Digital Print Manufacturing: Color Management Workflows and Roles

Total Page:16

File Type:pdf, Size:1020Kb

Digital Print Manufacturing: Color Management Workflows and Roles Digital Print Manufacturing: Color Management Workflows and Roles Ann McCarthy Xerox Innovation Group ICC Steering Committee ICC Color Management Workflows Digital Smart Factory Forum 24 June, 2003 What do we mean by workflow? 2 The term “color fidelity” refers to the successful interoperability of color data, from color object creation to output across multiple targets, such that color reproduction quality consistent with the user’s intent can be achieved. In this context, a workflow is a sequence of color object manipulations … …that accomplishes a color capture to color production process. ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 What are the key ‘color’ questions? 3 • RGB vs. CMYK ? Scanning Design Exchange Archive Re-use • RGB vs. CMYK is not where the color workflow question starts… ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Digital Color Control (ICC) Architecture Elements 4 • Device calibration Color Calibration – Printing Aims Alters the color response of a device to return it to a known state • Capture and visualization characterization Response Measurement Describes the color response of an input or output condition • Profile creation Full Range – Color Response Specification Encodes a characterization and a color aim for use in a transform • Image color encoding Color Source Specification – Digital Capture Unrendered (e.g., capture a scene) vs. color-rendered (targeted) • Profile selection and exchange Color Communication – Virtual Film Profiles can be embedded with an image or document, or can be transmitted as separate files • Profile use Color Transformation – Automated Aid to Pressman Profiles are applied in pairs to transform an image from a current encoding (the source) to another encoding (the destination) • Visualization – the human element Printed Job Color Expectation What does the human expect? ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 5 The seven color control architecture elements are threads that interact throughout a color workflow. What is the next step in understanding a color workflow… ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Analyzing workflow workflow primitives 6 • Workflow primitives are the building blocks of every workflow • These 'normalized' workflow building blocks can be used to understand interactions in real world workflows • Four dimensions describe the workflow primitives and differentiate them from each other: Fundamental Imaging Operations • Correction, preference, gamut mapping, appearance mapping Key Color Fidelity Requirements • Process control stability, transformations, metadata persistence Image State Impact • Initialization, transition, preservation Image System Interfaces • Proprietary/standard methods, proprietary/standard output format ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Image State 7 • The degree to which image data has been constrained or purposed to a particular visualization mechanism, as compared to the degree to which the image data has been retained unaltered with respect to its capture condition Concepts of scene- referred, original- referred, and output- referred image state as shown in ISO CD 22028-1-Part 1 ICC workflows include both Actual Output Referred (a particular visualization device) and Reference Output Referred (e.g., SWOP) ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Image State 8 • The degree to which image data has been constrained or purposed to a particular visualization mechanism, as compared to the degree to which the image data has been retained unaltered with respect to its capture condition Image state helps with: 1. Sequencing color transformations Concepts of scene- in your workflow referred, original- referred, and output- 2. Re-purposing and re-targeting referred image state as color jobs while maintaining color fidelityshown in ISO CD 22028-1-Part 1 (minimize the need to estimate colors) ICC workflows include both Actual Output Referred (a particular visualization device) and Reference Output Referred (e.g., SWOP) ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Functional Workflow Primitives 9 • Capture • Adjust image/object What is that proprietary Device correction operations function Apply that image handles preferences Process control stability Preferencedigitization? operations are Digitized format and data are arbitrary & use specific device dependent and • Assemble object/entity manufacturer controlled What is theCombination “primitive” of objects functionality of a CMM? • Color-Render (CMM) Control of job information Appearance and gamut mapping • Visualize operations - input to output Device correction operations Apply capture specific Manufacturer controlled characterization transform Process control stability Apply ‘reference’ color space Includes halftoning, trapping encoding transforms Can include black channel Apply visualization condition specific transforms UCR/GCR, black-only • Scum dot elimination Overprint/knockout • Separation⇔gamut interactions • Display the assembled entity ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Functional Workflow Primitives 10 • Capture • Adjust image/object Device correctionHow do we factoroperations in to the Apply image preferences workflow the image edits Process controlthat people stability want to do to Preference operations are Digitized formatimprove andtheir dataimages? are arbitrary & use specific device dependent