The Role of Integrins and Cytoskeletal Forces in Interstitial Leukocyte Migration

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Integrins and Cytoskeletal Forces in Interstitial Leukocyte Migration Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München The role of integrins and cytoskeletal forces in interstitial leukocyte migration Tim Lämmermann aus Fürth 2009 Erklärung Diese Dissertation wurde im Sinne von § 13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Herrn Prof. Dr. Reinhard Fässler betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 20.4.2009 Tim Lämmermann Dissertation eingereicht am 21.4.2009 1. Gutachter: Prof. Dr. Reinhard Fässler 2. Gutachter: Prof. Dr. Markus Sperandio Mündliche Prüfung am 28.5.2009 Table of contents 1 Table of contents 1 TABLE OF CONTENTS .............................................................................................................................I 2 LIST OF PUBLICATIONS ....................................................................................................................... II 3 ABBREVIATIONS....................................................................................................................................III 4 SUMMARY................................................................................................................................................IV 5 INTRODUCTION ....................................................................................................................................... 1 5.1 LEUKOCYTE MIGRATION IN GENERAL ................................................................................................... 1 5.1.1 Principle trafficking processes........................................................................................................ 1 5.1.2 Trafficking molecules ...................................................................................................................... 2 5.2 INTEGRINS ON LEUKOCYTES ................................................................................................................. 4 5.2.1 Integrin structure and functions...................................................................................................... 4 5.2.2 Integrin activation in leukocytes ..................................................................................................... 6 5.2.3 Functions of integrins in leukocyte migration................................................................................. 8 5.2.3.1 Extravasation......................................................................................................................................... 8 5.2.3.2 Interstitial migration............................................................................................................................ 11 5.3 AMOEBOID MIGRATION OF LEUKOCYTES ............................................................................................ 12 5.3.1 Amoeboid migration..................................................................................................................... 12 5.3.2 Cellular forces in amoeboid migration ......................................................................................... 13 5.3.2.1 Balancing adhesion and contraction .................................................................................................... 15 5.3.2.2 Balancing contraction and polymer network expansion ...................................................................... 17 5.4 DENDRITIC CELL MIGRATION ..................................................................................................................... 18 5.4.1 Dendritic cells in general.............................................................................................................. 18 5.4.2 Dendritic cell trafficking from the skin to the lymph node ............................................................ 19 5.4.2.1 Mobilization and principle guidance cues ........................................................................................... 19 5.4.2.2 Dendritic cell trafficking in the skin.................................................................................................... 20 5.4.2.3 Dendritic cell trafficking into the lymphatic vessel............................................................................. 22 5.4.2.4 Dendritic cell trafficking within the lymph node................................................................................. 24 5.4.3 Cytoskeletal regulation of dendritic cell migration....................................................................... 26 6 AIM OF THE THESIS.............................................................................................................................. 28 7 BRIEF SUMMARIES OF THE PUBLICATIONS................................................................................ 29 7.1 SUMMARY PAPER I ............................................................................................................................. 29 7.2 SUMMARY PAPER II (REVIEW)............................................................................................................ 29 7.3 SUMMARY PAPER III (REVIEW) .......................................................................................................... 30 7.4 SUMMARY PAPER IV (REVIEW) .......................................................................................................... 30 7.5 SUMMARY PAPER V............................................................................................................................ 31 7.6 SUMMARY PAPER VI .......................................................................................................................... 