Toward a Mass-Limited Catalog of Galaxy Clusters from the Atacama Cosmology Telescope

Total Page:16

File Type:pdf, Size:1020Kb

Toward a Mass-Limited Catalog of Galaxy Clusters from the Atacama Cosmology Telescope Toward a Mass-Limited Catalog of Galaxy Clusters from the Atacama Cosmology Telescope Adam Douglas Hincks ADISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF PHYSICS ADVISER:LYMAN A. PAGE,JR. SEPTEMBER 2009 c Copyright by Adam Douglas Hincks, 2009. All rights reserved. Abstract The Atacama Cosmology Telescope (ACT) is a six meter observatory in the Andes of northern Chile. It is currently in its third season of operation, observing the cosmic microwave background (CMB) with about 1000 detectors each at 148 GHz, 218 GHz, and 277 GHz. Capable of producing high sensitivity maps of the CMB at arcminute resolution, the ACT will contribute to our knowledge of cosmology by constraining the parameters describing the early universe as well as by studying its subsequent evolution. One of the more important tools for investigating the latter will be the Sunyaev-Zel’dovich (SZ) effect, by which large clusters of galaxies leave distinct imprints in the CMB, the strength of which is nearly independent of redshift. In this dissertation, we present maps of the first SZ clusters to be detected by the ACT, showing that we are beginning to reach our objective of creating a large, mass-limited catalog of clusters for probing the growth of structure in the universe. Extensive data analysis is required to produce our CMB maps, so, after describing the telescope itself, much of the dissertation is devoted to presenting some of the mapmaking elements. In particular, we have developed a pipeline which specializes at removing atmospheric contamination from the data to produce small, clean maps suitable for cluster analysis. It has also been used to make high precision beam maps, crucial for interpreting all of the measurements made by the ACT. iii iv The heavens catalog the glory of God, And the expanse makes known the work of his hands. v vi Acknowledgments An famous Oxford don believed that the relationship between a professor and his proteg´ e´ should not to be that of schoolmaster and pupil, but rather that of collaborators. “The student is, or ought to be, a young man who is already beginning to follow learning for its own sake, and who attaches himself to an older student, not precisely to be taught, but to pick up what he can. From the very beginning the two ought to be fellow students.”1 I have been fortunate to have many outstanding “fellow students” during my academic career and it is a pleasure to offer my deep gratitude to them here. My interest in cosmology matured as an undergraduate at the University of Toronto, much of it due to the enthusiasm and cheerfulness of Barth Netterfield, in whose lab I worked for two sum- mers. Dick Bond and Carlo Contaldi were also important influences during my work with them at CITA. When I arrived at Princeton, I was fairly certain I wanted to work with Lyman Page. My ex- perience over five years has confirmed the wisdom of this initial inclination. He has given me the latitude to pursue my own interests within the bounds of our research, but at the same time has been eminently available, given insightful guidance, and always offered encouragement when most needed. I particularly thank him and his wife Lisa for their hospitality during the last few weeks of my work on this dissertation. Formally I have had one doctoral advisor, but informally I have had several, at Princeton and beyond. I have very much enjoyed working with Mark Devlin, Joe Fowler, Mark Halpern, Norm Jarosik, Jeff Klein, Michele Limon, and Suzanne Staggs, all of whom have taught me a great deal. Their collective experience coupled with generous personalities have been indispensable to my growth as a researcher. I have had the good luck of having wonderful officemates over the years: Asad Aboobaker, Ryan Fisher, Judy Lau, Toby Marriage, Mike Niemack, and Eric Switzer. Additionally, there are many members of our project with whom I have worked closely: Paula Aguirre, John William Appel, Elia Battistelli, Sudeep Das, Jo Dunkley, Rolando Dunner-Planella,¨ Tom Essinger-Hileman, Amir Hajian, Matt Hasselfield, Madhuri Kaul, Danica Marsden, Mike “Dr. No” Nolta, Lucas Parker, Jon Sievers, David Spergel, Omelan Stryzak, Dan Swetz, Bob Thornton, and Yue Zhao. I have spent a lot of quality time at close quarters with most of these fine people in the field, and can truly say that I enjoy the company of each and every one of them. From the wider collaboration I have benefited from interactions with Viviana Acquaviva, Man- dana Amiri, Ben Brown, Bryce Burger, Jay Chervenak, Sarah Denny, Simon Dicker, Randy Doriese, Carlos Hernandez-Monteagudo,´ Gene Hilton, Renee´ Hlozek, Anson Hook, Kevin Huffenberger, David Hughes, Jack Hughes, Polo Infante, Kent Irwin, Raul Jiminez, Jean-Baptiste Juin, Arthur Kosowsky, Yen-Tin Lin, Bob Margolis, Krista Martocci, Robert Lupton the Good, Felipe Menanteau, Harvey Moseley, Bruce Partridge, Beth Reid, Audrey Sederberg, Neelima Sehgal, Hy Trac, Licia Verde, Katerina Visnjic, and Ed Wollack. I thank the staff in the department at Princeton whose assistance has been a great help through the years, particularly Claude Champagne, Angela Glenn, Laurel Lerner, Mike Peloso, Marixa Reyes, and John Washington. 