and • Assemble object/entity manufacturer controlled In many workflows, Combination of objects • Color-Renderprobably all (CMM)workflows in Control of job information Appearancethe commercial and world, gamut we mapping • Visualize operationsneed to combine - input images, to output text, and vector… Device correction operations Apply…and capture we need specific to keep Manufacturer controlled characterizationtrack of all of the transformdata and metadata in a “job.” Process control stability Apply ‘reference’ color space Includes halftoning, trapping encoding transformsWhat is the proprietary Can include black channel Apply visualization condition function that UCR/GCR, black-only specific transformshandles display? • Scum dot elimination Overprint/knockout • Separation⇔gamut interactions • Display the assembled entity ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 11 What are the roles of printer, prepress, and creator in shaping a workflow… ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Printer Responsibilities in a Distributed Color Managed Workflow 12 • Identify your print shop PRINT CONDITION A Print Condition is capabilities defined by • Establish color calibration – process 1. The Digital Front optimization and process control for each End (DFE) and print engine combination PRINT CONDITION 2. The opacity, white • Characterize and provide clients with an point, and gloss of the paper stock Actual-Output-Referred ICC profile for each 3. The screening preferred PRINT CONDITION method • Provide clients with a submission guideline 4. The selected calibration Look-Up defining your capabilities and workflow Table (LUT) in the expectations DFE 5. Any selectable • Determine the capabilities of the data calibration parameters exchange methods available to clients and 6. Any selectable color-rendering provide recommendations (TIFF, EPS, PDF, options in the DFE PDF/X, fttp to job folder, JDF, etc…) ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Printer Responsibilities in a Distributed Color Managed Workflow 13 • Identify your print shop PRINT CONDITION A Print Condition is capabilities defined by • Establish color calibration – process 1. The Digital Front optimization and process control for each End (DFE) and print engine combination PRINT CONDITIONIf a print condition conforms 2. The opacity, white • Characterize and provide clients with an point, and gloss of the to a Reference Print Condition:paper stock Actual-Output-Referred1. Identify ICCthe standardprofile forcharacterization each 3. The screening preferred PRINTvia CONDITIONthe ICC Characterization Registry method • Provide clients2. with Pre-press a submission and creator guideline may use the 4. The selected calibration Look-Up defining your capabilitiesReference-Output-Referred and workflow ICC profile Table (LUT) in the expectations DFE 5. Any selectable • Determine the capabilities of the data calibration parameters exchange methods available to clients and 6. Any selectable color-rendering provide recommendations (TIFF, EPS, PDF, options in the DFE PDF/X, fttp to job folder, JDF, etc…) ICC Color Management A. McCarthy Digital Smart Factory Forum 24 June, 2003 Prepress Responsibilities in a Distributed Color Managed Workflow 14 • Identify client print shop PRINT CONDITION Re-targeting capabilities and submission requirements (proofing) Maintaining image • Obtain a Ref/Actual-Output-Referred ICC colorimetry while profile for each preferred PRINT CONDITION changing device code values to customize to • Calibrate and characterize each proofing a particular device of device (soft/hard) the same or larger gamut. • Establish a calibrated re-targeting color •Need for preserving workflow – stabilize the proof to production black in hard proof? •Acceptable viewing relationship soft proof in RGB? • Provide creative clients
Recommended publications
  • Medical Imaging Working Group
    Medical Imaging Working Group Adobe Systems Incorporated, Corporate Headquarters 345 Park Ave, East tower San Jose, CA 95110 USA 13 October 2015 Craig Revie, MIWG chair, opened the meeting at 13:30 and introduced the agenda for the meeting as follows: 1. Using the ICC framework for colour calibration of medical displays 2. Calibration of medical displays using ICC profiles 3. Estimation of errors associated with film-based calibration Summary and status of each area of activity in MIWG: 4. Whole slide imaging 5. Medical photography guidelines 6. Calibration materials for ophthalmology 7. Petri dish imaging 8. Skin imaging 1. Using the ICC framework for colour calibration of medical displays Dr Tom Kimpe presented activities to date on display calibration [see attached]. Visualisation of greyscale images on colour displays had been discussed in August, and the current goal was to extend this to colour images. A new draft of a proposed recommendations document had been circulated [see attached], and he invited feedback so that the document can be finalised. Dr Kimpe showed the calibration framework, in which data is converted to the PCS using a CSDF profile. From feedback received improvements had been made to the profile, full details are in the draft document. New results showing the errors arising from different LUT sizes and gamma values had been included. The importance of using 10-bit data was clear as it minimises calibration error; for LUT size, there was only marginal improvement with a grid spacing of over 30. Accurate modelling was also important. Dr Kimpe showed the draft recommendations that are in the document, and asked for feedback by October 19.