32 7.7 SUMMARY PAPER VII ......................................................................................................................... 32 8 ACKNOWLEDGEMENTS ...................................................................................................................... 33 9 CURRICULUM VITAE ........................................................................................................................... 34 10 REFERENCES.......................................................................................................................................... 35 11 SUPPLEMENTS........................................................................................................................................ 45 I List of publications 2 List of Publications The thesis is based on the following publications which are referred to in the text by their Roman numerals (I–VII): I. Haiyan Chu, Ingo Thievessen, Michael Sixt, Tim Lämmermann, Ari Waisman, Attila Braun, Angelika A. Noegel, Reinhard Fässler. γ-Parvin is dispensable for hematopoiesis, leukocyte trafficking, and T-cell-dependent antibody response. Molecular and Cellular Biology. 2006 Mar; 26(5):1817-25. II. Michael Sixt, Martina Bauer, Tim Lämmermann, Reinhard Fässler. β1 integrins: zip codes and signaling relay for blood cells. Current Opinion in Cell Biology. 2006 Oct; 18(5):482-90. Review. III. Zerina Lokmic*, Tim Lämmermann*, Michael Sixt, Susanna Cardell, Rupert Hallmann, Lydia Sorokin. The extracellular matrix of the spleen as a potential organizer of immune cell compartments. Seminars in Immunology. 2008 Feb; 20(1):4-13. Review. * equally contributing first authors. IV. Tim Lämmermann, Michael Sixt. The microanatomy of T-cell responses. Immunological Reviews. 2008 Feb; 221:26-43. Review. V. Tim Lämmermann, Bernhard L. Bader, Susan J. Monkley, Tim Worbs, Roland Wedlich-Söldner, Karin Hirsch, Markus Keller, Reinhold Förster, David R. Critchley, Reinhard Fässler, Michael Sixt. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008 May 1; 453(7191):51-5. VI. Kai Kessenbrock, Leopold Fröhlich, Michael Sixt, Tim Lämmermann, Andrew Bateman, Azzaq Belaaouaj, Johannes Ring, Markus Ollert, Reinhard Fässler, Dieter E. Jenne. Proteinase 3 and neutrophil elastase enhance inflammation by inactivating anti- inflammatory progranulin. Journal of Clinical Investigations. 2008 Jul; 118(7):2438-47. VII. Tim Lämmermann , Jörg Renkawitz, Xunwei Wu, Karin Hirsch, Cord Brakebusch, Michael Sixt. Cdc42-dependent leading edge coordination is essential for interstitial dendritic cell migration. Blood. 2009 Jun 4; 113(23):5703-10. Epub 2009 Feb 3. Reprints were made with permission from the publisher. II Abbreviations 3 Abbreviations 2D two-dimensional LFA-1 lymphocyte function-associated 3D three-dimensional antigen 1 APC antigen-presenting cell LN lymph node Arp2/3 actin-related protein 2/3 Mac-1 macrophage antigen 1 BM basement membrane MAdCAM-1 mucosal vascular addressin cell CalDAG Ca2+ and diacylglycerol-regulated adhesion molecule 1 guanine nucleotide exchange factor MHC major histocompatibility complex CCL CC-chemokine ligand MMP matrix metalloproteinase CCR CC-chemokine receptor MSP major sperm protein CD cluster of differentiation PECAM-1 platelet/endothelial cell adhesion Cdc42 cell division cycle 42 molecule 1 CLEVER-1 common lymphatic endothelial and PGC primordial germ cell vascular endothelial receptor 1 PI3K phosphoinositide-3 kinase CXCL CXC-chemokine ligand PIP3 phosphoinositol-3,4,5-triphosphate CXCR CXC-chemokine receptor PNAd peripheral lymph node addressin DC dendritic cell PPs Peyer’s patches dDC dermal dendritic cell PSGL-1 P-selectin glycoprotein ligand 1 ECM extracellular matrix PTB phospho-tyrosine binding ESAM endothelial cell-selective adhesion Rac ras-related C3 botulinum toxin
Recommended publications
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • Identification of a Receptor Required for the Anti-Inflammatory Activity of IVIG
    Identification of a receptor required for the INAUGURAL ARTICLE anti-inflammatory activity of IVIG Robert M. Anthonya, Fredrik Wermelinga,b, Mikael C. I. Karlssonb, and Jeffrey V. Ravetcha,1 aThe Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065; and bDepartment of Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected on April 25, 2006. Contributed by Jeffrey V. Ravetch, October 11, 2008 (sent for review October 1, 2008) The anti-inflammatory activity of intravenous Ig (IVIG) results from patients suffering from autoimmune diseases (3). Monomeric IgG, a minor population of the pooled IgG molecules that contains purified from the serum of thousands of healthy donors (IVIG) is terminal ␣2,6-sialic acid linkages on their Fc-linked glycans. These a commonly administered at high doses (1–2 g/kg) for the treatment anti-inflammatory properties can be recapitulated with a fully of a number of autoimmune diseases, including immune-mediated recombinant preparation of appropriately sialylated IgG Fc frag- thrombocytopenia, chronic inflammatory demyelinating polyneu- ments. We now demonstrate that these sialylated Fcs require a ropathy, Kawasaki Disease and Guillain-Barre syndrome, and is specific C-type lectin, SIGN-R1, (specific ICAM-3 grabbing non- widely used in other autoimmune disorders (4–6). integrin-related 1) expressed on macrophages in the splenic mar- A number of hypotheses have been advanced to explain the ginal zone. Splenectomy, loss of SIGN-R1؉ cells in the splenic paradoxical activity of high dose IgG, and include models that marginal zone, blockade of the carbohydrate recognition domain attribute the activity to the polyclonal binding specificities, encoded (CRD) of SIGN-R1, or genetic deletion of SIGN-R1 abrogated the in the variable domains of the administered antibodies that may anti-inflammatory activity of IVIG or sialylated Fc fragments.