1C. S. Lewis, “Our English Syllabus” in Rehabilitations and Other Essays, Oxford University Press, 1939. vii I would be remiss not to mention our colleagues from Dynamic Structures and KUKA robotics, particularly those with whom I worked most closely: Walter Brzezik, Mike Cozza, Jeff Funke, Mel Yargeau, and Ye Zhou. Additionally, I thank the members of ALMA, ASTE, CBI/QUIET, NANTEN2, Astro-Norte, and APEX who gave much informal support in the field in Chile and are too many to list by name here. I remember with fondness my two visits to the summer schools in South Africa, for which I re- ceived funding from the NSF PIRE program. I thank our collaborators Matt Hilton, Kavilan Moodley, Ryan Warne, and all of their fellow-organizers who helped make these trips so memorable. Nkosi sikelel’ iAfrika. I have been blessed with many friends in Princeton and, though sorely tempted, I cannot men- tion them all here. I will, however, give special thanks to Philip Eckhoff, Sam Feng, Nik Pavlov, Eric Switzer, and Tom Zanker, with whom I lived at various times in the past four years. Their friendship and good company have meant a great deal to me. I gratefully acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada, the United States’ National Science Foundation (via a grant to the Princeton Gravity Group), and Princeton University. The first school is the home and my most important teachers have been my family members, especially my parents. They have always given me the freedom to pursue my interests, and their love and support continues to help me become more fully alive. viii Preface When I arrived in Princeton in the autumn of 2004, the Atacama Cosmology Telescope (ACT) had just been funded by the National Science Foundation (NSF) and a contract for its construction awarded to AMEC Dynamic Structures. A vigorous campaign of detector fabrication and character- ization for this new project was well underway and prototype cryogenic systems for cooling them to 300 mK were being developed. Now, as I reach the end of my doctoral program, the telescope is in the middle of its third season of observations, and we recently released our very first astrophysical results. Thus, I have had both the good fortune and the privilege of working on this project from the initial stages through to its fruition, and I have been involved in everything from instrumentation to analysis of celestial maps. Much of the work that goes into an experiment is not of interest to the wider world. The sub- stantial amount of time spent running cables, soldering, computer programming, pumping diesel, and so on, while necessary for the project and often rewarding in of itself for the laborer, cannot be represented with commensurate length in a scientific treatise. Consequently, I devote the majority of this dissertation to the data analysis I have worked on over the past year and a half. A project like the ACT is collaborative by its very nature, and I have done nothing in complete isolation from the rest of the group. Nevertheless, I have generally only included material which is substantially my own work, and have attempted to acknowledge specific contributions from colleagues whenever possible throughout the text. This dissertation is structured to lead from a general understanding of the telescope hardware to our first measurements of distant clusters of galaxies. The first chapter is an introduction to the scientific motivation for the project and also provides an overview of the telescope and its receiver. Chapter2 describes some of the control and data acquisition systems which I helped to realize. Chapter3 is about low-level data analysis and Chapter4 outlines the mapmaking algorithm I developed for the ACT data. Maps from this pipeline are used in Chapter5 to make precision measurements of the telescope beam pattern, and in Chapter6 for studying point sources and clusters of galaxies. Large portions of the final two chapters are based on our first science paper (Hincks et al., 2009). Some material in the first and second chapter may also be found in Hincks et al.(2008). ix x Contents Abstract.............................................. iii Acknowledgments ........................................ vii Preface .............................................. ix List of Figures .......................................... xiv List of Tables ........................................... xvii 1 Introduction 1 1.1 Relict Radiation....................................... 1 1.1.1 Hot and Cold Spots in the CMB.......................... 2 1.1.2 Primary CMB Anisotropies ............................ 3 1.1.3 Secondary CMB Anisotropies..........................
