The Relationship Between Growth and Indole-3-Acetic Acid Content of Roots of Pisum Sativum L

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship Between Growth and Indole-3-Acetic Acid Content of Roots of Pisum Sativum L The Relationship between Growth and Indole-3-Acetic Acid Content of Roots of Pisum sativum L. Author(s): William L. Pengelly and John G. Torrey Reviewed work(s): Source: Botanical Gazette, Vol. 143, No. 2 (Jun., 1982), pp. 195-200 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2474706 . Accessed: 03/04/2012 15:52 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to Botanical Gazette. http://www.jstor.org BOT. GAZ. 143(2):195-200. 1982. ? 1982 by The Universityof Chicago. All rightsreserved. 0006-8071/82/4302-0004$02.00 THE RELATIONSHIP BETWEEN GROWTH AND INDOLE-3-ACETIC ACID CONTENT OF ROOTS OF PISUM SATIVUM L. WILLIAM L. PENGELLY1 AND JOHN G. TORREY Cabot Foundation,Harvard University,Petersham, Massachusetts 01366 The indole-3-aceticacid (IAA) contentof roots and shoots of light-grownpea seedlings(Pisizmi sali,zim L. 'Little Marvel') growingat differentrates was studied by radioimmunoassayduring the firstweek of germination.Different growth rates were obtained by daily irrigationwith either deionized water or a dilute Hoagland's mineralnutrient solution. Mineral nutrient-grownroots grew morerapidly, had more lateral roots,and initiatedlateral roots at a greaterdistance fromthe apex than did water-grownroots. Growth kineticswith both treatmentswere biphasic. There was an initial phase of rapid cell expansion lasting about 3 days duringwhich growth was insensitiveto externalmineral nutrient supply. This was followedby a slowergrowth phase consistingof a balance betweencell divisionand cell expansion.Withholding nutri- ents resultedin the progressiveinhibition of cell division duringthis second phase. At no time did the amount of IAA per gram freshweight or the numberof cells per gram freshweight differ significantly in roots treatedwith water or mineralnutrients, whereas the total amount of IAA per organ and the total numberor cells per organ were greaterin roots providedwith nutrients.The amount of IAA per gram freshweight changed dramaticallyin roots duringthe firstweek of germination,but this was correlated withchanges in the relativecontributions of cell divisionand cell expansionto freshweight growth rather than to growthrate. By contrast,the amount of IAA per gram freshweight in 3-mmroot tips showed a directrelationship with growthrate. The relationshipbetween IAA contentand growthin whole shoots was qualitativelyand quantitativelysimilar to that foundin whole roots. Introduction specific radioimmunoassay (RIA) (PENGELLY and The role ofindole-3-acetic acid (IAA) in the growth MEINS 1977). To relate IAA content to root growth, and development of roots has been the subject of w e studied the distribution of IAA in the root, considerable controversy.Early bioassays of tissue- changes in IAA content during growthand develop- extracted auxin showed that the amount and distri- ment, and IAA levels in plant material of the same bution of auxin in the root and shoot were similar age growing at differentrates, the latter experi- (THIMANN 1934). More recently, IAA has been mental condition being achieved by varying the determinedin roots by combined gas chromatogra- external mineral nutrient supply. For comparison, phy-mass spectrometry(GC-MS) (BRIDGES, HILL- similar studies with pea shoots were also carried out. MAN, and WILKINS 1973; ELLIOT and GREENWOOD 1974; RIVIER and PILET 1974). A comparison of Material and methods results using GC-MS and bioassay (BRIDGES et al. PLANTS.-Pea seeds (Pisum satizvumL. 'Little 1973; GREENWOODet al. 1973) indicated that, in Marvel,' Asgrow Seed Co., New Haven, Conn.) Zea, amounts of IAA in roots were similar to those were rinsed brieflyin tap water and then surface- in coleoptiles. sterilized for 10 min with a 10%' (wt/vol) filtered THIMANN (1937, 1977) emphasized the greater calcium hypochloritesolution containingeither a few sensitivityof roots than shoots to externallyapplied drops of Tween 80 (Polyoxyethylene [20] sorbitan auxin, the formerresponding to 100-1,000 times monooleate, Fisher Scientific,Springfield, N.J.) or a lower concentrations of IAA applied in solution. small amount of commercial detergent as a surfac- These observations led to the view that auxin rela- tant. The seeds were rinsed four times, soaked for tions are fundamentally differentin the root and 8 h in distilled