our setting is a general field K and a separable irreducible polynomial f(X) in K[X] of degree 3 or 4. We want to describe a method to compute the Galois group of the splitting field of f(X) over K, which we will denote Gf . For instance, if F is a field of characteristic 2 and u is transcendental over F , the polynomials X3 + uX + u and X4 + uX + u in F (u)[X] are separable, and they are irreducible by Eisenstein's criterion at u. What are their Galois groups over F (u)? We want to answer this kind of question. For perspective, we begin by recalling the classical results outside of characteristic 2, which rely on discriminants. Theorem 1.1. Let K not have characteristic 2 and f(X) be a separable1 irreducible cubic in K[X]. If disc f = 2 in K then the Galois group of f(X) over K is A3. If disc f 6= 2 in K then the Galois group of f(X) over K is S3. Theorem 1.2. Let K not have characteristic 2 and f(X) = X4 + aX3 + bX2 + cX + d 2 be irreducible in K[X].
    [Show full text]
  • Irreducible Trinomials Over Finite Fields
    MATHEMATICS OF COMPUTATION Volume 72, Number 244, Pages 1987{2000 S 0025-5718(03)01515-1 Article electronically published on February 3, 2003 IRREDUCIBLE TRINOMIALS OVER FINITE FIELDS JOACHIM VON ZUR GATHEN Abstract. A necessary condition for irreducibility of a trinomial over a finite field, based on classical results of Stickelberger and Swan, is established. It is applied in the special case F3, and some experimental discoveries are reported. 1. Introduction Trinomials are polynomials with three nonzero terms. Their computational ad- vantages have frequently been pointed out. Ben-Or (1981) [2] writes, \In order to make residue computation mod g(x) easier one looks for special types of irre- n ducible polynomials such as g(x)=x + x+ a, a 2 Zp." In cryptography, Canteaut and Filiol (2001) [4] attack some stream ciphers via the factorization of trinomials, and trinomials have been used as a highly efficient data structure for represent- ing nonprime finite fields in exponentiation and discrete logarithm computations (Schroeppel et al. (1995) [30], von zur Gathen & N¨ocker (2002) [17]). Schroeppel et al. (1995) [30] write, \The irreducible trinomial T (u) has a structure that makes it a pleasant choice for representing the field", and De Win et al. (1996) [11], \The reduction operation can be speeded up even further if an irreducible trinomial is used." Menezes et al. (1997) [25], x5.4.2, say that \choosing an irreducible trino- mial[...] canleadtoa fasterimplementationofthefieldarithmetic." Theynow form part of the IEEE Standard Specifications for Public-Key Cryptography: \The reduction of polynomials modulo p(t) is particularly efficient if p(t)hasasmall numberofterms.
    [Show full text]