Academia Sinica ▶

Total Page:16

File Type:pdf, Size:1020Kb

Academia Sinica ▶ Photo by Joan Lebold Cohen © 2009 by Berkshire Publishing Group LLC A Comprehensive index starts in volume 5, page 2667. Abacus Suànpán ​算 盘 Considered to be the first computer, the aba- cus has been used since ancient times by a number of civilizations for basic arithmetical calculations. It is still used as a reliable reck- oner (and one that does not require electricity or batteries) by merchants and businesspeople in parts of Asia and Africa. he abacus, or counting plate (suan pan), is a man- ual computing device used since ancient times in The heaven and earth design of the abacus has China as well as in a number of ancient civiliza- remained unchanged for centuries. tions. The Latin word abacus has its roots in the Greek word abax, meaning slab, which itself might have origi- nated in the Semitic term for sand. In its early Greek and Because of the traditional Chinese use of 16 as an impor- Latin forms the abacus was said to be a flat surface cov- tant standard of measure, the Chinese abacus is particu- ered with sand in which marks were made with a stylus larly useful for calculations using a base number system and pebbles. of 2 and 16. The Chinese abacus as we know it today evolved to Chinese sources document wide use of abaci by 190 become a frame holding thirteen vertical wires wires ce, with popularization during the Song dynasty (960– with seven beads on each wire. A horizontal divider 1279) and printed instructions for their use appearing in separates the top two beads from the bottom five, some- the 1300s during the Yuan dynasty (1279– 1368). By the times referred to as the heaven and the earth beads. Ming dynasty (1368–1644), the Chinese abacus had taken The beads served as markers representing quantity, and on its modern form and had become an integral part of the beads’ position on the vertical wires represented business and financial accounting. This basic counting value. machine spread by the 1600s to Japan and then to eastern A skilled abacus user performs addition, subtraction, Russia, with small modifications in the number of beads multiplication, and division quickly and easily, without above and below the divider. having to depend on electricity to produce a readout; the Among storekeepers and small businesses in China, “readout” itself cannot be lost or erased except manually. the abacus remained a standard piece of office equipment 3 T © 2009 by Berkshire Publishing Group LLC 4 Berkshire Encyclopedia of China 宝 库 山 中 华 全 书 An abacus sits on the countertop in a neighborhood grocery store. Small shops in China, like this one in the basement of an apartment block in the Eastern District of Beijing, still use the abacus to add sums. Photo by Joan Lebold Cohen. Dilson, J. (1968). The abacus: A pocket computer. New York: until the 1980s. A good-​­quality abacus is generally about St. Martin’s Press. 2 feet wide by 1 foot tall and made of sturdy brass with Menninger, K. (1992). Number words and number symbols: hardwood beads. A cultural history of numbers. (P. Broneer, Trans.). New Margaret SANKEY York: Dover. Pullan, J. M. (1968). The history of the abacus. London: Hutchinson and Company. Further Reading A brief history of the abacus. Retrieved November 25, 2008, from http: //www.ee.ryerson.ca/~elf/abacus/ history.html China changes constantly, and the Encyclopedia of 閒談​ China will change and grow, too. Berkshire’s authors ​​chat and editors welcome questions, comments, and correc- tions: [email protected]. Academia Sinica ▶ © 2009 by Berkshire Publishing Group LLC ◀ Abacus Comprehensive index starts in volume 5, page 2667. Academia Sinica Zhōngguó Kēxuéyuàn ​中国科学院 Academia Sinica is the leading academic in- are appearing in international journals. Some journals, stitution of Taiwan and plays a major role published by Academia Sinica itself, such as Zoological in the field of Chinese studies. Its graduate Studies and Statistical Sinica, have received international program recruits students for its eleven PhD recognition. Academia Sinica plays a major role in the field of Chinese studies. For example, the archaeological programs. findings by researchers at the Institute of History and Phi- lology have, in combination with written documents, led to a virtual rewriting of ancient Chinese history, pushing cademia Sinica, founded in Nanjing in 1928, back the span of Chinese history by many centuries. is the most prominent academic institution The president of Academia Sinica is Dr. Yuan-​­tseh in Taiwan (Republic of China). Although Lee, a 1986 Nobel laureate in chemistry. The convoca- it is affiliated directly with the Presidential Office, tion (a ceremonial assembly of members of a college) Academia Sinica, located in the capital city, Taipei, consists of 199 members (academicians), including five enjoys independence in formulating its own research ethnic Chinese Nobel laureates. agenda. Its major tasks are to conduct