water, sown in fine-particlewashed shoot, namely, that shoots normally contain sub- river sand (special grade #OON, Kesseli and Morse optimal amounts of IAA and hence are limited in Co., Worcester, Mass.) that had been previously their growth by auxin while roots contain supra- washed with deionized water, and watered thor- optimal amounts of IAA and are actively inhibited oughly wvithdeionized water. The seeds were grown by auxin. in a chamber (Sherer Model CEL 511-38) illumi- In view of the continuinguncertainty surrounding nated with warm-white fluorescent lamps supple- IAA and root growth,we examined in detail the IAA mented with incandescent lamps with an average of content of Pisum sativumroots using a sensitive and ca. 350 ,E m-2 s-. The chamber was operated on a 16-h light-cyclewith temperaturesof 25 C day and I Present address and address for correspondenceand re- prints:W. L. PENGELLY, Departmentof Chemistryand Bio- 19 C dark. On the beginning of day 2 (24-27 h of chemical Sciences, Oregon Graduate Center, 19600 N. W. germination) and daily thereafter,the plants were Walker Road, Beaverton,Oregon 97006. watered with eithera 0.25-strengthHoagland's solu- Manuscript receivedA ugutst1981; revisedmanutscript received tion (HOAGLAND and ARNON 1950) or deionized November1981. water. 195 196 BOTANICAL GAZETTE [JuNE TISSUE EXTRACTION.-The pea seedlings were (Amersham, ArlingtonHeights, Ill.) and 5.0 ml of harvested and rinsed in distilled water in the dark- toluene containing, per 1 liter, 6 g 2,5-diphenyl- ened laboratory.The cotyledons were removed with oxazole (PPO) and 2.5 mg 1, 4-bis-2-(5-phenyloxa- a razor blade at the base of their petioles, and the zolyl) benzene (POPOP). remainderof the seedling was bisected into root and Radioactive determinationswere made using the shoot by a single transversecut throughthe cotyle- liquid scintillationmethod in the Isotope Facilities donary node. Root or shoot pieces were blotted dry of the Biological Laboratories, Harvard University, with paper towels, weighed, and immediately im- Cambridge, Massachusetts, and samples were cor- mersed in aqueous methanol (80% vol/vol, ana- rected for quenching by the channels ratio method. lytical reagent grade) prechilled to - 15 C and held The amount of IAA in the extract was determined on ice. by comparing the fraction of [3H]IAA bound with For studies of the IAA content in the root apex, the external standard curve. Assays were validated 12-mm root tips of intact seedlings were sliced into either by comparing the values obtained using dif- 3-mm sections with a razor blade cutter, weighed ferent volumes of the plant extract or by adding rapidly in groups of five, and immersed in the cold internal standards of unlabeled IAA to assays of methanol. Typically, 0.07-2.0 g freshweight of tissue plant extracts (PENGELLY and MEINS 1977). were used for each IAA measurement. Plant tissues CELL COUNTS.-The total cell number per root in 25 volumes of cold methanol were ground for 15 was determined by counting acid-macerated tissue min on ice with a mortar and pestle together with in the microscope. Roots were soaked in a solution a small amount of w ashed and ignited sand of 5%,0(wt/vol) chromiumtrioxide and 5%O(wt/vol) and ca. 105 dpm (6 X 106 Bq) of freshly puri- hydrochloric acid (FoSKET and TORREY 1969) for fied [5-3H]IAA (27 Ci mmol-1, Schwarz-Mann, 48 h. The tissue-acid mixture was then passed Orangeburg, N.Y.) added for recovery estimates through a no. 18 (0.84 mm i.d.) hypodermic needle (PENGELLY and MEINS 1977). During grinding, a using a 10-mlglass syringeand diluted appropriately second 25 volumes of methanol were added. The with water to give about 50-100 cells per micro- homogenate wvasvacuum filteredin a Buichnerfun- scopic field. Each cell number determinationrepre- nel. The residue was washed twice with 25 volumes sents two or three replicate experiments and the of methanol, scraped fromthe filterpaper, and ho- counting of at least 4,000 cells. mogenized for a second 15 min, firstwith a small amount of methanol to insure complete homogeni- Results zation and then with 50 volumes of methanol. The GROWTH AND THE EFFECT OF MINERAL NUTRI- second homogenate was filteredand washed as the TION.