Evolutionary Dynamics of Emblematic Araucaria Species

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Dynamics of Emblematic Araucaria Species Edinburgh Research Explorer Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia Citation for published version: Gaudeul, M, Gardner, MF, Thomas, P, Ennos, RA & Hollingsworth, PM 2014, 'Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: Nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species', BMC Evolutionary Biology, vol. 14, no. 1, 171. https://doi.org/10.1186/s12862-014-0171-6 Digital Object Identifier (DOI): 10.1186/s12862-014-0171-6 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: BMC Evolutionary Biology Publisher Rights Statement: © 2014 Gaudeul et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Gaudeul et al. BMC Evolutionary Biology 2014, 14:171 http://www.biomedcentral.com/1471-2148/14/171 RESEARCH ARTICLE Open Access Evolutionary dynamics of emblematic Araucaria species (Araucariaceae) in New Caledonia: nuclear and chloroplast markers suggest recent diversification, introgression, and a tight link between genetics and geography within species Myriam Gaudeul1*, Martin F Gardner2, Philip Thomas2, Richard A Ennos3 and Pete M Hollingsworth2 Abstract Background: New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia. Results: The species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations. Conclusions: The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives. Keywords: Admixture, Closely related species, Conifers, Diversification, Hotspot, Hybridization, Introgression, Phylogeography, Population genetics, Systematics * Correspondence: [email protected] 1UMR CNRS-MNHN-UPMC-EPHE 7205 ‘Institut de Systématique, Evolution, Biodiversité’, Muséum National d’Histoire Naturelle, 16 rue Buffon, CP 39, F-75005 Paris, France Full list of author information is available at the end of the article © 2014 Gaudeul et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Gaudeul et al. BMC Evolutionary Biology 2014, 14:171 Page 2 of 21 http://www.biomedcentral.com/1471-2148/14/171 Background genetics also provide information on the recent history Over the last decades, both theoretical and empirical and could be useful to detect the possible impacts of the investigations have underlined the continuum of evo- Quaternary climatic oscillations experienced by the New lutionary processes acting on populations and species Caledonian flora: in the southeast of the island, palyno- (e.g. [1-5]). Therefore, an increasing number of studies logical records suggested that vegetation alternated be- adopt an integrative approach and combine concepts, mo- tween rainforest and maquis from 120,000 to 50,000 yr lecular techniques and statistical tools from both areas to ago, and a compelling Araucaria decline was detected shed light on the evolutionary dynamics of closely related around 45,000 yr ago [31]. However, the location of poten- species. In such groups, species may undergo a process of tial refugia remains highly uncertain (but see [30,32]). divergence (with population differentiation as the first step) Populations that originate from the same refugia are ex- and reproductive isolation and, in different places or at dif- pected to form a genetically more or less homogeneous ferent times, may exchange genes through hybridization group compared to populations that colonized from dis- and introgression if reproductive isolation is not complete. tinct refugia [33]. Nevertheless, given the complex top- The speciation process lies at the heart of this interface be- ology of the island, with many physical barriers, genetic tween population genetics and phylogenetics, with many drift could have a strong influence on the genetic struc- questions that remain unanswered in most cases e.g. when ture relative to current gene flow, and cause significant and why did populations initially diverge? What were their differentiation among populations. relative geographic distributions (sympatry vs. allopatry)? Here, we studied species of the conifer genus Araucaria How did reproductive isolation emerge? Such questions Juss. (Araucariaceae) and were both interested in among- are crucial challenges faced by biologists to understand the species relationships and the distribution of within-species evolution of species, and to better preserve the mecha- genetic diversity across New Caledonia. The genus Arau- nisms generating diversity in the face of today’s major en- caria comprises a total of 19 species worldwide, 13 of vironmental threats. which are endemic to the archipelago. They usually occur New Caledonia is a biodiversity hotspot [6] with more as large populations, in a variety of ecological habitats than 3000 native angiosperm and 43 conifer species in (most often humid forest or maquis; [34]). Importantly, all an area of ca. 19000 km2. It is characterized by high en- species are confined to ultramafic soils –characterized by demism (77% for angiosperms and 100% for conifers; [7]). low