    [Show full text]
  • Masaharu Tanaka, Yoshiya Aze, and Tsuneo Fujita Fukui Institute For
    J Toxicol Pathol 7: 371•`377, 1994 THE RELATIONSHIP BETWEEN INCREASED EMPERIPOLESIS INDEX AND SEVERE HEMATOPOIETIC CELL HYPERPLASIA IN THE BONE MARROW OF LPS-TREATED RATS Masaharu Tanaka, Yoshiya Aze, and Tsuneo Fujita FukuiInstitute for SafetyResearch, ONO Pharmaceutial Co., Ltd. Abstract: To investigate the relationship between the frequency of megakaryocytic emperipolesis and the number of hematopoietic cells, the animals were administered lipopolysaccharide (LPS) intravenously at a daily dose of 0.5mg/kg body weight for up to 7days, and histopathology of bone marrow and hematology of peripheral bloods were examined on Hour 2, 8, and 24 and Day 3, 5, and 7 of LPS treatment. Mature neutrophils appeared to be the most common hematocytes engulfed by megakar yocytes. Engulfed blood cells were observed in the demarcation membrane system of mature megakar yocytes. Cell membranes of both megakaryocytes and entering cells were intact. Although megakar yocytic emperipolesis was also found in control rats, its incidence increased markedly in LPS-treated rats which showed hyperplasia of granulocytes and megakaryocytes in their bone marrows. The index of emperipolesis showed a minimal change from 2.25 to 3.04 during the experimental period in control rats, whereas it rose from Hour 8 (9.78) and peaked on Day 3 (46.04) in LPS-treated rats. Hyperplasia of hematopoietic cells such as megakaryocytes and segmented neutrophils also peaked on Day 3 of LPS treatment. These changes suggest that emperipolesis is a phenomenon closely related to severe hematopoietic hyperplasia in the bone marrow. (J Toxicol Pathol 7: 371•`377, 1994) Key words: Emperipolesis, Lipoplolysaccharide, Megakaryocyte, Neutrophil, Rat normal bone marrows, it showed a marked Introduction increase under several pathological conditions; Emperipolesis was introduced by Humble et idiopathic thrombocytopenic purpura4,17, iron al to describe "inside round about wandering" of deficiency anemia 17, malignant tumors 1.4,10,12-18, lymphocytes within malignant cells in tissue etc.
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Chapter 6.4 Herpes Simplex Virus Enhances HIV-1 Transmission By
    6.4: HSV enhances HIV-1 transmission by LCs Chapter 6.4 Herpes simplex virus enhances HIV-1 transmission by Langerhans cells. Lot de Witte*, Marein A.W.P. de Jong*, Yvette van Kooyk and Teunis B.H. Geijtenbeek. Genital herpes is a risk factor to acquire HIV-1 infection by sexual contact, by increasing both infectivity of an infected person and susceptibility to acquire HIV-1. Here we have investigated the mechanisms that underlie the increased susceptibility to HIV-1 when people have genital herpes. Under steady state conditions, LCs capture HIV-1 through interaction with the C-type lectin Langerin, resulting in viral clearance and protection against HIV-1. During primary genital herpes or recurrent infections, HSV infects epithelial cells and encounters LCs in the mucosal epithelium. We set out to investigate the function of HSV-infected LCs and subepithelial DCs during HIV-1 transmission. We demonstrate that HSV interacts with soluble and cellular Langerin and that infection of LCs decreases expression of this receptor. Notably, LC infection with both HSV-1 and HSV-2 enhances HIV-1 transmission, suggesting an important role for LCs during HIV-1 transmission in the HSV-infected individual. Furthermore our data indicate that HSV infection of DCs and LCs has different outcomes for HIV-1 transmission, and our results suggest that DC-SIGN and Langerin are involved. Future research is needed to confirm the differential role of Langerin and DC-SIGN during HIV-1 transmission in conditions of genital herpes. Department of Molecular Cell Biology and Immunology, VU University Medical Center, van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands *Authors contributed equally to this work (Manuscript submitted for publication) 195 Section 6: Risk factors to acquire HIV-1: a role for Langerhans cells? Introduction Genital herpes is a common infection, which is mainly caused by herpes simplex virus type-2 (HSV-2), although an increasing percentage of the genital herpes is caused by HSV-141.
