On the Construction of Irreducible Self-Reciprocal Polynomials Over Finite Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1606.03159V1 [Math.CV] 10 Jun 2016 Higher Degree Forms
Contemporary Mathematics Self-inversive polynomials, curves, and codes D. Joyner and T. Shaska Abstract. We study connections between self-inversive and self-reciprocal polynomials, reduction theory of binary forms, minimal models of curves, and formally self-dual codes. We prove that if X is a superelliptic curve defined over C and its reduced automorphism group is nontrivial or not isomorphic to a cyclic group, then we can write its equation as yn = f(x) or yn = xf(x), where f(x) is a self-inversive or self-reciprocal polynomial. Moreover, we state a conjecture on the coefficients of the zeta polynomial of extremal formally self-dual codes. 1. Introduction Self-inversive and self-reciprocal polynomials have been studied extensively in the last few decades due to their connections to complex functions and number the- ory. In this paper we explore the connections between such polynomials to algebraic curves, reduction theory of binary forms, and coding theory. While connections to coding theory have been explored by many authors before we are not aware of any previous work that explores the connections of self-inversive and self-reciprocal polynomials to superelliptic curves and reduction theory. In section2, we give a geometric introduction to inversive and reciprocal poly- nomials of a given polynomial. We motivate such definitions via the transformations of the complex plane which is the original motivation to study such polynomials. It is unclear who coined the names inversive, reciprocal, palindromic, and antipalin- 1 dromic, but it is obvious that inversive come from the inversion z 7! z¯ and reciprocal 1 from the reciprocal map z 7! z of the complex plane. -
F[X] Be an Irreducible Cubic X 3 + Ax 2 + Bx + Cw
Math 404 Assignment 3. Due Friday, May 3, 2013. Cubic equations. Let f(x) F [x] be an irreducible cubic x3 + ax2 + bx + c with roots ∈ x1, x2, x3, and splitting field K/F . Since each element of the Galois group permutes the roots, G(K/F ) is a subgroup of S3, the group of permutations of the three roots, and [K : F ] = G(K/F ) divides (S3) = 6. Since [F (x1): F ] = 3, we see that [K : F ] equals ◦ ◦ 3 or 6, and G(K/F ) is either A3 or S3. If G(K/F ) = S3, then K has a unique subfield of dimension 2, namely, KA3 . We have seen that the determinant J of the Jacobian matrix of the partial derivatives of the system a = (x1 + x2 + x3) − b = x1x2 + x2x3 + x3x1 c = (x1x2x3) − equals (x1 x2)(x2 x3)(x1 x3). − − − Formula. J 2 = a2b2 4a3c 4b3 27c2 + 18abc F . − − − ∈ An odd permutation of the roots takes J =(x1 x2)(x2 x3)(x1 x3) to J and an even permutation of the roots takes J to J. − − − − 1. Let f(x) F [x] be an irreducible cubic polynomial. ∈ (a). Show that, if J is an element of K, then the Galois group G(L/K) is the alternating group A3. Solution. If J F , then every element of G(K/F ) fixes J, and G(K/F ) must be A3, ∈ (b). Show that, if J is not an element of F , then the splitting field K of f(x) F [x] has ∈ Galois group G(K/F ) isomorphic to S3. -
January 10, 2010 CHAPTER SIX IRREDUCIBILITY and FACTORIZATION §1. BASIC DIVISIBILITY THEORY the Set of Polynomials Over a Field
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION §1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics. A polynomials is irreducible iff it cannot be factored as a product of polynomials of strictly lower degree. Otherwise, the polynomial is reducible. Every linear polynomial is irreducible, and, when F = C, these are the only ones. When F = R, then the only other irreducibles are quadratics with negative discriminants. However, when F = Q, there are irreducible polynomials of arbitrary degree. As for the integers, we have a division algorithm, which in this case takes the form that, if f(x) and g(x) are two polynomials, then there is a quotient q(x) and a remainder r(x) whose degree is less than that of g(x) for which f(x) = q(x)g(x) + r(x) . The greatest common divisor of two polynomials f(x) and g(x) is a polynomial of maximum degree that divides both f(x) and g(x). It is determined up to multiplication by a constant, and every common divisor divides the greatest common divisor. These correspond to similar results for the integers and can be established in the same way. One can determine a greatest common divisor by the Euclidean algorithm, and by going through the equations in the algorithm backward arrive at the result that there are polynomials u(x) and v(x) for which gcd (f(x), g(x)) = u(x)f(x) + v(x)g(x) . -
Selecting Polynomials for the Function Field Sieve
