Dynamical Systems and Ergodic Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measure-Theoretic Probability I
Measure-Theoretic Probability I Steven P.Lalley Winter 2017 1 1 Measure Theory 1.1 Why Measure Theory? There are two different views – not necessarily exclusive – on what “probability” means: the subjectivist view and the frequentist view. To the subjectivist, probability is a system of laws that should govern a rational person’s behavior in situations where a bet must be placed (not necessarily just in a casino, but in situations where a decision must be made about how to proceed when only imperfect information about the outcome of the decision is available, for instance, should I allow Dr. Scissorhands to replace my arthritic knee by a plastic joint?). To the frequentist, the laws of probability describe the long- run relative frequencies of different events in “experiments” that can be repeated under roughly identical conditions, for instance, rolling a pair of dice. For the frequentist inter- pretation, it is imperative that probability spaces be large enough to allow a description of an experiment, like dice-rolling, that is repeated infinitely many times, and that the mathematical laws should permit easy handling of limits, so that one can make sense of things like “the probability that the long-run fraction of dice rolls where the two dice sum to 7 is 1/6”. But even for the subjectivist, the laws of probability should allow for description of situations where there might be a continuum of possible outcomes, or pos- sible actions to be taken. Once one is reconciled to the need for such flexibility, it soon becomes apparent that measure theory (the theory of countably additive, as opposed to merely finitely additive measures) is the only way to go. -
Category Theory for Autonomous and Networked Dynamical Systems
Discussion Category Theory for Autonomous and Networked Dynamical Systems Jean-Charles Delvenne Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Center for Operations Research and Econometrics (CORE), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; [email protected] Received: 7 February 2019; Accepted: 18 March 2019; Published: 20 March 2019 Abstract: In this discussion paper we argue that category theory may play a useful role in formulating, and perhaps proving, results in ergodic theory, topogical dynamics and open systems theory (control theory). As examples, we show how to characterize Kolmogorov–Sinai, Shannon entropy and topological entropy as the unique functors to the nonnegative reals satisfying some natural conditions. We also provide a purely categorical proof of the existence of the maximal equicontinuous factor in topological dynamics. We then show how to define open systems (that can interact with their environment), interconnect them, and define control problems for them in a unified way. Keywords: ergodic theory; topological dynamics; control theory 1. Introduction The theory of autonomous dynamical systems has developed in different flavours according to which structure is assumed on the state space—with topological dynamics (studying continuous maps on topological spaces) and ergodic theory (studying probability measures invariant under the map) as two prominent examples. These theories have followed parallel tracks and built multiple bridges. For example, both have grown successful tools from the interaction with information theory soon after its emergence, around the key invariants, namely the topological entropy and metric entropy, which are themselves linked by a variational theorem. The situation is more complex and heterogeneous in the field of what we here call open dynamical systems, or controlled dynamical systems. -
Ergodicity, Decisions, and Partial Information
Ergodicity, Decisions, and Partial Information Ramon van Handel Abstract In the simplest sequential decision problem for an ergodic stochastic pro- cess X, at each time n a decision un is made as a function of past observations X0,...,Xn 1, and a loss l(un,Xn) is incurred. In this setting, it is known that one may choose− (under a mild integrability assumption) a decision strategy whose path- wise time-average loss is asymptotically smaller than that of any other strategy. The corresponding problem in the case of partial information proves to be much more delicate, however: if the process X is not observable, but decisions must be based on the observation of a different process Y, the existence of pathwise optimal strategies is not guaranteed. The aim of this paper is to exhibit connections