-In preparation for measurements of IAA, first; filtrates and washes were pooled; and the we firststudied the growth of pea seedlings during methanol was removed by rotary evaporation at the firstweek of germination.To compare IAA con- 37 C. The aqueous residue (10-20 ml) was broughtto tent with growth, we wanted to examine plant pH 8.5 with the addition of 10 ml of 0.5 M K2HPO4 tissues of the same age growing at differentrates. and partially purified by repeated diethyl ether- We found that limitingmineral nutrients to seedlings bufferpartitioning (PENGELLY and MEINS 1977) to grown in sand had a marked effecton growth,and yield a final 1.0-ml extract in phosphate-buffered seedlings provided with only deionized water grew saline (PBS; 0.1 M K2HPO4, 0.14 M\1NaCl, pH 8.0). considerably more slowly than those provided with Recovery of radiolabeled tracer averaged ca. 60%'. mineral nutrients(table 1). Both the root and shoot RIA.-Plant extracts in PBS were analyzed for were affected in this way, but the effecton root IAA content by RIA, using a procedure modified growth was most striking.
Recommended publications
  • Auxins and Cytokinins in Plant Development 2018
    International Journal of Molecular Sciences Meeting Report Auxins and Cytokinins in Plant Development 2018 Jan Petrasek 1, Klara Hoyerova 1, Vaclav Motyka 1 , Jan Hejatko 2 , Petre Dobrev 1, Miroslav Kaminek 1 and Radomira Vankova 1,* 1 Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, The Czech Academy of Sciences, Rozvojova 263, 16502 Prague 6, Czech Republic; [email protected] (J.P.); [email protected] (K.H.); [email protected] (V.M.); [email protected] (P.D.); [email protected] (M.K.) 2 CEITEC–Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] * Correspondence: [email protected]; Tel.: +420-225-106-427 Received: 15 February 2019; Accepted: 18 February 2019; Published: 20 February 2019 Abstract: The international symposium “Auxins and Cytokinins in Plant Development” (ACPD), which is held every 4–5 years in Prague, Czech Republic, is a meeting of scientists interested in the elucidation of the action of two important plant hormones—auxins and cytokinins. It is organized by a group of researchers from the Laboratory of Hormonal Regulations in Plants at the Institute of Experimental Botany, the Czech Academy of Sciences. The symposia already have a long tradition, having started in 1972. Thanks to the central role of auxins and cytokinins in plant development, the ACPD 2018 symposium was again attended by numerous experts who presented their results in the opening, two plenary lectures, and six regular sessions, including two poster sessions. Due to the open character of the research community, which is traditionally very well displayed during the meeting, a lot of unpublished data were presented and discussed.
    [Show full text]
  • Electrooxidation Enables Highly Regioselective Dearomative Annulation of Indole and Benzofuran Derivatives
    ARTICLE https://doi.org/10.1038/s41467-019-13829-4 OPEN Electrooxidation enables highly regioselective dearomative annulation of indole and benzofuran derivatives Kun Liu1, Wenxu Song1, Yuqi Deng1, Huiyue Yang1, Chunlan Song1, Takfaoui Abdelilah1, Shengchun Wang 1, Hengjiang Cong 1, Shan Tang1 & Aiwen Lei1* 1234567890():,; The dearomatization of arenes represents a powerful synthetic methodology to provide three-dimensional chemicals of high added value. Here we report a general and practical protocol for regioselective dearomative annulation of indole and benzofuran derivatives in an electrochemical way. Under undivided electrolytic conditions, a series of highly functio- nalized five to eight-membered heterocycle-2,3-fused indolines and dihydrobenzofurans, which are typically unattainable under thermal conditions, can be successfully accessed in high yield with excellent regio- and stereo-selectivity. This transformation can also tolerate a wide range of functional groups and achieve good efficiency in large-scale synthesis under oxidant-free conditions. In addition, cyclic voltammetry, electron paramagnetic resonance (EPR) and kinetic studies indicate that the dehydrogenative dearomatization annulations arise from the anodic oxidation of indole into indole radical cation, and this process is the rate- determining step. 1 College of Chemistry and Molecular Sciences, Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China. *email: aiwenlei@whu. edu.cn NATURE COMMUNICATIONS | (2020) 11:3 | https://doi.org/10.1038/s41467-019-13829-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13829-4 reaking the aromatic systems of electron-rich arenes or fused indolines (Fig. 1a)39–44. Therefore, it is highly appealing to heteroarenes provides three-dimensional chemicals of high develop efficient approaches to allow for their preparation.