Selecting polynomials for the Function Field Sieve Razvan Barbulescu Université de Lorraine, CNRS, INRIA, France [email protected] Abstract The Function Field Sieve algorithm is dedicated to computing discrete logarithms in a finite field Fqn , where q is a small prime power. The scope of this article is to select good polynomials for this algorithm by defining and measuring the size property and the so-called root and cancellation properties. In particular we present an algorithm for rapidly testing a large set of polynomials. Our study also explains the behaviour of inseparable polynomials, in particular we give an easy way to see that the algorithm encompass the Coppersmith algorithm as a particular case. 1 Introduction The Function Field Sieve (FFS) algorithm is dedicated to computing discrete logarithms in a finite field Fqn , where q is a small prime power. Introduced by Adleman in [Adl94] and inspired by the Number Field Sieve (NFS), the algorithm collects pairs of polynomials (a; b) 2 Fq[t] such that the norms of a − bx in two function fields are both smooth (the sieving stage), i.e having only irreducible divisors of small degree. It then solves a sparse linear system (the linear algebra stage), whose solutions, called virtual logarithms, allow to compute the discrete algorithm of any element during a final stage (individual logarithm stage). The choice of the defining polynomials f and g for the two function fields can be seen as a preliminary stage of the algorithm. It takes a small amount of time but it can greatly influence the sieving stage by slightly changing the probabilities of smoothness. -
Improved Lower Bound for the Number of Unimodular Zeros of Self-Reciprocal Polynomials with Coefficients in a Finite
Improved lower bound for the number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set Tam´as Erd´elyi Department of Mathematics Texas A&M University College Station, Texas 77843 May 26, 2019 Abstract Let n < n < < n be non-negative integers. In a private 1 2 · · · N communication Brian Conrey asked how fast the number of real zeros of the trigonometric polynomials T (θ)= N cos(n θ) tends to N j=1 j ∞ as a function of N. Conrey’s question in general does not appear to P be easy. Let (S) be the set of all algebraic polynomials of degree Pn at most n with each of their coefficients in S. For a finite set S C ⊂ let M = M(S) := max z : z S . It has been shown recently {| | ∈ } that if S R is a finite set and (P ) is a sequence of self-reciprocal ⊂ n polynomials P (S) with P (1) tending to , then the number n ∈ Pn | n | ∞ of zeros of P on the unit circle also tends to . In this paper we n ∞ show that if S Z is a finite set, then every self-reciprocal polynomial ⊂ P (S) has at least ∈ Pn c(log log log P (1) )1−ε 1 | | − zeros on the unit circle of C with a constant c > 0 depending only on ε > 0 and M = M(S). Our new result improves the exponent 1/2 ε in a recent result by Sahasrabudhe to 1 ε. Sahasrabudhe’s − − new idea [66] is combined with the approach used in [34] offering an essentially simplified way to achieve our improvement. -
Effective Noether Irreducibility Forms and Applications*
Appears in Journal of Computer and System Sciences, 50/2 pp. 274{295 (1995). Effective Noether Irreducibility Forms and Applications* Erich Kaltofen Department of Computer Science, Rensselaer Polytechnic Institute Troy, New York 12180-3590; Inter-Net: [email protected] Abstract. Using recent absolute irreducibility testing algorithms, we derive new irreducibility forms. These are integer polynomials in variables which are the generic coefficients of a multivariate polynomial of a given degree. A (multivariate) polynomial over a specific field is said to be absolutely irreducible if it is irreducible over the algebraic closure of its coefficient field. A specific polynomial of a certain degree is absolutely irreducible, if and only if all the corresponding irreducibility forms vanish when evaluated at the coefficients of the specific polynomial. Our forms have much smaller degrees and coefficients than the forms derived originally by Emmy Noether. We can also apply our estimates to derive more effective versions of irreducibility theorems by Ostrowski and Deuring, and of the Hilbert irreducibility theorem. We also give an effective estimate on the diameter of the neighborhood of an absolutely irreducible polynomial with respect to the coefficient space in which absolute irreducibility is preserved. Furthermore, we can apply the effective estimates to derive several factorization results in parallel computational complexity theory: we show how to compute arbitrary high precision approximations of the complex factors of a multivariate integral polynomial, and how to count the number of absolutely irreducible factors of a multivariate polynomial with coefficients in a rational function field, both in the complexity class . The factorization results also extend to the case where the coefficient field is a function field. -
Generation of Irreducible Polynomials from Trinomials Over GF(2). I