Recommended publications
  • Arxiv:1903.02002V1 [Astro-Ph.GA] 5 Mar 2019
    Draft version March 7, 2019 Typeset using LATEX twocolumn style in AASTeX62 RELICS: Reionization Lensing Cluster Survey Dan Coe,1 Brett Salmon,1 Maruˇsa Bradacˇ,2 Larry D. Bradley,1 Keren Sharon,3 Adi Zitrin,4 Ana Acebron,4 Catherine Cerny,5 Nathalia´ Cibirka,4 Victoria Strait,2 Rachel Paterno-Mahler,3 Guillaume Mahler,3 Roberto J. Avila,1 Sara Ogaz,1 Kuang-Han Huang,2 Debora Pelliccia,2, 6 Daniel P. Stark,7 Ramesh Mainali,7 Pascal A. Oesch,8 Michele Trenti,9, 10 Daniela Carrasco,9 William A. Dawson,11 Steven A. Rodney,12 Louis-Gregory Strolger,1 Adam G. Riess,1 Christine Jones,13 Brenda L. Frye,7 Nicole G. Czakon,14 Keiichi Umetsu,14 Benedetta Vulcani,15 Or Graur,13, 16, 17 Saurabh W. Jha,18 Melissa L. Graham,19 Alberto Molino,20, 21 Mario Nonino,22 Jens Hjorth,23 Jonatan Selsing,24, 25 Lise Christensen,23 Shotaro Kikuchihara,26, 27 Masami Ouchi,26, 28 Masamune Oguri,29, 30, 28 Brian Welch,31 Brian C. Lemaux,2 Felipe Andrade-Santos,13 Austin T. Hoag,2 Traci L. Johnson,32 Avery Peterson,32 Matthew Past,32 Carter Fox,3 Irene Agulli,4 Rachael Livermore,9, 10 Russell E. Ryan,1 Daniel Lam,33 Irene Sendra-Server,34 Sune Toft,24, 25 Lorenzo Lovisari,13 and Yuanyuan Su13 1Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2Department of Physics, University of California, Davis, CA 95616, USA 3Department of Astronomy, University of Michigan, 1085 South University Ave, Ann Arbor, MI 48109, USA 4Physics Department, Ben-Gurion University of the Negev, P.O.
    [Show full text]
  • Instrumental Performance and Results from Testing of the BLAST-TNG Receiver, Submillimeter Optics, and MKID Arrays
    Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays Nicholas Galitzkia, Peter Adeb, Francesco E. Angil`ea, Peter Ashtonc, Jason Austermannd, Tashalee Billingsa, George Chee, Hsiao-Mei Chof, Kristina Davise, Mark Devlina, Simon Dickera, Bradley J. Dobera, Laura M. Fisselc, Yasuo Fukuig, Jiansong Gaod, Samuel Gordone, Christopher E. Groppie, Seth Hillbranda, Gene C. Hiltond, Johannes Hubmayrd, Kent D. Irwinh, Jeffrey Kleina, Dale Lif, Zhi-Yun Lii, Nathan P. Louriea, Ian Lowea, Hamdi Manie, Peter G. Martinj, Philip Mauskopfe, Christopher McKenneyd, Federico Natia, Giles Novakc, Enzo Pascaleb, Giampaolo Pisanob, Fabio P. Santosc, Douglas Scottk, Adrian Sinclaire, Juan D. Solerl, Carole Tuckerb, Matthew Underhille, Michael Vissersd, and Paul Williamsc aUniversity of Pennsylvania, 209 S 33rd St, Philadelphia, PA, USA bUniversity of Cardiff, The Parade, Cardiff, United Kingdom cCenter for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics & Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA dNational Institute of Standards and Technology, 325 Broadway, Boulder, CO, USA eArizona State University, PO Box 871404, Tempe, AZ, USA fSLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, USA gNagoya University, Furocho, Chikusa Ward, Nagoya, Aichi Prefecture, Japan hStanford University, 382 Via Pueblo Mall, Stanford, CA, USA iUniversity of Virginia, 530 McCormick Road, Charlottesville, VA, USA jUniversity of Toronto, 60 St. George Street, Toronto, ON, Canada lUniversity of British Columbia, 6224 Agricultural Road, Vancouver, BC, Canada kLaboratoire AIM, Paris-Saclay, CEA/IRFU/SAp - CNRS - Universit´eParis Diderot, 91191, Gif-sur-Yvette Cedex, France ABSTRACT Polarized thermal emission from interstellar dust grains can be used to map magnetic fields in star forming molecular clouds and the diffuse interstellar medium (ISM).