    [Show full text]
  • The Chemokine System in Innate Immunity
    Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press The Chemokine System in Innate Immunity Caroline L. Sokol and Andrew D. Luster Center for Immunology & Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 Correspondence: [email protected] Chemokines are chemotactic cytokines that control the migration and positioning of immune cells in tissues and are critical for the function of the innate immune system. Chemokines control the release of innate immune cells from the bone marrow during homeostasis as well as in response to infection and inflammation. Theyalso recruit innate immune effectors out of the circulation and into the tissue where, in collaboration with other chemoattractants, they guide these cells to the very sites of tissue injury. Chemokine function is also critical for the positioning of innate immune sentinels in peripheral tissue and then, following innate immune activation, guiding these activated cells to the draining lymph node to initiate and imprint an adaptive immune response. In this review, we will highlight recent advances in understanding how chemokine function regulates the movement and positioning of innate immune cells at homeostasis and in response to acute inflammation, and then we will review how chemokine-mediated innate immune cell trafficking plays an essential role in linking the innate and adaptive immune responses. hemokines are chemotactic cytokines that with emphasis placed on its role in the innate Ccontrol cell migration and cell positioning immune system. throughout development, homeostasis, and in- flammation. The immune system, which is de- pendent on the coordinated migration of cells, CHEMOKINES AND CHEMOKINE RECEPTORS is particularly dependent on chemokines for its function.
    [Show full text]
  • Insights Into Interactions of Mycobacteria with the Host Innate
    This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. Articles pubs.acs.org/acschemicalbiology Insights into Interactions of Mycobacteria with the Host Innate Immune System from a Novel Array of Synthetic Mycobacterial Glycans † ‡ † † † † Ruixiang Blake Zheng, Sabine A. F. Jegouzo,́ Maju Joe, Yu Bai, Huu-Anh Tran, Ke Shen, † † † † § § Jörn Saupe, Li Xia, Md. Faiaz Ahmed, Yu-Hsuan Liu, Pratap Subhashrao Patil, Ashish Tripathi, § ‡ † ‡ Shang-Cheng Hung, Maureen E. Taylor,*, Todd L. Lowary,*, and Kurt Drickamer*, † Department of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, AB T6G 2G2, Canada ‡ Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom § Genomics Research Centre, Academia Sinica, Nangang, Taipei 11529, Taiwan *S Supporting Information ABSTRACT: An array of homogeneous glycans representing all the major carbohydrate structures present in the cell wall of the human pathogen Mycobacterium tuberculosis and other mycobacteria has been probed with a panel of glycan-binding receptors expressed on cells of the mammalian innate immune system. The results provide an overview of interactions between mycobacterial glycans and receptors that mediate uptake and survival in macrophages, dendritic cells, and sinusoidal endothelial cells. A subset of the wide variety of glycan structures present on mycobacterial surfaces interact with cells of the innate immune system through the receptors tested. Endocytic receptors, including the mannose receptor, DC-SIGN, langerin, and DC-SIGNR (L-SIGN), interact predominantly with mannose-containing caps found on the mycobacterial polysaccharide lipoarabinomannan. Some of these receptors also interact with phosphatidyl-myo-inositol mannosides and mannose-containing phenolic glycolipids.