    [Show full text]
  • Auxins Cytokinins and Gibberellins TD-I Date: 3/4/2019 Cell Enlargement in Young Leaves, Tissue Differentiation, Flowering, Fruiting, and Delay of Aging in Leaves
    Informational TD-I Revision 2.0 Creation Date: 7/3/2014 Revision Date: 3/4/2019 Auxins, Cytokinins and Gibberellins Isolation of the first Cytokinin Growing cells in a tissue culture medium composed in part of coconut milk led to the realization that some substance in coconut milk promotes cell division. The “milk’ of the coconut is actually a liquid endosperm containing large numbers of nuclei. It was from kernels of corn, however, that the substance was first isolated in 1964, twenty years after its presence in coconut milk was known. The substance obtained from corn is called zeatin, and it is one of many cytokinins. What is a Growth Regulator? Plant Cell Growth regulators (e.g. Auxins, Cytokinins and Gibberellins) - Plant hormones play an important role in growth and differentiation of cultured cells and tissues. There are many classes of plant growth regulators used in culture media involves namely: Auxins, Cytokinins, Gibberellins, Abscisic acid, Ethylene, 6 BAP (6 Benzyladenine), IAA (Indole Acetic Acid), IBA (Indole-3-Butyric Acid), Zeatin and trans Zeatin Riboside. The Auxins facilitate cell division and root differentiation. Auxins induce cell division, cell elongation, and formation of callus in cultures. For example, 2,4-dichlorophenoxy acetic acid is one of the most commonly added auxins in plant cell cultures. The Cytokinins induce cell division and differentiation. Cytokinins promote RNA synthesis and stimulate protein and enzyme activities in tissues. Kinetin and benzyl-aminopurine are the most frequently used cytokinins in plant cell cultures. The Gibberellins is mainly used to induce plantlet formation from adventive embryos formed in culture.
    [Show full text]
  • Heterocycles 2 Daniel Palleros
    Heterocycles 2 Daniel Palleros Heterocycles 1. Structures 2. Aromaticity and Basicity 2.1 Pyrrole 2.2 Imidazole 2.3 Pyridine 2.4 Pyrimidine 2.5 Purine 3. Π-excessive and Π-deficient Heterocycles 4. Electrophilic Aromatic Substitution 5. Oxidation-Reduction 6. DNA and RNA Bases 7. Tautomers 8. H-bond Formation 9. Absorption of UV Radiation 10. Reactions and Mutations Heterocycles 3 Daniel Palleros Heterocycles Heterocycles are cyclic compounds in which one or more atoms of the ring are heteroatoms: O, N, S, P, etc. They are present in many biologically important molecules such as amino acids, nucleic acids and hormones. They are also indispensable components of pharmaceuticals and therapeutic drugs. Caffeine, sildenafil (the active ingredient in Viagra), acyclovir (an antiviral agent), clopidogrel (an antiplatelet agent) and nicotine, they all have heterocyclic systems. O CH3 N HN O O N O CH 3 N H3C N N HN N OH O S O H N N N 2 N O N N O CH3 N CH3 caffeine sildenafil acyclovir Cl S N CH3 N N H COOCH3 nicotine (S)-clopidogrel Here we will discuss the chemistry of this important group of compounds beginning with the simplest rings and continuing to more complex systems such as those present in nucleic acids. Heterocycles 4 Daniel Palleros 1. Structures Some of the most important heterocycles are shown below. Note that they have five or six-membered rings such as pyrrole and pyridine or polycyclic ring systems such as quinoline and purine. Imidazole, pyrimidine and purine play a very important role in the chemistry of nucleic acids and are highlighted.