    [Show full text]
  • Probing the Dark Flow Signal in WMAP 9Yr and PLANCK CMB Maps
    Probing the Dark Flow signal in WMAP 9yr and PLANCK CMB Maps. Fernando Atrio-Barandela. Departamento de F´ısica Fundamental. Universidad de Salamanca. eml: [email protected] In collaboration with: H. Ebeling, D. Fixsen, A. Kashlinsky, D. Kocevski. Ibericos 2015 Aranjuez, March 30th - April 1st, 2015. 1 Summary. Introduction: The CMB dipole. Measuring Peculiar Velocities. Results with WMAP. Results with PLANCK (Planck Collaboration). Results with PLANCK (Our Analysis). Cosmological Implications and Conclusions. Ibericos 2015 Aranjuez, March 30th - April 1st, 2015. 2 Introduction: The CMB dipole. Ibericos 2015 Aranjuez, March 30th - April 1st, 2015. 3 The Cosmic Microwave Background. Monopole T=2.73K Dipole T=3mK Octupole O=33 K Planck Nominal Map at 353GHz Ibericos 2015 Aranjuez, March 30th - April 1st, 2015. 4 The CMB dipole. If density perturbations are adiabatic, generated during inflation, then the low order • multipoles verify: ℓ(ℓ + 1)C = const 2C = 12C = 12 1000(µK)2 D 70µ 1mK ℓ ⇒ 1 3 ∗ ⇒ ∼ ≪ Then, the dipole CAN NOT BE PRIMORDIAL. It is a Doppler effect due to the local motion of the Local Group with velocity 600km/s in the direction of l = 2700, b = 300. ∼ Ibericos 2015 Aranjuez, March 30th - April 1st, 2015. 5 The convergence of the CMB dipole. COMA VIRGO CENTAURUS HYDRA PERSEUS (Left) CMB dipole measured by COBE. (Right) Large Scale Structure and gas distribution in the Local Universe. What are the scales that contribute to the 600km/s peculiar velocity of the LG? ∼ Ibericos 2015 Aranjuez, March 30th - April 1st, 2015. 6 Bulk Flows. The zero order moment of the velocity field is the mean peculiar velocity of a sphere of radius R or bulk flow 1 V 2(R) = P (k)W 2(kR)dk P (k) = δ(k) 2.
    [Show full text]
  • Radio Observations of the Merging Galaxy Cluster Abell 520 D
    A&A 622, A20 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833900 & c ESO 2019 Astrophysics LOFAR Surveys: a new window on the Universe Special issue Radio observations of the merging galaxy cluster Abell 520 D. N. Hoang1, T. W. Shimwell2,1, R. J. van Weeren1, G. Brunetti3, H. J. A. Röttgering1, F. Andrade-Santos4, A. Botteon3,5, M. Brüggen6, R. Cassano3, A. Drabent7, F. de Gasperin6, M. Hoeft7, H. T. Intema1, D. A. Rafferty6, A. Shweta8, and A. Stroe9 1 Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, The Netherlands e-mail: [email protected] 2 Netherlands Institute for Radio Astronomy (ASTRON), PO Box 2, 7990 AA Dwingeloo, The Netherlands 3 INAF-Istituto di Radioastronomia, via P. Gobetti 101, 40129 Bologna, Italy 4 Harvard-Smithsonian for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 5 Dipartimento di Fisica e Astronomia, Università di Bologna, via P. Gobetti 93/2, 40129 Bologna, Italy 6 Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany 7 Thüringer Landessternwarte, Sternwarte 5, 07778 Tautenburg, Germany 8 Indian Institute of Science Education and Research (IISER), Pune, India 9 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany Received 18 July 2018 / Accepted 10 September 2018 ABSTRACT Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic energies. Aims. We examine the possible acceleration mechanisms of the relativistic particles that are responsible for the extended radio emis- sion in the merging galaxy cluster Abell 520.