    [Show full text]
  • Automated Color Calibration of Display Devices
    Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2013-27 2013 Automated Color Calibration of Display Devices Andrew Shulman If you compare two identical images on two different monitors, they will likely appear different. Every display device is supposed to adhere to a particular set of standards regulating the color and intensity of the image it outputs. However, in practice, very few do. Color calibration is the practice of modifying the signal path such that the colors produced more closely match reference standards. This is essential for graphics professionals who are mastering original content. They must ensure that the source material appears correct when viewed on a reference monitor. When viewed on a consumer panel, however, some error... Read complete abstract on page 2. Follow this and additional works at: https://openscholarship.wustl.edu/cse_research Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Shulman, Andrew, "Automated Color Calibration of Display Devices" Report Number: WUCSE-2013-27 (2013). All Computer Science and Engineering Research. https://openscholarship.wustl.edu/cse_research/102 Department of Computer Science & Engineering - Washington University in St. Louis Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/ cse_research/102 Automated Color Calibration of Display Devices Andrew Shulman Complete Abstract: If you compare two identical images on two different monitors, they will likely appear different. Every display device is supposed to adhere to a particular set of standards regulating the color and intensity of the image it outputs.
    [Show full text]
  • Color Calibration
    B Color Calibration All photographers are concerned with accurate and pleasing color rendition, be it on monitors or in prints; and there may be no more critical audience, in more than one sense, than the wedding couple and their circle of friends and family. You want your work to look its absolute best, whether you are presenting the Proofing Show on your laptop, showing the crown jewel of your work—the wedding album—or even running a quick slideshow of pleasing pictures taken earlier, at the reception. As with everything else connected with digital photogra- phy, this does not happen by magic. As usual, a bit of technical knowledge is nec- essary, along with some preparation with your monitor, and perhaps your camera and scanner as well, using some tools and tests to tune your devices so that the colors you display closely match each other, and look good doing it. We’ll explain the necessity in relatively painless technical terms, then present effective tools and procedures for calibrating your equipment, including important tips, advice on choosing appropriate equipment, and links to further information all the way out to the physics of light and color for adventurous readers. Did You Notice That Red Light? If you have ever heard that question, you might carefully consider asking politely about yellow or green, but you would probably not ask, “What do you mean by ‘red’?” Color, however, is a slippery concept, except when physicists speak in terms of the length of light waves, and even then there are arbitrary divisions and nam- ing conventions.
    [Show full text]
  • Spyder5 User's Guide
    Spyder5 User’s Guide Spyder®5EXPRESS Hobbyist photographers seeking a simple monitor color calibration solution. Next Generation Spyder5 colorimeter with dual purpose lens cap and counterweight, improved tonal response, and the industry’s only patented 7- detector optical engine See and share your images as you intended with confidence Simple 4 step process guides you to a precise calibration giving you exceptional color accuracy for image display and printing “Before and After” evaluation of your calibration results using a professional Datacolor composite image Fast and easy, calibration takes about five minutes to ensure your color accuracy Multiple Monitor Support of all your laptop and desktop monitors including wide gamut, LED and 4k/5k displays 1 Spyder®5PRO Serious photographers and designers seeking a full-featured and advanced color accuracy solution. Next Generation Spyder5 colorimeter with dual purpose lens cap and counterweight, improved tonal response, ambient light sensor, and the industry’s only patented 7-detector optical engine See, share, and print your images as you intended with confidence Software designed for serious photographers with wizard, interactive help, and advanced calibration options “Before and After” evaluation of your calibration results using a professional Datacolor composite image or your own images to examine nuances which are most important to you Multiple Monitor Support of all your laptop and desktop monitors including wide gamut, LED and 4k/5k displays Ambient light sensor monitors room lighting to ensure consistent viewing conditions Fast and easy, full calibration takes only about five minutes to ensure color accuracy, less than half the time for periodic re-calibrations.