INFORMATION AND CONTROL 30, 396-'407 (1976) Generation of Irreducible Polynomials from Trinomials over GF(2). I B. G. BAJOGA AND rvV. J. WALBESSER Department of Electrical Engineering, Ahmadu Bello University, Zaria, Nigeria Methods of generating irreducible polynomials from a given minimal polynomial are known. However, when dealing with polynomials of large degrees many of these methods are laborious, and computers have to be used. In this paper the problem of generating irreducible polynomials from trinomials is investigated. An efficient technique of computing the minimum polynomial of c~k over GF(2) for certain values of k, when the minimum polynomial of c~ is of the form x m 4- x + 1, is developed, and explicit formulae are given. INTRODUCTION The generation of irreducible polynomials over GF(2) has been a subject of a number of investigations mainly because these polynomials are important not only in the study of linear sequencies but also in BCH coding and decoding. Many results have been obtained (Albert, 1966; Daykin, 1960). Computational methods for generating minimal polynomials from a given irreducible polynomial have been developed. These have been described by Berlekamp (1968), Golomb (1967), and Lempel (1971), among others. Berlekamp observed that all these methods are helpful for hand calculation only if the minimal polynomial from which others are generated is of low degree. He further pointed out that it proves easiest to compute polynomials of large degree by computer using the matrix method. In addition these methods use algorithms. Seldom do they provide results of a general nature. However, utilizing the underlying ideas of the matrix method, some general results on generating irreducible polynomials from a large class of trinomials are derived in this paper. -
Optimal Irreducible Polynomials for GF(2M) Arithmetic
Optimal Irreducible Polynomials for GF(2m) arithmetic Michael Scott School of Computing Dublin City University GF(2m) polynomial representation A polynomial with coefficients either 0 or 1 (m is a small prime) Stored as an array of bits, of length m, packed into computer words Addition (and subtraction) – easy – XOR. No reduction required as bit length does not increase. GF(2m) arithmetic 1 Squaring, easy, simply insert 0 between coefficients. Example 110101 → 10100010001 Multiplication – artificially hard as instruction sets do not support “binary polynomial” multiplication, or “multiplication without carries” – which is actually simpler in hardware than integer multiplication! Really annoying! GF(2m) arithmetic 2 So we use Comb or Karatsuba methods… Squaring or multiplication results in a polynomial with 2m-1 coefficients. This must be reduced with respect to an irreducible polynomial, to yield a field element of m bits. For example for m=17, x17+x5+1 GF(2m) arithmetic 3 This trinomial has no factors (irreducible) Reduction can be performed using shifts and XORs x17+x5+1 = 100000000000100001 Example – reduce 10100101010101101010101 GF(2m) arithmetic 4 10100101010101101010101 100000000000100001 ⊕ 00100101010110000110101 ← 100101010110000110101 100000000000100001 ⊕ 000101010110100111101 ← 101010110100111101 100000000000100001 ⊕ 001010110100011100 ← 1010110100011100 → result! Reduction in software - 1 Consider the standard pentanomial x163+x7+x6+x3+1 Assume value to be reduced is represented as 11 32-bit words g[.] To -
Q,Q2, ' " If Ave the Conjugates of 0 , Then ©I,***,© Are All Root8 of Unity. N Pjz) = = Zn + Bn 1 Zn~L
ALGEBRAIC INTEGERS ON THE UNIT CIRCLE* J. Hunter (received 15 April, 1981) 1. Introduction An algebraic integer 0 is a complex number which is a root of an irreducible (over Q ) monic polynomial P(s)=an + a^ ^ zn * + • • • + ao , where the a^ are integers. If 0j = Q,Q2 , ' " ,6^ are the roots of P(a) , then ©l.*’**© are called the conjugates of 0 . The first important result connecting algebraic integers and the unit circle was due to Kronecker [3]: Theorem 1 (Kronecker, 1857). If |0^| 5 1 (1 < i < n) , where ©1 * ©»©2 »’**»©„ave the conjugates of 0 , then ©i,***,© are all root8 of unity. We include a proof of Theorem 1 partly for completeness and partly because it contains ideas (especially those connected with the introduc tion of polynomials related to P(a) , the monic irreducible polynomial for 0) that are used to prove other results. Let n P J z ) = (m = 1,2,3,...) = zn + bn_ 1 zn ~ l* ••• b+ 0 , say. * This survey article comprises the text of a seminar presented at the University of Auckland on 15 April 1981. Math. Chronicle 11(1982) Part 2 37-47. 37 Then Pj (a) = P(a) . Also, i£ = 0* + ••• + 0*(k i JV) , then £ 77j ( k = 1,2,3, •••) , by Newton's formulae involving symmetric functions of • Since the b^ are symmetric polynomials in 07.,**»©m with integer coefficients, it follows that the b. 1 tt are rational integers. Now |bn = |the sum of the ^.J products of taken i at a time| < since |0™| <1 (1 < r < n) . -