    [Show full text]
  • Radio and Millimeter Continuum Surveys and Their Astrophysical Implications
    The Astronomy and Astrophysics Review (2011) DOI 10.1007/s00159-009-0026-0 REVIEWARTICLE Gianfranco De Zotti · Marcella Massardi · Mattia Negrello · Jasper Wall Radio and millimeter continuum surveys and their astrophysical implications Received: 13 May 2009 c Springer-Verlag 2009 Abstract We review the statistical properties of the main populations of radio sources, as emerging from radio and millimeter sky surveys. Recent determina- tions of local luminosity functions are presented and compared with earlier esti- mates still in widespread use. A number of unresolved issues are discussed. These include: the (possibly luminosity-dependent) decline of source space densities at high redshifts; the possible dichotomies between evolutionary properties of low- versus high-luminosity and of flat- versus steep-spectrum AGN-powered radio sources; and the nature of sources accounting for the upturn of source counts at sub-milli-Jansky (mJy) levels. It is shown that straightforward extrapolations of evolutionary models, accounting for both the far-IR counts and redshift distribu- tions of star-forming galaxies, match the radio source counts at flux-density levels of tens of µJy remarkably well. We consider the statistical properties of rare but physically very interesting classes of sources, such as GHz Peak Spectrum and ADAF/ADIOS sources, and radio afterglows of γ-ray bursts. We also discuss the exploitation of large-area radio surveys to investigate large-scale structure through studies of clustering and the Integrated Sachs–Wolfe effect. Finally, we briefly describe the potential of the new and forthcoming generations of radio telescopes. A compendium of source counts at different frequencies is given in Supplemen- tary Material.
    [Show full text]
  • INVESTIGATING ACTIVE GALACTIC NUCLEI with LOW FREQUENCY RADIO OBSERVATIONS By
    INVESTIGATING ACTIVE GALACTIC NUCLEI WITH LOW FREQUENCY RADIO OBSERVATIONS by MATTHEW LAZELL A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics & Astronomy College of Engineering and Physical Sciences The University of Birmingham March 2015 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Low frequency radio astronomy allows us to look at some of the fainter and older synchrotron emission from the relativistic plasma associated with active galactic nuclei in galaxies and clusters. In this thesis, we use the Giant Metrewave Radio Telescope to explore the impact that active galactic nuclei have on their surroundings. We present deep, high quality, 150–610 MHz radio observations for a sample of fifteen predominantly cool-core galaxy clusters. We in- vestigate a selection of these in detail, uncovering interesting radio features and using our multi-frequency data to derive various radio properties. For well-known clusters such as MS0735, our low noise images enable us to see in improved detail the radio lobes working against the intracluster medium, whilst deriving the energies and timescales of this event.
    [Show full text]
  • Provisional Scientific Programme
    Galaxy Clusters as Giant Cosmic Laboratories – Programme Monday, 21 May 2012 09:00 Registration 09:50 Schartel: Opening Remarks Session I Dynamical and Thermal Structure of Galaxy Clusters and their ICM Chair: Birzan 10:00 Sanders: The thermal and dynamical state of cluster cores 10:30 Ohashi: X-ray study of clusters at the outer edge and beyond 10:45 Eckert: The gas distribution in galaxy cluster outer regions 11:00 Molendi: Extending measures of the ICM to the outskirts: facts, myths and puzzles 11:15 Sato: Temperature, entropy, and mass profiles to the virial radius of galaxy clusters with Suzaku 11:30- Coffee Break & Poster Viewing 12:00 Session II Dynamical and Thermal Structure of Galaxy Clusters and their ICM Chair: Altieri Cluster Mass Determination 12:00 Ettori: Cluster mass profiles from X-ray observations: present constraints and limitations 12:30 Russell: Shock fronts, electron-ion equilibration and ICM transport processes in the merging cluster Abell 2146 12:45 ZuHone: Probing the Microphysics of the Intracluster Medium with Cold Fronts in the ICM 13:00 Rossetti: Challenging the merging/sloshing cold front paradigm with a new XMM observation of A2142 13:15 Nevalainen: Bulk motion measurements in clusters of galaxies using XMM-Newton and ATHENA 13:30- Lunch 15:00 Session III Dynamical and Thermal Structure of Galaxy Clusters and their ICM Chair: de Grandi Cluster Mass Determination 15:00 Mahdavi: Multiwavelength Constraints on Scaling Relations and Substructure in a Sample of 50 Clusters of Galaxies 15:30 Pratt: Galaxy cluster
    [Show full text]
  • The Triple-Quasar Is an Optical Image of Milkyway, Andromeda and Triangulum Galaxies – Implies Expansion in the Direction of Dark Flow