    [Show full text]
  • The Role of Langerin Transfer From
    Inhibition of Two Temporal Phases of HIV-1 Transfer from Primary Langerhans Cells to T Cells: The Role of Langerin This information is current as Najla Nasr, Joey Lai, Rachel A. Botting, Sarah K. Mercier, of September 29, 2021. Andrew N. Harman, Min Kim, Stuart Turville, Rob J. Center, Teresa Domagala, Paul R. Gorry, Norman Olbourne and Anthony L. Cunningham J Immunol 2014; 193:2554-2564; Prepublished online 28 July 2014; Downloaded from doi: 10.4049/jimmunol.1400630 http://www.jimmunol.org/content/193/5/2554 Supplementary http://www.jimmunol.org/content/suppl/2014/07/26/jimmunol.140063 http://www.jimmunol.org/ Material 0.DCSupplemental References This article cites 60 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/193/5/2554.full#ref-list-1 Why The JI? Submit online. by guest on September 29, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Megakaryocyte Emperipolesis Mediates Membrane Transfer from Intracytoplasmic Neutrophils to Platelets
    RESEARCH ARTICLE Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets Pierre Cunin1, Rim Bouslama1, Kellie R Machlus2, Marta Martı´nez-Bonet1, Pui Y Lee1,3, Alexandra Wactor1, Nathan Nelson-Maney1, Allyn Morris1, Li Guo4, Andrew Weyrich4, Martha Sola-Visner5, Eric Boilard6, Joseph E Italiano2,7, Peter A Nigrovic1,3* 1Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States; 2Department of Medicine, Hematology Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, United States; 3Department of Medicine, Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 4Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, United States; 5Department of Neonatology, Boston Children’s Hospital, Harvard Medical School, Boston, United States; 6Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Que´bec, Faculte´ de Me´decine de l’Universite´ Laval, Que´bec, Canada; 7Vascular Biology Program, Department of Surgery, Boston Children’s Hospital, Harvard Medical School, Boston, United States Abstract Bone marrow megakaryocytes engulf neutrophils in a phenomenon termed emperipolesis. We show here that emperipolesis is a dynamic process mediated actively by both lineages, in part through the b2-integrin/ICAM-1/ezrin pathway. Tethered neutrophils enter in membrane-bound vesicles before penetrating into the megakaryocyte cytoplasm. Intracytoplasmic neutrophils develop membrane contiguity with the demarcation membrane system, thereby *For correspondence: [email protected] transferring membrane to the megakaryocyte and to daughter platelets. This phenomenon occurs in otherwise unmanipulated murine marrow in vivo, resulting in circulating platelets that bear Competing interest: See membrane from non-megakaryocytic hematopoietic donors.
    [Show full text]
  • C-Type Lectins in Veterinary Species: Recent Advancements and Applications
    International Journal of Molecular Sciences Review C-Type Lectins in Veterinary Species: Recent Advancements and Applications Dimitri Leonid Lindenwald and Bernd Lepenies * Immunology Unit & Research Center for Emerging Infections and Zoonoses (RIZ), University for Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-(0)5-11/953-6135 Received: 29 June 2020; Accepted: 17 July 2020; Published: 20 July 2020 Abstract: C-type lectins (CTLs), a superfamily of glycan-binding receptors, play a pivotal role in the host defense against pathogens and the maintenance of immune homeostasis of higher animals and humans. CTLs in innate immunity serve as pattern recognition receptors and often bind to glycan structures in damage- and pathogen-associated molecular patterns. While CTLs are found throughout the whole animal kingdom, their ligand specificities and downstream signaling have mainly been studied in humans and in model organisms such as mice. In this review, recent advancements in CTL research in veterinary species as well as potential applications of CTL targeting in veterinary medicine are outlined. Keywords: C-type lectin; glycans; immune modulation; comparative immunology; veterinary immunology 1. Introduction Glycans belong to the most abundant macromolecules constituting all living organisms. In multicellular animals, processes such as cell migration, homeostasis maintenance, and innate immune signaling rely on the ability of cells to recognize glycoconjugates, most often in the form of glycoproteins and glycolipids, via glycan binding proteins, the so-called lectins [1]. In the immune system, lectin receptors are either secreted or found on the cell surface of immune cells [2].
    [Show full text]
  • REVIEW the Bone Marrow Niche: Habitat to Hematopoietic
    Leukemia (2008) 22, 941–950 & 2008 Nature Publishing Group All rights reserved 0887-6924/08 $30.00 www.nature.com/leu REVIEW The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites Y Shiozawa1, AM Havens2, KJ Pienta3 and RS Taichman1 1Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; 2Harvard School of Dental Medicine, Boston, MA, USA and 3Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA In post-fetal life, hematopoiesis occurs in unique microenvir- In the marrow, bone marrow stromal cells derived from onments or ‘niches’ in the marrow. Niches facilitate the mesenchymal stem cells (MSCs) are believed to provide the maintenance of hematopoietic stem cells (HSCs) as unipotent, while supporting lineage commitment of the expanding blood basis for the physical structures of the niche. As such, bone populations. As the physical locale that regulates HSC function, marrow stromal cells are thought to regulate self-renewal, the niche function is vitally important to the survival of the proliferation and differentiation of the HSCs through production organism. This places considerable selective pressure on of cytokines and intracellular signals that are initiated by cell- HSCs, as only those that are able to engage the niche in the to-cell adhesive interaction.4 Bone marrow stromal cells are appropriate context are likely to be maintained as stem cells. composed of cells of mesenchymal origin known to include Since niches are central regulators of stem cell function, it is 5 not surprising that molecular parasites like neoplasms are osteoblasts, endothelial cells, fibroblasts and adipocytes.
    [Show full text]