academic re- CHANG Jui-​­te search in sciences, humanities, and social sciences, as well as to provide guidance, coordination, and incen- tives to raise academic standards in Taiwan. In 2004 Further Reading Academia Sinica established the Taiwan International Chen, Shiwei. (1997, Spring). Legitimizing the state: Poli- Graduate Program to train scholars; it recruits five to tics and the founding of Academia Sinica in 1927. Pa- ten graduate students every year for each of its eleven pers on Chinese History, 6, 23– 42. PhD programs. Chen, Shiwei. (1998). Government and academy in Re- Academia Sinica has made great progress in recent publican China: History of Academia Sinica, 1927- 1949. years. An increasing number of research papers written Unpublished PhD dissertation, Harvard University, by its faculty members, which numbered 1,150 in 2001, Cambridge, MA. 5 Acrobatics ▶ A © 2009 by Berkshire Publishing Group LLC ◀ Academia Sinica Comprehensive index starts in volume 5, page 2667. Acrobatics Zájì ​杂 技 Chinese acrobatics, called “variety art” (zaji) Early Acts in Chinese, is one of the most widely viewed types of Chinese cultural performance. The The scholar and scientist Zhang Heng (78– 139 ce) de- acrobatic acts seen today are packaged for scribed in his “Ode to the Western Capital” an acrobatic theme show that was performed in the royal palace. The global consumption and are similar to the Western circus, but many of the acts have tra- ditional roots and a long history unique to The Kaifeng Acrobatic Troupe offers a dazzling China. display of coordination. Photo by Joan Lebold Cohen. he precise origin of acrobatics (zaji) in China is unknown, but historical records and ancient rel- ics, such as relief carvings, show that acrobatics achieved imperial recognition no later than the Warring States period (475– 221 bce). In that era of constant war- fare acrobatics that emphasized strength and agility de- veloped in conjunction with the ruler’s encouragement of developing exceptional battle skills. Other acrobatic acts, such as walking on stilts and juggling, functioned as entertainment at village harvest celebrations. Other possible origins of acrobatics include shamanistic ritual, martial arts, and theater. During the Qin dynasty (221– 206 bce) acrobatics that combined theatrical roles and athletic feats, of- ten involving wrestling between men or with animals, was performed for the imperial court. During the Han dynasty (206 bce– 2 2 0 ce) acrobatics was an integral part of the “Hundred Entertainments,” a type of vari- ety show that also included music, dance, martial arts, and magic. 6 T © 2009 by Berkshire Publishing Group LLC Acrobatics n Zájì n 杂技 7 Juggling a fiery baton is one of the Kaifeng Acro- batic Troupe’s most spec- tacular acts. Photo by Joan Lebold Cohen. acts included balancing on a pole, walking on a rope, imperial court during the Tang dynasty (618– 907 ce). jumping through hoops, performing handstands, and per- Certain acts flourished, including acrobatic acts on forming the conjuring act “turning a fish into a dragon.” horses, animal training, and pole climbing, in which an These acts are still performed today, although they have acrobat balances a pole on which many more acrobats been modified for modern audiences. are balanced. A poem written by Bai Juyi (772– 846 ce) Stone engravings that date back to the Han dynasty il- and a mural in the Dunhuang grottoes illustrate these lustrate numerous types of acrobatic acts that showcased performances. strength and agility, including juggling, handstands, and During the Song dynasty (960–1279) acrobatic shows rope walking, and feats that involved poles, balls, barrels, left the palace and entered the markets. Acrobatics was carriages, and galloping horses. One relief shows an ac- performed in town markets along with other types of per- robat balancing on seven discs as three acrobats hang formances, such as singing, storytelling, and drama. Jug- upside-​­down from a cross that is balanced on his head. gling, in particular, flourished. Itinerant performers and Due to the patronage of Han emperors, acrobatics was professional acrobatics troupes and training schools also integrated into large-scale​­ and extravagant performances, developed during this time. a tradition that lasted for years. The Silk Roads promoted The status of acrobatics decreased drastically dur- cultural exchange with Persia (Iran) and the Roman Em- ing the Ming and Qing dynasties (1368– 1912). Acrobatics pire. Acrobatic shows were shown to foreign dignitaries became a performance art that was learned almost en- and guests visiting China, and also performed for the Han tirely through apprenticeship or that was passed down court. In 108 bce Emperor Wu Di hosted a royal show for as a family business through the generations. Family visiting dignitaries, and a performer sent by the king of troupes performed at markets or made their living by Parthia also performed for the emperor.