    The Triple-quasar is an optical image of Milkyway, Andromeda and Triangulum galaxies – implies expansion in the direction of Dark Flow Jose P Koshy [email protected] Abstract: Based on the concept that light follows a circular path of radius 2.5 billion light-years, here I show that the triple-quasar LBQS 1429-008 is the 10.5 billion years old image of 'Milkyway, Andromeda and Triangulum' galaxies. From this, the position of our galaxy at two different times can be ascertained, and the direction of expansion of the universe can be estimated. The 'surprise finding' is that the direction thus obtained is in agreement with the direction of so- called 'Dark flow', implying the possibility that the expansion is due to actual motion of bodies, and hence LCDM model is wrong. 1. Introduction: The standard cosmological model (LCDM) visualizes metric expansion of the universe. In such a model, the motion of galaxy clusters with respect to the cosmic microwave background should be randomly distributed in all directions. However, using WMAP data, Alexander Kashlinsky1 et al have found evidence for a possible non-random component in the motion of galaxy clusters; this is referred to as 'dark flow'. This implies the possibility that expansion is due to actual 'physical motion' of bodies. An alternate model, explained in my previous papers, visualizes expansion as a consequence of 'actual motion' of galaxy-clusters. Also, the model visualizes that light follows a 'circular path', and so the returning rays can create past images of bodies that have moved out. So, based on that model, it becomes possible to ascertain 'the direction' in which the universe in our region expands.
    [Show full text]
  • The Q/U Imaging Experiment (QUIET): the Q-Band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller
    The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Advisor: Professor Amber Miller Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Laura Newburgh All Rights Reserved Abstract The Q/U Imaging ExperimenT (QUIET): The Q-band Receiver Array Instrument and Observations by Laura Newburgh Phase I of the Q/U Imaging ExperimenT (QUIET) measures the Cosmic Microwave Background polarization anisotropy spectrum at angular scales 25 1000. QUIET has deployed two independent receiver arrays. The 40-GHz array took data between October 2008 and June 2009 in the Atacama Desert in northern Chile. The 90-GHz array was deployed in June 2009 and observations are ongoing. Both receivers observe four 15◦ 15◦ regions of the sky in the southern hemisphere that are expected × to have low or negligible levels of polarized foreground contamination. This thesis will describe the 40 GHz (Q-band) QUIET Phase I instrument, instrument testing, observations, analysis procedures, and preliminary power spectra. Contents 1 Cosmology with the Cosmic Microwave Background 1 1.1 The Cosmic Microwave Background . 1 1.2 Inflation . 2 1.2.1 Single Field Slow Roll Inflation . 3 1.2.2 Observables . 4 1.3 CMB Anisotropies . 6 1.3.1 Temperature . 6 1.3.2 Polarization . 7 1.3.3 Angular Power Spectrum Decomposition . 8 1.4 Foregrounds . 14 1.5 CMB Science with QUIET . 15 2 The Q/U Imaging ExperimenT Q-band Instrument 19 2.1 QUIET Q-band Instrument Overview .
    [Show full text]
  • Astrophysics Notre Dame’S Partnership in the Large Binocular Telescope
    NOTRE DAME ASTROPHYSICS NOTRE DAME’S PARTNERSHIP IN THE LARGE BINOCULAR TELESCOPE The Large Binocular Telescope (LBT) stands on carbon and oxygen are created, and the LBT will Mt. Graham in Arizona, at 10,700 feet above sea support our quest for understanding. level, and next to the 1.8-m Vatican Advanced Technology Telescope. The unique facility is Telescopes not only look at distant objects, actually two 8.4-m telescopes that act in tandem but also act as time machines. Because light to produce images unlike any seen before. The may travel for billions of years before being LBT has the equivalent collecting power of a captured by the LBT’s mirrors, the images 12-m and the resolution of a 22-m telescope, far reveal the Universe as it was long ago. One of better than any other telescope today. It is the the big mysteries uncovered by the Hubble forerunner of the next generation of ultra-large Space Telescope program is the existence of telescopes. fully formed galaxies in the early universe, much earlier than physicists predicted. Their formation The LBT has extraordinary capabilities. will be a key research program for the LBT and Its design allows it to directly observe distant Origins Institute faculty Dinshaw Balsara and stars systems and to actually see planets in the Christopher Howk, who aim to understand the systems. Its ability to measure very precise atomic dynamics that govern the formation of galaxies spectra even enables researchers to determine the and with them the beginnings of life. chemical makeup of the planets’ atmospheres.