between pathwise optimal strategies and notions from ergodic theory. The sequential decision problem is developed in the general setting of an ergodic dynamical system (Ω,B,P,T) with partial information Y B. The existence of pathwise optimal strategies grounded in ⊆ two basic properties: the conditional ergodic theory of the dynamical system, and the complexity of the loss function. When the loss function is not too complex, a gen- eral sufficient condition for the existence of pathwise optimal strategies is that the dynamical system is a conditional K-automorphism relative to the past observations n n 0 T Y. If the conditional ergodicity assumption is strengthened, the complexity assumption≥ can be weakened. Several examples demonstrate the interplay between complexity and ergodicity, which does not arise in the case of full information. -
On the Continuing Relevance of Mandelbrot's Non-Ergodic Fractional Renewal Models of 1963 to 1967
Nicholas W. Watkins On the continuing relevance of Mandelbrot's non-ergodic fractional renewal models of 1963 to 1967 Article (Published version) (Refereed) Original citation: Watkins, Nicholas W. (2017) On the continuing relevance of Mandelbrot's non-ergodic fractional renewal models of 1963 to 1967.European Physical Journal B, 90 (241). ISSN 1434-6028 DOI: 10.1140/epjb/e2017-80357-3 Reuse of this item is permitted through licensing under the Creative Commons: © 2017 The Author CC BY 4.0 This version available at: http://eprints.lse.ac.uk/84858/ Available in LSE Research Online: February 2018 LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research Online website. Eur. Phys. J. B (2017) 90: 241 DOI: 10.1140/epjb/e2017-80357-3 THE EUROPEAN PHYSICAL JOURNAL B Regular Article On the continuing relevance of Mandelbrot's non-ergodic fractional renewal models of 1963 to 1967? Nicholas W. Watkins1,2,3 ,a 1 Centre for the Analysis of Time Series, London School of Economics and Political Science, London, UK 2 Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, UK 3 Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, UK Received 20 June 2017 / Received in final form 25 September 2017 Published online 11 December 2017 c The Author(s) 2017. This article is published with open access at Springerlink.com Abstract. -
Ergodic Theory
MATH41112/61112 Ergodic Theory Charles Walkden 4th January, 2018 MATH4/61112 Contents Contents 0 Preliminaries 2 1 An introduction to ergodic theory. Uniform distribution of real se- quences 4 2 More on uniform distribution mod 1. Measure spaces. 13 3 Lebesgue integration. Invariant measures 23 4 More examples of invariant measures 38 5 Ergodic measures: definition, criteria, and basic examples 43 6 Ergodic measures: Using the Hahn-Kolmogorov Extension Theorem to prove ergodicity 53 7 Continuous transformations on compact metric spaces 62 8 Ergodic measures for continuous transformations 72 9 Recurrence 83 10 Birkhoff’s Ergodic Theorem 89 11 Applications of Birkhoff’s Ergodic Theorem 99 12 Solutions to the Exercises 108 1 MATH4/61112 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email: [email protected]. My office hour is: Monday 2pm-3pm. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § This is a reading course, supported by one lecture per week. I have split the notes into weekly sections. You are expected to have read through the material before the lecture, and then go over it again afterwards in your own time. In the lectures I will highlight the most important parts, explain the statements of the theorems and what they mean in practice, and point out common misunderstandings. As a general rule, I will not normally go through the proofs in great detail (but they are examinable unless indicated otherwise). -
Topological Entropy and Distributional Chaos in Hereditary Shifts with Applications to Spacing Shifts and Beta Shifts
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2013.33.2451 DYNAMICAL SYSTEMS Volume 33, Number 6, June 2013 pp. 2451{2467 TOPOLOGICAL ENTROPY AND DISTRIBUTIONAL CHAOS IN HEREDITARY SHIFTS WITH APPLICATIONS TO SPACING SHIFTS AND BETA SHIFTS Dedicated to the memory of Professor Andrzej Pelczar (1937-2010). Dominik Kwietniak Faculty of Mathematics and Computer Science Jagiellonian University in Krak´ow ul.Lojasiewicza 6, 30-348 Krak´ow,Poland (Communicated by Llu´ısAlsed`a) Abstract. Positive topological entropy and distributional chaos are charac- terized for hereditary shifts. A hereditary shift has positive topological entropy if and only if it is DC2-chaotic (or equivalently, DC3-chaotic) if and only if it is not