Recommended publications
  • "Computers" Abacus—The First Calculator
    Component 4: Introduction to Information and Computer Science Unit 1: Basic Computing Concepts, Including History Lecture 4 BMI540/640 Week 1 This material was developed by Oregon Health & Science University, funded by the Department of Health and Human Services, Office of the National Coordinator for Health Information Technology under Award Number IU24OC000015. The First "Computers" • The word "computer" was first recorded in 1613 • Referred to a person who performed calculations • Evidence of counting is traced to at least 35,000 BC Ishango Bone Tally Stick: Science Museum of Brussels Component 4/Unit 1-4 Health IT Workforce Curriculum 2 Version 2.0/Spring 2011 Abacus—The First Calculator • Invented by Babylonians in 2400 BC — many subsequent versions • Used for counting before there were written numbers • Still used today The Chinese Lee Abacus http://www.ee.ryerson.ca/~elf/abacus/ Component 4/Unit 1-4 Health IT Workforce Curriculum 3 Version 2.0/Spring 2011 1 Slide Rules John Napier William Oughtred • By the Middle Ages, number systems were developed • John Napier discovered/developed logarithms at the turn of the 17 th century • William Oughtred used logarithms to invent the slide rude in 1621 in England • Used for multiplication, division, logarithms, roots, trigonometric functions • Used until early 70s when electronic calculators became available Component 4/Unit 1-4 Health IT Workforce Curriculum 4 Version 2.0/Spring 2011 Mechanical Computers • Use mechanical parts to automate calculations • Limited operations • First one was the ancient Antikythera computer from 150 BC Used gears to calculate position of sun and moon Fragment of Antikythera mechanism Component 4/Unit 1-4 Health IT Workforce Curriculum 5 Version 2.0/Spring 2011 Leonardo da Vinci 1452-1519, Italy Leonardo da Vinci • Two notebooks discovered in 1967 showed drawings for a mechanical calculator • A replica was built soon after Leonardo da Vinci's notes and the replica The Controversial Replica of Leonardo da Vinci's Adding Machine .
    [Show full text]
  • Suanpan” in Chinese)
    Math Exercise on the Abacus (“Suanpan” in Chinese) • Teachers’ Introduction • Student Materials Introduction Cards 1-7 Practicing Basics Cards 8-11 Exercises Cards 12, 14, 16 Answer keys Cards 13, 15, 17 Learning: Card 18 “Up,” “Down,” “Rid,” “Advance” Exercises: Addition (the numbers 1-9) Cards 18-28 Advanced Addition Cards 29-30 Exercises: Subtraction Cards 31-39 (the numbers 1-9) Acknowledgment: This unit is adapted from A Children’s Palace, by Michele Shoresman and Roberta Gumport, with illustrations by Elizabeth Chang (University of Illinois Urbana-Champagne, Center for Asian Studies, Outreach Office, 3rd ed., 1986. Print edition, now out of print.) 1 Teachers’ Introduction: Level: This unit is designed for students who understand p1ace value and know the basic addition and subtraction facts. Goals: 1. The students will learn to manipulate one form of ca1cu1ator used in many Asian countries. 2. The concept of p1ace value will be reinforced. 3. The students will learn another method of adding and subtracting. Instructions • The following student sheets may be copied so that your students have individual sets. • Individual suanpan for your students can be ordered from China Sprout: http://www.chinasprout.com/shop/ Product # A948 or ATG022 Evaluation The students will be able to manipulate a suanpan to set numbers, and to do simple addition and subtraction problems. Vocabulary suanpan set beam rod c1ear ones rod tens rod hundreds rod 2 Card 1 Suanpan – Abacus The abacus is an ancient calculator still used in China and other Asian countries. In Chinese it is called a “Suanpan.” It is a frame divided into an upper and lower section by a bar called the “beam.” The abacus can be used for addition, subtraction, multiplication, and division.