fertility (low N, P, K), high concentrations of heavy Although it is of continental Gondwanan origin and geo- metals (e.g., Co, Cr, Ni) and low water-holding capacity graphically isolated (1500 km east of Australia), recent [35]– except A. montana Brongn. & Gris, which occurs studies have shown that the modern New Caledonian bio- on both ultramafic and non-ultramafic soils and A. colum- diversity largely originates from dispersal events and in naris Hook. and A. schmidii de Laub., which only occur on situ species radiations [8,9]. This is congruent with the calcareous and acidic soils, respectively. Araucaria trees long submersion of the island (ca. 65–37 Ma; [10,11]), and are long-lived, monoecious trees whose breeding system is radiations were probably favoured by environmental largely unknown. Pollen dispersal is wind-mediated and gradients –notably in terms of soil substrate, altitude and probably larger than seed dispersal, which mainly occurs climate– which have created a variety of habitats within a by gravity. However, secondary seed dispersal by animals small geographic area. Also, in contrast to what was long and strong winds is likely since
Recommended publications
  • PRÓ ARAUCÁRIA ONLINE Araucaria Beetles Worldwide
    PRÓ ARAUCÁRIA ONLINE www.pro-araucaria-online.com ISSN 1619-635X Araucaria beetles worldwide: evolution and host adaptations of a multi-genus phytophagous guild of disjunct Gondwana- derived biogeographic occurrence Roland Mecke1, Christian Mille2, Wolf Engels1 1 Zoological Institute, University of Tübingen, Germany 2 Institut Agronomique Néo-Calédonien, Station de Recherches Fruitières de Pocquereux, La Foa Nouvelle-Calédonie Corresponding author: Roland Mecke E-mail: [email protected] Pró Araucária Online 1: 1-18 (2005) Received May 9, 2005 Accepted July 5, 2005 Published September 6, 2005 Abstract Araucaria trees occur widely disjunct in the biogeographic regions Oceania and Neotropis. Of the associated entomofauna phytophagous beetles (Coleoptera) of various taxonomic groups adapted their life history to this ancient host tree. This occurred either already before the late Gondwanian interruption of the previously joint Araucaria distribution or only later in the already geographically separated populations. A bibliographic survey of the eastern and western coleopterans recorded on Araucaria trees resulted in well over 200 species belonging to 17 families. These studies include records of beetles living on 12 of the 19 extant Araucaria species. Their occurrence and adaptations to the host trees are discussed under aspects of evolution and co- speciation. Keywords: Araucaria, Coleoptera, synopsis, evolution, co-speciation, South America, Oceania Pró Araucária Online 1: 1-18 (2005) www.pro-araucaria-online.com R Mecke, C Mille, W Engels Zusammenfassung Araukarienbäume kommen in den disjunkten biogeographischen Regionen Ozeanien und Neotropis vor. Von der mit diesen Bäumen vergesellschafteten Entomofauna haben sich phytophage Käfer (Coleoptera) unterschiedlicher taxonomischer Gruppen in ihrer Lebensweise an diese altertümlichen Bäume angepasst.
    [Show full text]
  • Research Report 1
    RESEARCH REPORT 1. Name: Sébastien ABRY (ID No.: SP05201 ) 2. Current affiliation: Ecole Normale Supérieure de Lyon 3. Research fields and specialties: Humanities Social Sciences Mathematical and Physical Sciences X Chemistry Engineering Sciences Biological Sciences Agricultural Sciences Medical, Dental and Pharmaceutical Sciences Interdisciplinary and Frontier Sciences 4. Host institution: Graduate School of Environment and Information Sciences at Yokohama National University 5. Host researcher: Pr. Hideaki YOSHITAKE 6. Description of your current research In biological systems, the oxidation of many substrates is selectively carried out by enzyme, whose hydrophobic active center contains generally at least one metal atom. The objective of my thesis consists in the creation of "bio-inspired" heterogeneous catalysts for selective oxidation reactions. Their design is based on copper enzymes such as Tyrosinase taken as bio-models. The molecular confinement and the hydrophobic nature of the metal site environment are created i) using inorganic materials with narrow pore size distribution in the nanometer scale range, ii) grafting hydrophobic functions and also chelating functions to bind copper inside the pores. MCM-41 type mesoporous silicas were selected for several reasons. This material possesses a large specific surface area (1000 m2.g-1) allowing to reach high site concentration and is handled easily in various spectroscopic experiments, including solid state NMR. The hexagonal array of pores allows a fine monitoring of the support integrity during all the synthesis steps. The narrow pore size distribution tunable in the 2-4 nm range will define a homogeneous confinement effect. Moreover, the silanol groups of the surface of the pores allow the grafting of different functions: hydrophobic or polar and/or chelating.