    [Show full text]
  • Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease
    cells Article Synbiotics Alleviate the Gut Indole Load and Dysbiosis in Chronic Kidney Disease Chih-Yu Yang 1,2,3,4 , Ting-Wen Chen 5,6 , Wan-Lun Lu 5, Shih-Shin Liang 7,8 , Hsien-Da Huang 5,†, Ching-Ping Tseng 4,5,* and Der-Cherng Tarng 1,3,4,9,* 1 Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; [email protected] 2 Stem Cell Research Center, National Yang-Ming University, Taipei 11221, Taiwan 3 Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan 4 Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), Hsinchu 30010, Taiwan 5 Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30010, Taiwan; [email protected] (T.-W.C.); [email protected] (W.-L.L.); [email protected] (H.-D.H.) 6 Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan 7 Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; [email protected] 8 Institute of Biomedical Science, College of Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan 9 Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan * Correspondence: [email protected] (C.-P.T.); [email protected] (D.-C.T.) † Current affiliation: Warshel Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong, Longgang District, Shenzhen 518172, China. Abstract: Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology.
    [Show full text]
  • Organophotocatalytic Dearomatization of Indoles, Pyrroles and Benzo(Thio)Furans Via a Giese-Type Transformation
    ARTICLE https://doi.org/10.1038/s42004-021-00460-y OPEN Organophotocatalytic dearomatization of indoles, pyrroles and benzo(thio)furans via a Giese-type transformation Yueteng Zhang1, Peng Ji1, Feng Gao1, Yue Dong1, He Huang2, Changqing Wang1, Ziyuan Zhou3 & ✉ Wei Wang 1 Accessing fascinating organic and biological significant indolines via dearomatization of indoles represents one of the most efficient approaches. However, it has been difficult for the dearomatization of the electron deficient indoles. Here we report the studies leading to 1234567890():,; developing a photoredox mediated Giese-type transformation strategy for the dear- omatization of the indoles. The reaction has been implemented for chemoselectively breaking indolyl C=C bonds embedded in the aromatic system. The synthetic power of this strategy has been demonstrated by using structurally diverse indoles bearing common electron- withdrawing groups including (thio)ester, amide, ketone, nitrile and even aromatics at either C2 or C3 positions and ubiquitous carboxylic acids as radical coupling partner with high trans- stereoselectivity (>20:1 dr). This manifold can also be applied to other aromatic heterocycles including pyrroles, benzofurans and benzothiophenes. Furthermore, enantioselective dear- omatization of indoles has been achieved by a chiral camphorsultam auxiliary with high diastereoselectivity. 1 Departments of Pharmacology and Toxicology and Chemistry and Biochemistry, and BIO5 Institute, University of Arizona, Tucson, AZ, USA. 2 Department of Chemistry and Chemical
    [Show full text]
  • One Hundred Years of Benzotropone Chemistry
    One hundred years of benzotropone chemistry Arif Dastan*1, Haydar Kilic2,3 and Nurullah Saracoglu*1 Review Open Access Address: Beilstein J. Org. Chem. 2018, 14, 1120–1180. 1Department of Chemistry, Science Faculty, Atatürk University, doi:10.3762/bjoc.14.98 25240, Erzurum, Turkey, 2Oltu Vocational Training School, Atatürk University, 25400, Erzurum, Turkey and 3East Anotolia High Received: 27 December 2017 Technology Application and Research Center, Atatürk University, Accepted: 20 April 2018 25240, Erzurum, Turkey Published: 23 May 2018 Email: Associate Editor: B. Stoltz Arif Dastan* - [email protected]; Nurullah Saracoglu* - [email protected] © 2018 Dastan et al.; licensee Beilstein-Institut. License and terms: see end of document. * Corresponding author Keywords: benzotropolone; benzotropone; dibenzotropone; halobenzotropolone; halobenzotropone; tribenzotropone; tropone Abstract This review focuses on the chemistry of benzo-annulated tropones and tropolones reported since the beginning of the 20th century, which are currently used as tools by the synthetic and biological communities. Review 1. Introduction Tropone (1) and tropolone (2) have fascinated organic chemists have been reported in the literature in a number of natural forms for well over one hundred years. The carbocycles 1 and 2 are a (Figure 1) [1-8]. These compounds have a structural class special variety of organic compounds and represent a nonben- spacing from the simple monocyclic tropones, such as the po- zenoid type of aromatic system (Scheme 1). Their dipolar reso- tent antifungal and antibiotic monoterpene β-thujaplicin (4) nance structures such as tropylium oxide form 1B and 2B have [17-23] (isolated from the heartwood and essential oils of trees been reported to provide a Hückel sextet of electrons that is of the family Cupressaceae), to complex macrocyclic ana- necessary for aromaticity (Scheme 1) [1-9].