    [Show full text]
  • An EM Construal of the Abacus
    An EM Construal of the Abacus 1019358 Abstract The abacus is a simple yet powerful tool for calculations, only simple rules are used and yet the same outcome can be derived through various processes depending on the human operator. This paper explores how a construal of the abacus can be used as an educational tool but also how ‘human computing’ is illustrated. The user can gain understanding regarding how to operate the abacus for addition through a constructivist approach but can also use the more informative material elaborated in the EMPE context. 1 Introduction encapsulates all of these components together. The abacus can, not only be used for addition and 1.1 The Abacus subtraction, but also for multiplication, division, and even for calculating the square and cube roots of The abacus is a tool engineered to assist with numbers [3]. calculations, to improve the accuracy and the speed The Japanese also have a variation of the to complete such calculations at the same time to abacus known as the Soroban where the only minimise the mental calculations involved. In a way, difference from the Suanpan is each column an abacus can be thought of as one’s pen and paper contains one less Heaven and Earth bead [4]. used to note down the relevant numerals for a calculation or the modern day electronic calculator we are familiar with. However, the latter analogy may be less accurate as an electronic calculator would compute an answer when a series of buttons are pressed and requires less human input to perform the calculation compared to an abacus.
    [Show full text]
  • On Popularization of Scientific Education in Italy Between 12Th and 16Th Century
    PROBLEMS OF EDUCATION IN THE 21st CENTURY Volume 57, 2013 90 ON POPULARIZATION OF SCIENTIFIC EDUCATION IN ITALY BETWEEN 12TH AND 16TH CENTURY Raffaele Pisano University of Lille1, France E–mail: [email protected] Paolo Bussotti University of West Bohemia, Czech Republic E–mail: [email protected] Abstract Mathematics education is also a social phenomenon because it is influenced both by the needs of the labour market and by the basic knowledge of mathematics necessary for every person to be able to face some operations indispensable in the social and economic daily life. Therefore the way in which mathe- matics education is framed changes according to modifications of the social environment and know–how. For example, until the end of the 20th century, in the Italian faculties of engineering the teaching of math- ematical analysis was profound: there were two complex examinations in which the theory was as impor- tant as the ability in solving exercises. Now the situation is different. In some universities there is only a proof of mathematical analysis; in others there are two proves, but they are sixth–month and not annual proves. The theoretical requirements have been drastically reduced and the exercises themselves are often far easier than those proposed in the recent past. With some modifications, the situation is similar for the teaching of other modern mathematical disciplines: many operations needing of calculations and math- ematical reasoning are developed by the computers or other intelligent machines and hence an engineer needs less theoretical mathematics than in the past. The problem has historical roots. In this research an analysis of the phenomenon of “scientific education” (teaching geometry, arithmetic, mathematics only) with respect the methods used from the late Middle Ages by “maestri d’abaco” to the Renaissance hu- manists, and with respect to mathematics education nowadays is discussed.