uniquely ergodic. A hereditary shift is DC1-chaotic if and only if it is not proximal (has more than one minimal set). As every spacing shift and every beta shift is hereditary the results apply to those classes of shifts. Two open problems on topological entropy and distributional chaos of spacing shifts from an article of Banks et al. are solved thanks to this characterization. Moreover, it is shown that a spacing shift ΩP has positive topological entropy if and only if N n P is a set of Poincar´erecurrence. Using a result of Kˇr´ıˇzan example of a proximal spacing shift with positive entropy is constructed. Connections between spacing shifts and difference sets are revealed and the methods of this paper are used to obtain new proofs of some results on difference sets. 1. Introduction. A hereditary shift is a (one-sided) subshift X such that x 2 X and y ≤ x (coordinate-wise) imply y 2 X. -
Topological Dynamics of Ordinary Differential Equations and Kurzweil Equations*
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector JOURNAL OF DIFFERENTIAL EQUATIONS 23, 224-243 (1977) Topological Dynamics of Ordinary Differential Equations and Kurzweil Equations* ZVI ARTSTEIN Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912 Received March 25, 1975; revised September 4, 1975 1. INTRODUCTION A basic construction in applying topological dynamics to nonautonomous ordinary differential equations f =f(x, s) is to consider limit points (when 1 t 1 + co) of the translatesf, , wheref,(x, s) = f(~, t + s). A limit point defines a limiting equation and there is a tight relation- ship between the behavior of solutions of the original equation and of the limiting equations (see [l&13]). I n order to carry out this construction one has to specify the meaning of the convergence of ft , and this convergence has to have certain properties which we shall discuss later. In this paper we shall encounter a phenomenon which seems to be new in the context of applications of topological dynamics. The limiting equations will not be ordinary differential equations. We shall work under assumptions that do not guarantee that the space of ordinary equations is complete and we shall have to consider a completion of the space. Almost two decades ago Kurzweil [3] introduced what he called generalized ordinary differential equations and what we call Kurzweil equations. We shall see that if we embed our ordinary equations in a space of Kurzweil equations we get a complete and compact space, and the techniques of topological dynamics can be applied. -
Ergodicity and Metric Transitivity
Chapter 25 Ergodicity and Metric Transitivity Section 25.1 explains the ideas of ergodicity (roughly, there is only one invariant set of positive measure) and metric transivity (roughly, the system has a positive probability of going from any- where to anywhere), and why they are (almost) the same. Section 25.2 gives some examples of ergodic systems. Section 25.3 deduces some consequences of ergodicity, most im- portantly that time averages have deterministic limits ( 25.3.1), and an asymptotic approach to independence between even§ts at widely separated times ( 25.3.2), admittedly in a very weak sense. § 25.1 Metric Transitivity Definition 341 (Ergodic Systems, Processes, Measures and Transfor- mations) A dynamical system Ξ, , µ, T is ergodic, or an ergodic system or an ergodic process when µ(C) = 0 orXµ(C) = 1 for every T -invariant set C. µ is called a T -ergodic measure, and T is called a µ-ergodic transformation, or just an ergodic measure and ergodic transformation, respectively. Remark: Most authorities require a µ-ergodic transformation to also be measure-preserving for µ. But (Corollary 54) measure-preserving transforma- tions are necessarily stationary, and we want to minimize our stationarity as- sumptions. So what most books call “ergodic”, we have to qualify as “stationary and ergodic”. (Conversely, when other people talk about processes being “sta- tionary and ergodic”, they mean “stationary with only one ergodic component”; but of that, more later. Definition 342 (Metric Transitivity) A dynamical system is metrically tran- sitive, metrically indecomposable, or irreducible when, for any two sets A, B n ∈ , if µ(A), µ(B) > 0, there exists an n such that µ(T − A B) > 0. -
MA427 Ergodic Theory
MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different. -
Conformal Fractals – Ergodic Theory Methods