    [Show full text]
  • Systematics and Evolution of New Caledonian Araucaria
    Systematics and Evolution of New Caledonian Araucaria A thesis submitted to the University of Edinburgh for the degree of Doctor of Philosophy Mai-lan Kranitz PhD thesis The University of Edinburgh September 2005 ABSTRACT New Caledonia is a global biodiversity hotspot and contains more than 2300 endemic species including 7% of the world’s conifers. No other region in the world with such a small area possesses such a rich and distinctive conifer flora, and 13 of the world’s 19 Araucaria species are endemic to New Caledonia. This thesis has investigated the evolution and systematics of this group. A molecular phylogenetic study based on sequence data from two chloroplast regions resolved all 13 New Caledonian species as a monophyletic group, sister to the Norfolk Island Pine ( A. heterophylla ). The relationships between the New Caledonian species was not fully resolved as little sequence variability was detected, however, three main groups were defined. The species with bigger leaves occupied a basal polytomy, whereas the vast majority of species with smaller leaves were grouped together in a clade. Within this ‘small leaved’ clade, the three New Caledonian species with a coastal distribution formed another monophyletic group. The timing of the radiation of all these species was tested via a molecular clock approach using different calibration tools (fossil data, geological events, substitution rates). The precise dating of the New Caledonian radiation remains uncertain because different calibration methods give different dates. However, it seems likely to have occurred between 10 and 43 mya . What can be said is that the limited sequence divergence between these species (which in other groups would be typical of <3 million years divergence), does not tally with the fossil record and geological events.
    [Show full text]
  • Cupressaceae Et Taxodiaceae
    AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm ""&"$9 %%"'$%4$"'&%4$",,%&!($"!! !& "' !%&!""% >:<? +% #$,%!&,#"'$6"&!&"!'$ & !,"%!% #$ ' ! # # ##$ $&'$$$% 4!($%&,&$%"'$ "! /% %%%&!&#$"%%'$4!($%&,,%4""! $!$ &'+$ $"%%'$4!($%&, "$$! $!$" * -&$"!,$!%4!($%&, )"!8 ) "! % $,$$% 4!($%&, "$$! % !! '&( -&$"!,$!%4!($%&, "$$! ,"%%"'$% >:<?4!($%&, "$$!4 #'%!%5'&&% >79:?4<;<7=!0'($5+%5 !)4$! "E+$*4#-* PMNQ%))%+()A (#(")(*+())+)))+"%(*%( "*"$+G+L>(4C%))%+()H&+) '+)(%$%$#E,%(+""+)$ "E+$*4&%+((4")(***3)A (#(,,#$*#)+-(*+()*3).#%$ ")*$$ +*,"">'+ #E%$* &(#) (4")( *(," *3)A ) $%)) &&($$$*"+($$'+D E> *$)0-&(#(#)$3( (**+ &%+( "+( %$$> "+( )%+*$> "+( &*$ * "+( 4)$*4())#$* &%+( " *($)#))%$%$$))$$)$)+($*")'+*($$4)A (#(4"#$**%+)")##()+ +(.'+%$*&*4%$$("+(-&(*) &%+(4,"+(*(,"A (0"&(* %$! 7)!>#)(&&%(*+()$)'+J0
    [Show full text]
  • Gene Duplications and Genomic Conflict Underlie Major Pulses of Phenotypic 2 Evolution in Gymnosperms 3 4 Gregory W
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.13.435279; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Gene duplications and genomic conflict underlie major pulses of phenotypic 2 evolution in gymnosperms 3 4 Gregory W. Stull1,2,†, Xiao-Jian Qu3,†, Caroline Parins-Fukuchi4, Ying-Ying Yang1, Jun-Bo 5 Yang2, Zhi-Yun Yang2, Yi Hu5, Hong Ma5, Pamela S. Soltis6, Douglas E. Soltis6,7, De-Zhu Li1,2,*, 6 Stephen A. Smith8,*, Ting-Shuang Yi1,2,*. 7 8 1Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 9 Kunming, Yunnan, China. 10 2CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of 11 Botany, Chinese Academy of Sciences, Kunming, China. 12 3Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, 13 Shandong Normal University, Jinan, Shandong, China. 14 4Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA. 15 5Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, 16 University Park, PA, USA. 17 6Florida Museum of Natural History, University of Florida, Gainesville, FL, USA. 18 7Department of Biology, University of Florida, Gainesville, FL, USA. 19 8Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 20 MI, USA. 21 †Co-first author. 22 *Correspondence to: [email protected]; [email protected]; [email protected].