    [Show full text]
  • The Abacus: Instruction by Teachers of Students with Visual Impairments Sheila Amato, Sunggye Hong, and L
    CEU Article The Abacus: Instruction by Teachers of Students with Visual Impairments Sheila Amato, Sunggye Hong, and L. Penny Rosenblum Structured abstract: Introduction: This article, based on a study of 196 teachers of students with visual impairments, reports on the experiences with and opin­ ions related to their decisions about instructing their students who are blind or have low vision in the abacus. Methods: The participants completed an online survey on how they decide which students should be taught abacus computation skills and which skills they teach. Data were also gathered on those who reported that they did not teach computation with the abacus. Results: The participants resided in the United States and Canada and had various numbers of years of teaching experience. More than two-thirds of those who reported that they taught abacus computation skills indicated that they began instruction when their students were between preschool and the second grade. When students were provided with instruction in abacus computation, the most frequently taught skills were the operations of addition and subtraction. More than two-thirds of the participants reported that students were allowed to use an abacus on high- stakes tests in their state or province. Discussion: Teachers of students with visual impairments are teaching students to compute using the Cranmer abacus. A small number of participants reported they did not teach computation with an abacus to their students because of their own lack of knowledge. Implications for practitioners: The abacus has a role in the toolbox of today’s students with visual impairments. Among other implications for educational practice, further studies are needed to examine more closely how teachers of students with visual impairments are instructing their students in computation with an abacus.
    [Show full text]
  • The Abacus: Teachers’ Preparation and Beliefs About Their Abacus Preservice Preparation L
    CEU Article The Abacus: Teachers’ Preparation and Beliefs About Their Abacus Preservice Preparation L. Penny Rosenblum, Sunggye Hong, and Sheila Amato Structured abstract: Introduction: This article reports on a study of 196 teachers who shared their experiences and opinions related to how they were taught to use the Cranmer abacus. Methods: In February and March 2012, the participants completed an online survey to gather information about their preparation in using and beliefs about compu­ tation with the Cranmer abacus. Results: The participants resided in both the United States and Canada and had various years of experience. The majority (n � 112) reported learning computation with an abacus in their personnel preparation programs. The participants rated their level of agreement with belief statements. Statements with the highest level of agreement included one that indicated that when sighted individuals use pencil and paper for computation, an individual with a visual impairment should be allowed to use an abacus, and another that an abacus is an accessible and inexpensive tool. Discussion: The self-report data from 196 participants indicated that computation with an abacus is taught in university programs, although there is variability in what computational skills are taught and what methods are used. There was a higher level of agreement with statements that implied the positive attributes of using an abacus for computation than with those that implied negative attributes (for example, the abacus is obsolete). Implications for practitioners: University preparation programs are continuing to teach some level of abacus computation skills to their students. It is not clear if the level of instruction is adequate.
    [Show full text]
  • Abacus Math Session I - Fall 2019 Who: 1G-4G Scholars Where: Room 1254 When: Wednesdays, 3:45-4:45 P.M
    Abacus Math Session I - Fall 2019 Who: 1G-4G Scholars Where: Room 1254 When: Wednesdays, 3:45-4:45 p.m. Dates: September 18 – October 30 (No class October 16 due to Fall Break) Advisor: Ms. Gruber & Magister Fuelling Fee: $100 for 6 sessions + $35 for Abacus and books (one-time fee for new scholars only), Payable to Parnassus Deadline: Friday, September 13 Note: Because this is a self-paced class, it is not required to participate in earlier sessions of Abacus in order to participate in sessions offered later in the year. CHALLENGE YOUR FEAR OF MATH! Come and learn the ancient art of Abacus. You will learn to use your hands to move the beads on the ABACUS in combinations and convert a picture to numbers. As you progress through levels you will begin to visualize the imaginary Abacus and move the beads to perform “Mental Math”. Abacus helps scholars develop multiple skills such as photographic memory, total concentration, improved imagination, analytical skills, enhanced observation and cognitive thinking. Outcomes include improved speed and accuracy in math. Scholars set their own pace, and we offer personalized attention to ensure the best results and fun! ABACUS BASED MENTAL ARITHMETIC “ABACUS” system of calculation is an ancient and proven system of doing calculations. It is an excellent concept that provides for overall “mental development of a child” while teaching the basics of the big four (addition, subtraction, multiplication and division) of arithmetic. Participants get an opportunity to apply the knowledge and skills they learn to the math they do in class daily.