    [Show full text]
  • Synthetic Auxin Resistant Weeds
    Synthetic Auxin Resistant Weeds Available from the HRAC website: hracglobal.com Synthetic Auxin biochemical mechanism of resistance in Mustard. Synthetic auxin resistance in two these cases appears to differ from other other species, tall waterhemp and common Resistant Weeds auxin resistance. Sixteen of the 27 species lambsquarters, are not widespread yet, but Despite synthetic auxin herbicides being have documented resistance to have the potential to become serious used longer and on a greater area than any 2,4-D, seven to MCPA, and six to dicamba. problems in the United States if they are other herbicide mechanism of action the In the United States six weed species have not managed properly. evolved resistance to synthetic auxin area infested with synthetic auxin resistant This fact sheet is an introduction to a series herbicides, with only one, Kochia scoparia, weeds is low in comparison to many other of fact sheets on auxin resistant weeds, being widespread and a serious economic herbicide mechanisms of action. Twenty covering kochia, wild radish, corn poppy, problem. Globally the most important seven weeds have evolved resistance to wild mustard, tall waterhemp, and common synthetic auxin resistant weeds are Kochia, synthetic auxins. This excludes grasses lambsquarters. resistant to quinclorac since the Wild Radish, Corn poppy, and Wild Table 1. The occurrence of synthetic auxin resistant weeds worldwide. Species First Year Herbicides Country Amaranthus tuberculatus 2009 2,4-D United States Carduus nutans 1981 2,4-D New Zealand Carduus
    [Show full text]
  • Heterocyclic Chemistrychemistry
    HeterocyclicHeterocyclic ChemistryChemistry Professor J. Stephen Clark Room C4-04 Email: [email protected] 2011 –2012 1 http://www.chem.gla.ac.uk/staff/stephenc/UndergraduateTeaching.html Recommended Reading • Heterocyclic Chemistry – J. A. Joule, K. Mills and G. F. Smith • Heterocyclic Chemistry (Oxford Primer Series) – T. Gilchrist • Aromatic Heterocyclic Chemistry – D. T. Davies 2 Course Summary Introduction • Definition of terms and classification of heterocycles • Functional group chemistry: imines, enamines, acetals, enols, and sulfur-containing groups Intermediates used for the construction of aromatic heterocycles • Synthesis of aromatic heterocycles • Carbon–heteroatom bond formation and choice of oxidation state • Examples of commonly used strategies for heterocycle synthesis Pyridines • General properties, electronic structure • Synthesis of pyridines • Electrophilic substitution of pyridines • Nucleophilic substitution of pyridines • Metallation of pyridines Pyridine derivatives • Structure and reactivity of oxy-pyridines, alkyl pyridines, pyridinium salts, and pyridine N-oxides Quinolines and isoquinolines • General properties and reactivity compared to pyridine • Electrophilic and nucleophilic substitution quinolines and isoquinolines 3 • General methods used for the synthesis of quinolines and isoquinolines Course Summary (cont) Five-membered aromatic heterocycles • General properties, structure and reactivity of pyrroles, furans and thiophenes • Methods and strategies for the synthesis of five-membered heteroaromatics
    [Show full text]
  • 78719 Kovac's Reagent Strips (Indole Reagent Test Strips According to Kovac)
    78719 Kovac's Reagent Strips (Indole Reagent Test strips according to Kovac) For determination of the ability of microorganisms, primarily Enterobacteriaceae, to split indole from the tryptophan molecule by tryptophanases. Tryptophanase present in e.g. E. coli cleaves tryptophan to indole and pyruvic acid and ammonia. p-Aminobenzaldehyde present in the reagent builds with indole a pink complex. Composition: (1 package contains 25 strips) Sterile filter paper strips impregnated with Kovac`s Reagent Kovac`s reagent is prepared by dissolving 10 g of p-aminobenzaldehyde in 150 ml of isoamylalcohol and then slowly adding 50 ml of concentrated hydrochloric acid. Directions: Indole production by the organism is observed by inserting the Kovac's Reagent Strips between the plug and inner wall of the tube, above the inoculated Peptone Water (Cat. No. 70179) and incubated at 35°C for 18-24 hours. Quality control: Cultural response after 18-24 hours at 35°C in Peptone Water (Cat. No. 70179). Pink coloration of the lower part of the strip is a positive reaction and means microorganisms possess tryptophanase activity. A negative reaction shows no color change. Test Organisms (ATCC) Indole production Escherichia coli (25922) + Enterobacter aeogenes (13048) - 1. Control 2. Escherichia coli 3. Staphylococcus aureus Page 1 of 2 References: 1. J.F. MacFaddin, Biochemical Tests for Identification of Medical Bacteria, 2nd ed., Williams and Wilkins, Baltimore (1980) 2. A.E. Greenberg, R.R. Trussell, L.S. Clesceri (Eds.), Standard Methods for the Examination of Water and Wastewater, 16th ed., A.P.H.A, Washington, D.C. (1985) Precautions and Disclaimer This product is for R&D use only, not for drug, household, or other uses.