    [Show full text]
  • New Caledonia
    New Caledonia A study-tour report for the Merlin Trust by Tom Christian Merlin 720 January 2018 TABLE OF CONTENTS Section Page Introduction 3 A Unique Island 4 Day 1 30th October 2017 - Ouen Toro & Grand Sud 5 Days 2 & 3 31st October & 1st November - Grand Sud 10 Day 4 2nd November - Return to Blue River 16 Day 5 3rd November - Mont Koghis 18 Day 6 4th November - Tree Fern Park 19 Days 7 & 8 5th & 6th November - Bourail & Mont Do 21 Day 9 7th November Around Noumea 27 Day 10 8th November Iles des Pins 29 Epilogue 30 Accounts 31 Explanatory note This report has been prepared in fulfilment of the criteria of a bursary offered by the Merlin Trust. Similar reports have been required by the International Dendrology Society and the RHS, and so there is, naturally, great similarity between the three. 2 INTRODUCTION Flying north-east over the Coral Sea I consulted the programme for the ‘Tree Lovers Tour’ that had been sent in advance by Noumea Discovery. Our party of 25 had been assembling itself piecemeal over the past few days, converging on an archipelago that I was surprised relatively few of my non- botanical friends had heard of. Guesses usually placed New Caledonia in sub-Arctic North America. When this occurred I politely explained – in a way that could perhaps have been misinterpreted as bragging – that it was in fact nestled on the western fringes of the South Pacific Ocean, with all the clichés of white sandy beaches, balmy temperatures, tropical breezes and, most importantly, 80% floristic endemism.
    [Show full text]
  • Distribution and Ecology of the Conifers of New Caledonia
    I 1 extrait de : EGOLQGY OP THE SOUTHERN CONIFERS Edited by : Neal J. ENRIGHT and Robert S. HILL MELBOW WVERSITY PRESS - 1935 5. - I Distribution and Ecology 8 of the Conifers of - New Caledonia T. JAFFRÉ ESPITE ITS small area (19 O00 km2) New Caledonia possesses a rich and distinctive flora, totalling 3000 species of phanerogams of which 75 to 80 per cent are endemic. Among these are 43 conifers (all endemic) belonging D (1 to four families: Taxaceae (one sp.), Podocarpaceae (18 spp.), Araucariaceae 8 spp.), Cupressaceae (six spp.). \ The sole species of the family Taxaceae belongs to the endemic genus Austrotaxus. The Podocarpaceae is divided among eight genera: Podocarpus (seven ii spp.), Dacrydium (four spp.), Retrophyllum (twospp.), Falcatifolium, Dacrycarpus, Acmopyb, Prumnopitys and Parasitaxus (one sp. each), the last being endemic to New Caledonia (Page 1988). The Araucariaceae comprises two genera, Araucaria (13 spp.) and Agathis (five spp.), and the Cupressaceae the genera Libocedrus (three spp.), Callitris (two spp.), and the monotypic and endemic Neocallitropsis (de Laubenfels 1972). No other region of the world with such a small area possesses such a rich and distinctive conifer flora. Growth forms The majority of New Caledonian conifers are tall trees but there are also small trees and shrubs. The Araucariaceae, all arborescent, includes nine species exploited for their timber (Agatbis corbassonii, A. lanceolata, A. moorei, A. ovata, Araucaria columnaris, A. bernieri, A. laubenfelsii, A. luxurians, A. subulata). The Agatbis species are among the most massive forest trees; some individuals I of the tallest species, Agatbis lanceolata, have trunks more than 2.5 m in diameter and attain a height of 30-40 m.