Conformal Fractals – Ergodic Theory Methods Feliks Przytycki Mariusz Urba´nski May 17, 2009 2 Contents Introduction 7 0 Basic examples and definitions 15 1 Measure preserving endomorphisms 25 1.1 Measurespacesandmartingaletheorem . 25 1.2 Measure preserving endomorphisms, ergodicity . .. 28 1.3 Entropyofpartition ........................ 34 1.4 Entropyofendomorphism . 37 1.5 Shannon-Mcmillan-Breimantheorem . 41 1.6 Lebesguespaces............................ 44 1.7 Rohlinnaturalextension . 48 1.8 Generalized entropy, convergence theorems . .. 54 1.9 Countabletoonemaps.. .. .. .. .. .. .. .. .. .. 58 1.10 Mixingproperties . .. .. .. .. .. .. .. .. .. .. 61 1.11 Probabilitylawsand Bernoulliproperty . 63 Exercises .................................. 68 Bibliographicalnotes. 73 2 Compact metric spaces 75 2.1 Invariantmeasures . .. .. .. .. .. .. .. .. .. .. 75 2.2 Topological pressure and topological entropy . ... 83 2.3 Pressureoncompactmetricspaces . 87 2.4 VariationalPrinciple . 89 2.5 Equilibrium states and expansive maps . 94 2.6 Functionalanalysisapproach . 97 Exercises ..................................106 Bibliographicalnotes. 109 3 Distance expanding maps 111 3.1 Distance expanding open maps, basic properties . 112 3.2 Shadowingofpseudoorbits . 114 3.3 Spectral decomposition. Mixing properties . 116 3.4 H¨older continuous functions . 122 3 4 CONTENTS 3.5 Markov partitions and symbolic representation . 127 3.6 Expansive maps are expanding in some metric . 134 Exercises .................................. 136 Bibliographicalnotes. 138 4 -
An Introduction to Random Walks on Groups
An introduction to random walks on groups Jean-Fran¸coisQuint School on Information and Randomness, Puerto Varas, December 2014 Contents 1 Locally compact groups and Haar measure 2 2 Amenable groups 4 3 Invariant means 9 4 Almost invariant vectors 13 5 Random walks and amenable groups 15 6 Growth of groups 18 7 Speed of escape 21 8 Subgroups of SL2(R) 24 1 In these notes, we will study a basic question from the theory of random walks on groups: given a random walk e; g1; g2g1; : : : ; gn ··· g1;::: on a group G, we will give a criterion for the trajectories to go to infinity with linear speed (for a notion of speed which has to be defined). We will see that this property is related to the notion of amenability of groups: this is a fun- damental theorem which was proved by Kesten in the case of discrete groups and extended to the case of continuous groups by Berg and Christensen. We will give examples of this behaviour for random walks on SL2(R). 1 Locally compact groups and Haar measure In order to define random walks on groups, I need to consider probability measures on groups, which will be the distribution of the random walks. When the group is discrete, there is no technical difficulty: a probability measure is a function from the group to [0; 1], the sum of whose values is one. But I also want to consider non discrete groups, such as vector spaces, groups of matrices, groups of automorphisms of trees, etc. -
AN INTRODUCTION to DYNAMICAL BILLIARDS Contents 1
AN INTRODUCTION TO DYNAMICAL BILLIARDS SUN WOO PARK 2 Abstract. Some billiard tables in R contain crucial references to dynamical systems but can be analyzed with Euclidean geometry. In this expository paper, we will analyze billiard trajectories in circles, circular rings, and ellipses as well as relate their charactersitics to ergodic theory and dynamical systems. Contents 1. Background 1 1.1. Recurrence 1 1.2. Invariance and Ergodicity 2 1.3. Rotation 3 2. Dynamical Billiards 4 2.1. Circle 5 2.2. Circular Ring 7 2.3. Ellipse 9 2.4. Completely Integrable 14 Acknowledgments 15 References 15 Dynamical billiards exhibits crucial characteristics related to dynamical systems. Some billiard tables in R2 can be understood with Euclidean geometry. In this ex- pository paper, we will analyze some of the billiard tables in R2, specifically circles, circular rings, and ellipses. In the first section we will present some preliminary background. In the second section we will analyze billiard trajectories in the afore- mentioned billiard tables and relate their characteristics with dynamical systems. We will also briefly discuss the notion of completely integrable billiard mappings and Birkhoff's conjecture. 1. Background (This section follows Chapter 1 and 2 of Chernov [1] and Chapter 3 and 4 of Rudin [2]) In this section, we define basic concepts in measure theory and ergodic theory. We will focus on probability measures, related theorems, and recurrent sets on certain maps. The definitions of probability measures and σ-algebra are in Chapter 1 of Chernov [1]. 1.1. Recurrence. Definition 1.1. Let (X,A,µ) and (Y ,B,υ) be measure spaces.