    [Show full text]
  • Tryptophan Catabolism by Lactobacillus Spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1998 Tryptophan Catabolism by Lactobacillus spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese Sanjay Gummalla Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Food Chemistry Commons, Food Microbiology Commons, and the Food Processing Commons Recommended Citation Gummalla, Sanjay, "Tryptophan Catabolism by Lactobacillus spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese" (1998). All Graduate Theses and Dissertations. 5454. https://digitalcommons.usu.edu/etd/5454 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. TRYPTOPHAN CATABOLISM BY LACTOBACILLUS SPP.: BIOCHEMISTRY AND IMPLICATIONS ON FLAVOR DEVELOPMENT IN REDUCED-FAT CHEDDAR CHEESE by Sanjay Gummalla A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE m Nutrition and Food Sciences Approved: UTAH STATE UNIVERSITY Logan, Utah 1998 11 Copyright © Sanjay Gummalla 1998 All Rights Reserved w ABSTRACT Tryptophan Catabolism by Lactobacillus spp. : Biochemistry and Implications on Flavor Development in Reduced-Fat Cheddar Cheese by Sanjay Gummalla, Master of Science Utah State University, 1998 Major Professor: Dr. Jeffery R. Broadbent Department: Nutrition and Food Sciences Amino acids derived from the degradation of casein in cheese serve as precursors for the generation of key flavor compounds. Microbial degradation of tryptophan (Trp) is thought to promote formation of aromatic compounds that impart putrid fecal or unclean flavors in cheese, but pathways for their production have not been established.
    [Show full text]
  • Five Components of the Ethylene-Response Pathway Identified in a Screen for Weak Ethylene-Insensitive Mutants in Arabidopsis
    Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis Jose M. Alonso*†‡, Anna N. Stepanova*†‡, Roberto Solano*§, Ellen Wisman¶, Simone Ferrariʈ, Frederick M. Ausubelʈ, and Joseph R. Ecker*,** *Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037; ¶Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824; and ʈDepartment of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114 Communicated by Joanne Chory, The Salk Institute for Biological Studies, La Jolla, CA, December 31, 2002 (received for review November 22, 2002) Five ethylene-insensitive loci (wei1–wei5) were identified by using shown to be required for the normal ethylene response, as a low-dose screen for ‘‘weak’’ ethylene-insensitive mutants. wei1, inferred from the hormone insensitivity of the ein3 loss-of- wei2, and wei3 seedlings showed hormone insensitivity only in function mutant (15). Transgenic studies suggest that the EIN3- roots, whereas wei4 and wei5 displayed insensitivity in both roots like proteins EIL1 and EIL2 may also be involved in ethylene and hypocotyls. The genes corresponding to wei1, wei4, and wei5 signal transduction (15). However, mutations in these genes have were isolated using a positional cloning approach. The wei1 not been identified. EIN3 and possibly other members of the mutant harbored a recessive mutation in TIR1, which encodes a EIN3 family bind to a DNA element in the promoter of the ERF1 component of the SCF protein ubiquitin ligase involved in the auxin gene, an ethylene-responsive element binding protein-type tran- response.
    [Show full text]