    [Show full text]
  • Revue Des Araucariaceae De Nouvelle-Calédonie
    - Revue des Araucarlaceae de Nouvelle-Calédonie • ~_......... 1 lMtUY JAFFfll!: J .... II_VEJU.OH .. • Revue des Araucariaceae de Nouvelle-Calédonie Joseph MANAUTÉ 1 Tanguy JAFFRÉ 2 Jean-Marie VEILLON 3 Mai-Lan KRANITZ 4 1 Province Sud, direction des ressources naturelles, service des parcs et réserves terrestres, BP 3718, 98846 NOUMÉA CEDEX, Nouvelle-Calédonie 2 Institut de recherche pour le développement, Laboratoire de Botanique et d'Écologie Végétale Appliquées, BP AS, 98845, NOUMÉA CEDEX Nouvelle-Calédonie 3 BP 492, 98845 NOUMÉA CEDEX, Nouvelle-Calédonie 4 Royal Botanic Garden, Edinburgh 20A Inver/eith Row, Edinburgh EH3 5LR, SCOTLAND, Great Britain Conception, mise en page, fabrication, maquette de couverture Jean Pierre Mermoud Scans et calibrations des photos Noël Galaud Relecture Isabelle Perin Photos: 1ère de couverture 1 Fond : Araucaria columnaris, îlot Porc Épie (© 1RD 1T. Jaffré) 1 : Agathis ovata, Col de Vaté (© IRD 1T. Jaffré) 2 2 : Araucaria columnaris, Goro (© IRD 1T. Jaffré) 3: Araucaria montana (cônes femelles), Kouaoua (© IRD 1T. Jaffré) 4 : Araucaria montana, massif du Koniambo (© IRD 1T. Jaffré) 3 4 4ème de couverture Fond : Araucaria columnaris, îlot Porc Épie (© 1RD 1T. Jaffré) Maquis minier dominé par Araucaria montana et Gymnostoma glaucescens, Menazi, Kouaoua (© IRD / T. Jaffré) © IRD/Province Sud, Nouméa, juin 2003 1er retirage, avril 2004 SOMMAIRE Résumé 4 Abstract. 5 Introduction. ........ 6 Distinction des espèces 6 Distinction des Araucaria. ............ 7 Affinités inter-spécifiques chez les Araucaria 8 Distinction des Agathis 12 Affinités inter-spécifiques chez les Agathis 13 La place des Araucariaceae dans la flore de Nouvelle-Calédonie 14 Distribution des espèces de la famille des Araucariaceae en Nouvelle-Calédonie 14 Les Araucariaceae de la forêt dense sempervirente humide d'altitude 14 Les Araucariaceae de la forêt humide sempervirente de basse et moyenne altitudes 14 Sur roches acides 15 Sur roches ultramafiques .
    [Show full text]
  • The Evolution of Cavitation Resistance in Conifers Maximilian Larter
    The evolution of cavitation resistance in conifers Maximilian Larter To cite this version: Maximilian Larter. The evolution of cavitation resistance in conifers. Bioclimatology. Univer- sit´ede Bordeaux, 2016. English. <NNT : 2016BORD0103>. <tel-01375936> HAL Id: tel-01375936 https://tel.archives-ouvertes.fr/tel-01375936 Submitted on 3 Oct 2016 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. THESE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE DE BORDEAUX Spécialité : Ecologie évolutive, fonctionnelle et des communautés Ecole doctorale: Sciences et Environnements Evolution de la résistance à la cavitation chez les conifères The evolution of cavitation resistance in conifers Maximilian LARTER Directeur : Sylvain DELZON (DR INRA) Co-Directeur : Jean-Christophe DOMEC (Professeur, BSA) Soutenue le 22/07/2016 Devant le jury composé de : Rapporteurs : Mme Amy ZANNE, Prof., George Washington University Mr Jordi MARTINEZ VILALTA, Prof., Universitat Autonoma de Barcelona Examinateurs : Mme Lisa WINGATE, CR INRA, UMR ISPA, Bordeaux Mr Jérôme CHAVE, DR CNRS, UMR EDB, Toulouse i ii Abstract Title: The evolution of cavitation resistance in conifers Abstract Forests worldwide are at increased risk of widespread mortality due to intense drought under current and future climate change.