    [Show full text]
  • Abacus Math Session III – Winter 2020 Who: 1G-4G Scholars Where: Room 1254 When: Wednesdays, 3:45-4:45 P.M
    Abacus Math Session III – Winter 2020 Who: 1G-4G Scholars Where: Room 1254 When: Wednesdays, 3:45-4:45 p.m. Dates: January 15 – February 26 Advisor: Ms. Gruber & Magister Fuelling Fee: $115 for 7 sessions + $35 for Abacus and books (one-time fee for new scholars only), Payable to Parnassus Deadline: Friday, December 20 Note: Because this is a self-paced class, it is not required to participate in earlier sessions of Abacus in order to participate in sessions offered later in the year. CHALLENGE YOUR FEAR OF MATH! Come and learn the ancient art of Abacus. You will learn to use your hands to move the beads on the ABACUS in combinations and convert a picture to numbers. As you progress through levels you will begin to visualize the imaginary Abacus and move the beads to perform “Mental Math”. Abacus helps scholars develop multiple skills such as photographic memory, total concentration, improved imagination, analytical skills, enhanced observation and cognitive thinking. Outcomes include improved speed and accuracy in math. Scholars set their own pace, and we offer personalized attention to ensure the best results and fun! ABACUS BASED MENTAL ARITHMETIC “ABACUS” system of calculation is an ancient and proven system of doing calculations. It is an excellent concept that provides for overall “mental development of a child” while teaching the basics of the big four (addition, subtraction, multiplication and division) of arithmetic. Participants get an opportunity to apply the knowledge and skills they learn to the math they do in class daily. This program is run by trained instructors who have passion for the program and believe in it.
    [Show full text]
  • The Role of the History of Mathematics in Middle School. Mary Donette Carter East Tennessee State University
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2006 The Role of the History of Mathematics in Middle School. Mary Donette Carter East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Curriculum and Instruction Commons, and the Science and Mathematics Education Commons Recommended Citation Carter, Mary Donette, "The Role of the History of Mathematics in Middle School." (2006). Electronic Theses and Dissertations. Paper 2224. https://dc.etsu.edu/etd/2224 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. The Role of The History of Mathematics in Middle School _______________ A thesis presented to the faculty of the Department of Mathematics East Tennessee State University In partial fulfillment of the requirements for the degree Masters of Science in Mathematics ________________ by Donette Baker Carter August, 2006 ________________ Dr.Michel Helfgott Committee Chair Dr. Debra Knisley Dr. Rick Norwood Keywords: Rhind Papyrus, Treviso Arithmetic, Soroban Abacus, Napier’s Rods ABSTRACT The Role of The History of Mathematics in Middle School by Donette Baker Carter It is the author’s belief that middle school mathematics is greatly taught in isolation with little or no mention of its origin. Teaching mathematics from a historical perspective will lead to greater understanding, student inspiration, motivation, excitement, varying levels of learning, and appreciation for this subject.
    [Show full text]
  • Development of Cognitive Abilities Through the Abacus in Primary Education Students: a Randomized Controlled Clinical Trial
    education sciences Article Development of Cognitive Abilities through the Abacus in Primary Education Students: A Randomized Controlled Clinical Trial Samuel P. León 1 , María del Carmen Carcelén Fraile 1 and Inmaculada García-Martínez 2,* 1 Department of Pedagogy, University of Jaén, 23071 Jaén, Spain; [email protected] (S.P.L.); [email protected] (M.d.C.C.F.) 2 Department of Education, University of Almería, 04120 Almería, Spain * Correspondence: [email protected]; Tel.: +34-950015258 Abstract: (1) Background: An abacus is an instrument used to perform different arithmetic operations. The objective was to analyze the benefits of mathematical calculations made with an abacus to improve the concentration, attention, memory, perceptive attitudes, and creativity cognitive abilities of primary school students. (2) Methods: A total of 65 children, aged 7–11 years (8.49 ± 1.65) participated in this randomized controlled clinical trial. The children were randomly distributed into a control group (n = 34) and experimental group (n = 31). The questionnaires used were the D2 test to measure attention and concentration, the Difference Perception Test (FACE-R) test for the perception of differences, the test of immediate auditory memory (AIM), and the test to evaluate creative intelligence (CREA). (3) Results: No significant differences were found between both groups before the intervention. Significant improvements were observed in the cognitive parameters of concentration, memory, perceptive attitudes, and creativity after the intervention, using the abacus, with respect to the control group. (4) Conclusions: It is demonstrated that a calculation program based on the use of the abacus for 8 weeks has beneficial effects on the cognitive capacities of concentration, immediate auditory memory, perceptive attitudes, and creativity.