Self-Reciprocal Polynomials Over Finite Fields 1 the Rôle of The
Self-reciprocal Polynomials Over Finite Fields by Helmut Meyn1 and Werner G¨otz1 Abstract. The reciprocal f ∗(x) of a polynomial f(x) of degree n is defined by f ∗(x) = xnf(1/x). A polynomial is called self-reciprocal if it coincides with its reciprocal. The aim of this paper is threefold: first we want to call attention to the fact that the product of all self-reciprocal irreducible monic (srim) polynomials of a fixed degree has structural properties which are very similar to those of the product of all irreducible monic polynomials of a fixed degree over a finite field Fq. In particular, we find the number of all srim-polynomials of fixed degree by a simple M¨obius-inversion. The second and central point is a short proof of a criterion for the irreducibility of self-reciprocal polynomials over F2, as given by Varshamov and Garakov in [10]. Any polynomial f of degree n may be transformed into the self-reciprocal polynomial f Q of degree 2n given by f Q(x) := xnf(x + x−1). The criterion states that the self-reciprocal polynomial f Q is irreducible if and only if the irreducible polynomial f satisfies f ′(0) = 1. Finally we present some results on the distribution of the traces of elements in a finite field. These results were obtained during an earlier attempt to prove the criterion cited above and are of some independent interest. For further results on self-reciprocal polynomials see the notes of chapter 3, p. 132 in Lidl/Niederreiter [5]. n 1 The rˆole of the polynomial xq +1 − 1 Some remarks on self-reciprocal polynomials are in order before we can state the main theorem of this section. -
Tests and Constructions of Irreducible Polynomials Over Finite Fields
Tests and Constructions of Irreducible Polynomials over Finite Fields 1 2 Shuhong Gao and Daniel Panario 1 Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634-1907, USA E-mail: [email protected] 2 Department of Computer Science, UniversityofToronto, Toronto, Canada M5S-1A4 E-mail: [email protected] Abstract. In this pap er we fo cus on tests and constructions of irre- ducible p olynomials over nite elds. We revisit Rabin's 1980 algo- rithm providing a variant of it that improves Rabin's cost estimate by a log n factor. We give a precise analysis of the probability that a ran- dom p olynomial of degree n contains no irreducible factors of degree less than O log n. This probability is naturally related to Ben-Or's 1981 algorithm for testing irreducibility of p olynomials over nite elds. We also compute the probability of a p olynomial b eing irreducible when it has no irreducible factors of low degree. This probability is useful in the analysis of various algorithms for factoring p olynomials over nite elds. We present an exp erimental comparison of these irreducibility metho ds when testing random p olynomials. 1 Motivation and results For a prime power q and an integer n 2, let IF be a nite eld with q q n elements, and IF be its extension of degree n. Extensions of nite elds are q imp ortant in implementing cryptosystems and error correcting co des. One way of constructing extensions of nite elds is via an irreducible p olynomial over the ground eld with degree equal to the degree of the extension. -
Cyclic Resultants of Reciprocal Polynomials - Fried’S Theorem
CYCLIC RESULTANTS OF RECIPROCAL POLYNOMIALS - FRIED'S THEOREM STEFAN FRIEDL Abstract. This note for the most part retells the contents of [Fr88]. 1. Introduction 1.1. Knot theory. By a knot we will always mean a simple closed curve in S3, and we are interested in knots up to isotopy. Interest in knots picked up in the late 19th century, when the physicist Tait was trying to find a catalog of all knots with a small number of crossings. Tait produced a correct list of all knots with up to 9 crossings. One can show using simple combinatorics, that his list is complete, but he had no formal proof, that the list did not have any redundancies, i.e. he could not show that any two knots in the list are in fact non-isotopic. 3 3 To a knot K ⊂ S we can associate the knot exterior XK := S n νK, where νK denotes an open tubular neighborhood around K. The idea now is to apply methods from algebraic topology to the knot exteriors. A straight forward calculation shows that H0(XK ; Z) = Z, H1(XK ; Z) = Z and Hi(XK ; Z) = 0 for i ≥ 2. It thus looks like homology groups are useless for distinguishing knots. Nonetheless, there's a little opening one can exploit. Namely, the fact that for any knot K we have H1(XK ; Z) = Z means that given any knot K and any n 2 N one can talk of the n-fold cyclic cover XK;n corresponding to π1(XK ) ! H1(XK ; Z) = Z ! Z=nZ: In particular, given any n 2 N the group H1(XK;n; Z) is an invariant of the knot K.