    [Show full text]
  • Phylogenetic Relationships Within Araucariaceae Based on RBCL
    American Journal of Botany 85(11): 1507-1516. 1998. PHYLOGENETICRELATIONSHIPS WITHIN ARAUCARIACEAEBASED ON RBCLGENE SEQUENCES~ HlROAKI SETOGUCHI,2g5,6TAKESHI ASAKAWA OSAWA? JEAN- CHRISTOPHE PINTAUD: TANGUYJAFJXÉ: AND JEAN-MAREvEILLON4 Makino Herbarium, Faculty of Science, Tokyo Metropolitan University, Tokyo 192-03, Japan; Department of Biology, Faculty of Science, Chiba University, Chiba 246, Japan; and Department de Botanique, Centre ORSTOM de Nouméa, BP A5 Nouméa, New Caledonia Phylogenetic relationships were determined in the Araucariaceae, which are now found mainly in the Southern Hemi- sphere. This conifer family was well diversified and widely distributed in both hemispheres during the Mesozoic era. The sequence of 1322 bases of the rbcL gene of cpDNA was determined from 29 species of Araucariaceae, representing almost all the species of the family. Phylogenetic trees determined by the parsimony method indicate that Araucariaceae are well defined by rbcL sequences and also that the monophyly of Agatlzis or Araucaria is well supported by high bootstrap values. The topology of these trees revealed that Wolleiitia had derived prior to Agathis and Araucaria. The rbcL phylogeny agrees well with the present recognition of four sections within Araucaria: Araucaria, Bunya, Eutacta, and bzterinedia. Morpho- logical characteristics of the number of cotyledons, position of male cone, and cuticular micromorphologies were evaluated as being phylogenetically informative. Section Bunya was found to be derived rather than to be the oldest taxon. Infrageneric relationships of Agathis could not be well elucidated because there are few informative site changes in the rbcL gene, suggesting the more recent differentiation of the species as their fossil records indicate. The New Caledonian Araucaria and Agathis species each formed a monophyletic group with very low differentiation in rbcL sequences among them, indicating rapid adaptive radiation to new edaphic conditions, i.e., ultramafic soils, in the post-Eocene era.
    [Show full text]
  • Phylogenetic Analysis of Araucariaceae: Integrating Molecules, Morphology, and Fossils Author(S): Ignacio H
    Phylogenetic Analysis of Araucariaceae: Integrating Molecules, Morphology, and Fossils Author(s): Ignacio H. Escapa and Santiago A. Catalano Source: International Journal of Plant Sciences, Vol. 174, No. 8 (October 2013), pp. 1153-1170 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/672369 . Accessed: 21/09/2013 08:35 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 134.53.24.2 on Sat, 21 Sep 2013 08:35:57 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 174(8):1153–1170. 2013. ᭧ 2013 by The University of Chicago. All rights reserved. 1058-5893/2013/17408-0005$15.00 DOI: 10.1086/672369 PHYLOGENETIC ANALYSIS OF ARAUCARIACEAE: INTEGRATING MOLECULES, MORPHOLOGY, AND FOSSILS Ignacio H. Escapa1,* and Santiago A. Catalano† *Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas (CONICET), Museo Paleontolo´gico Egidio Feruglio, Avenue Fontana 140, 9100 Trelew, Chubut, Argentina; and †CONICET, Instituto Superior de Entomologı´a, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucuma´n, Calle Miguel Lillo 205, SM Tucuma´n, Tucuma´n, Argentina Premise of research.
    [Show full text]
  • Extrapolating Demography with Climate, Proximity and Phylogeny: Approach with Caution
    Extrapolating demography with climate, proximity and phylogeny: approach with caution Shaun R. Coutts1;2;3, Roberto Salguero-Gómez1;2;3;4, Anna M. Csergő3, Yvonne M. Buckley1;3 October 31, 2016 1. School of Biological Sciences. Centre for Biodiversity and Conservation Science. The University of Queensland, St Lucia, QLD 4072, Australia. 2. Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK. 3. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland. 4. Evolutionary Demography Laboratory. Max Planck Institute for Demographic Research. Rostock, DE-18057, Germany. Keywords: COMPADRE Plant Matrix Database, comparative demography, damping ratio, elasticity, matrix population model, phylogenetic analysis, population growth rate (λ), spatially lagged models Author statement: SRC developed the initial concept, performed the statistical analysis and wrote the first draft of the manuscript. RSG helped develop the initial concept, provided code for deriving de- mographic metrics and phylogenetic analysis, and provided the matrix selection criteria. YMB helped develop the initial concept and advised on analysis. All authors made substantial contributions to editing the manuscript and further refining ideas and interpretations. 1 Distance and ancestry predict demography 2 ABSTRACT Plant population responses are key to understanding the effects of threats such as climate change and invasions. However, we lack demographic data for most species, and the data we have are often geographically aggregated. We determined to what extent existing data can be extrapolated to predict pop- ulation performance across larger sets of species and spatial areas. We used 550 matrix models, across 210 species, sourced from the COMPADRE Plant Matrix Database, to model how climate, geographic proximity and phylogeny predicted population performance.
    [Show full text]