    [Show full text]
  • SPIDER Experiment
    Searching for the echoes of inflation with H. Cynthia Chiang University of KwaZulu-Natal Madrid: CMB, LSS, 21cm June 24, 2016 B mode polarization in the CMB E modes are the CMB's “intrinsic polarization” We expect them to be there because of scattering processes in the CMB Temperature anisotropies predict E-mode spectra with almost no extra information Not only that, but “standard” CMB scattering physics generates ONLY E modes. Why do we care about B modes? Inflation: exponential expansion of universe (x 1025) at 10-35 sec after big bang creates a gravitational wave background that leaves a B-mode imprint on CMB polarization. Gravitational lensing by large scale structure converts some of the E-mode polarization to B-mode. Use this to study structure formation, “weigh” neutrinos. How can we tell the difference between the above two? Degree vs. arcminute angular scales. The moral of the story: B modes tell us things about the universe that temperature and E modes can't. Inflation scorecard Inflation predicts: Our universe (Planck 2015): A flat universe Ωk = 0.000 ± 0.0025 with nearly scale-invariant ns = 0.968 ± 0.006 density fluctuations, well described by a power law, dns / d lnk = -0.0065 ± 0.0076 with scalar perturbations r0.002 < 0.01 (at 2σ) that are Gaussian fNL = 2.5 ± 5.7 and adiabatic, βiso < 0.03 (at 2σ) with a negligible contribution from topological defects f10 < 0.04 (Adapted from Martin White) Constraining inflation Planck 2015 CMB polarization power spectra E-mode E-mode is mainly sourced by density fluctuations and is the intrinsic polarization of the CMB Degree-scale B-mode from gravitational waves, amplitude described by the tensor-to-scalar ratio r.
    [Show full text]
  • Maturity of Lumped Element Kinetic Inductance Detectors For
    Astronomy & Astrophysics manuscript no. Catalano˙f c ESO 2018 September 26, 2018 Maturity of lumped element kinetic inductance detectors for space-borne instruments in the range between 80 and 180 GHz A. Catalano1,2, A. Benoit2, O. Bourrion1, M. Calvo2, G. Coiffard3, A. D’Addabbo4,2, J. Goupy2, H. Le Sueur5, J. Mac´ıas-P´erez1, and A. Monfardini2,1 1 LPSC, Universit Grenoble-Alpes, CNRS/IN2P3, 2 Institut N´eel, CNRS, Universit´eJoseph Fourier Grenoble I, 25 rue des Martyrs, Grenoble, 3 Institut de Radio Astronomie Millim´etrique (IRAM), Grenoble, 4 LNGS - Laboratori Nazionali del Gran Sasso - Assergi (AQ), 5 Centre de Sciences Nucl´eaires et de Sciences de la Mati`ere (CSNSM), CNRS/IN2P3, bat 104 - 108, 91405 Orsay Campus Preprint online version: September 26, 2018 ABSTRACT This work intends to give the state-of-the-art of our knowledge of the performance of lumped element kinetic inductance detectors (LEKIDs) at millimetre wavelengths (from 80 to 180 GHz). We evaluate their optical sensitivity under typical background conditions that are representative of a space environment and their interaction with ionising particles. Two LEKID arrays, originally designed for ground-based applications and composed of a few hundred pixels each, operate at a central frequency of 100 and 150 GHz (∆ν/ν about 0.3). Their sensitivities were characterised in the laboratory using a dedicated closed-cycle 100 mK dilution cryostat and a sky simulator, allowing for the reproduction of realistic, space-like observation conditions. The impact of cosmic rays was evaluated by exposing the LEKID arrays to alpha particles (241Am) and X sources (109Cd), with a read-out sampling frequency similar to those used for Planck HFI (about 200 Hz), and also with a high resolution sampling level (up to 2 MHz) to better characterise and interpret the observed glitches.
    [Show full text]