    [Show full text]
  • World History--Part 1. Teacher's Guide [And Student Guide]
    DOCUMENT RESUME ED 462 784 EC 308 847 AUTHOR Schaap, Eileen, Ed.; Fresen, Sue, Ed. TITLE World History--Part 1. Teacher's Guide [and Student Guide]. Parallel Alternative Strategies for Students (PASS). INSTITUTION Leon County Schools, Tallahassee, FL. Exceptibnal Student Education. SPONS AGENCY Florida State Dept. of Education, Tallahassee. Bureau of Instructional Support and Community Services. PUB DATE 2000-00-00 NOTE 841p.; Course No. 2109310. Part of the Curriculum Improvement Project funded under the Individuals with Disabilities Education Act (IDEA), Part B. AVAILABLE FROM Florida State Dept. of Education, Div. of Public Schools and Community Education, Bureau of Instructional Support and Community Services, Turlington Bldg., Room 628, 325 West Gaines St., Tallahassee, FL 32399-0400. Tel: 850-488-1879; Fax: 850-487-2679; e-mail: cicbisca.mail.doe.state.fl.us; Web site: http://www.leon.k12.fl.us/public/pass. PUB TYPE Guides - Classroom - Learner (051) Guides Classroom Teacher (052) EDRS PRICE MF05/PC34 Plus Postage. DESCRIPTORS *Academic Accommodations (Disabilities); *Academic Standards; Curriculum; *Disabilities; Educational Strategies; Enrichment Activities; European History; Greek Civilization; Inclusive Schools; Instructional Materials; Latin American History; Non Western Civilization; Secondary Education; Social Studies; Teaching Guides; *Teaching Methods; Textbooks; Units of Study; World Affairs; *World History IDENTIFIERS *Florida ABSTRACT This teacher's guide and student guide unit contains supplemental readings, activities,
    [Show full text]
  • The Spread of Hindu-Arabic Numerals in the European Tradition of Practical Mathematics (13 Th -16 Th Centuries)
    Figuring Out: The Spread of Hindu-Arabic Numerals in the European Tradition of Practical Mathematics (13 th -16 th centuries) Raffaele Danna PhD Candidate Faculty of History, University of Cambridge [email protected] CWPESH no. 35 1 Abstract: The paper contributes to the literature focusing on the role of ideas, practices and human capital in pre-modern European economic development. It argues that studying the spread of Hindu- Arabic numerals among European practitioners allows to open up a perspective on a progressive transmission of useful knowledge from the commercial revolution to the early modern period. The analysis is based on an original database recording detailed information on over 1200 texts, both manuscript and printed. This database provides the most detailed reconstruction available of the European tradition of practical arithmetic from the late 13 th to the end of the 16 th century. It can be argued that this is the tradition which drove the adoption of Hindu-Arabic numerals in Europe. The dataset is analysed with statistical and spatial tools. Since the spread of these texts is grounded on inland patterns, the evidence suggests that a continuous transmission of useful knowledge may have played a role during the shift of the core of European trade from the Mediterranean to the Atlantic. 2 Introduction Given their almost universal diffusion, Hindu-Arabic numerals can easily be taken for granted. Nevertheless, for a long stretch of European history numbers have been represented using Roman numerals, as the positional numeral system reached western Europe at a relatively late stage. This paper provides new evidence to reconstruct the transition of European practitioners from Roman to Hindu-Arabic numerals.
    [Show full text]