    [Show full text]
  • Steadycolor & Steadygray
    SteadyColor & SteadyGray Technology highlight As the pioneer and industry leader of medical calibration technology, Barco defined the image quality standard for diagnostic viewing applications with the SteadyColorTM color calibration technique. With our latest color display systems, QAWeb incorporates the vast color know-how Barco has developed over the past several decades into SteadyColor to further advance one of its core technologies. SteadyGrayTM uses the same color calibration technology to achieve a more constant and consistent gray appearance. SteadyGray ensures that all gray values are as close as possible to the tint of the selected white color, whether that is blue base, clear base, or some other preferred white tint. Increasing use of color in medical 2. Displays that are grayscale only are factory selected for a certain applications color base (tint), typically either blue base or clear base. But this tint changes over time, varies from system to system, and varies As the use of color in medical imaging continues to evolve, going with gray level. When the tint of gray displays varies throughout beyond simple annotation to depicting more complex diagnostic the enterprise, this can be a distraction to the radiologist who information, medical displays must meet a higher standard for relies on a familiar appearance to compare the current case to color in line with those used for medical grayscale displays. those cases in their memory. By maintaining the preferred color base for white and all grays, a color display with SteadyGray Generations of medical color displays have provided some means offers a more consistent and familiar gray image than any to guarantee stable and calibrated DICOM grayscale images.
    [Show full text]
  • Color Calibration on Whole Slide Imaging Scanners
    Color Calibration on Whole Slide Imaging Scanners Presented By: Vipul Baxi, Omnyx LLC Intersystem Color Variability Pantanowitz, L. (2010). "Digital images and the future of digital pathology." Journal of Pathology Informatics 1(1): 15-15 Importance of Color Calibration • Provide Standardization o Amongst digital scanners produced by the same manufacturer o Amongst digital scanners with diverse technology and scanning components o Consistency and Accuracy of CAD algorithms • Transition and adoption of digital pathology o Pathologists get the same view of the sample as they would under a microscope o Prevent possible misdiagnosis due to color inaccuracy What is Color Calibration? Definition: Process to measure and/or adjust the color response of a device (input or output) to establish a known relationship to a standard color space • Widely used in the field of Photography o Macbeth Color Checker chart (24-patch) • Total Color Management Imaging System Display Digital Pathology Imaging System 3 Components affecting Color 1. Light Source 2. Optics 3. Sensor 2 1 http://www.richardwheeler.net/contentpages/image.php?gallery=Scientific_Illustration&img=Epifluorescence_Microscope&type=jpg The Color Space Chromaticity Plot • Spectral Locus o Represents the color gamut visible by humans o Visible range: 380nm to 700nm • sRGB Locus (triangle) o World standard for digital images, printing and the internet o Used in current LCD monitors, HDTVs Color Target Slide for Microscopy Color Target Film Reference Values • NIST traceable measurements of color patches • Chromaticity plot of color patches Chromaticity plot of Color Checker slide Spectral Locus sRGB Locus Target Slide Assembly * Color Patches Cover Slip Y Color Target Glass Slide X Calibration Procedure Color Calibration Matrix Image Acquisition Digital R1 G1 B1 Camera Transformation to Reference Values R2 G2 B2 Objective 3 3 3 Lens R G B Roffset Goffset Boffset Convert the color patch data into CIE standard Target slide color space 1.
    [Show full text]
  • Color Calibration Guide
    WHITE PAPER www.baslerweb.com Color Calibration of Basler Cameras 1. What is Color? When talking about a specific color it often happens that it is described differently by different people. The color perception is created by the brain and the human eye together. For this reason, the subjective perception may vary. By effectively correcting the human sense of sight by means of effective methods, this effect can even be observed for the same person. Physical color sensations are created by electromagnetic waves of wavelengths between 380 and 780 nm. In our eyes, these waves stimulate receptors for three different Content color sensitivities. Their signals are processed in our brains to form a color sensation. 1. What is Color? ......................................................................... 1 2. Different Color Spaces ........................................................ 2 Eye Sensitivity 2.0 x (λ) 3. Advantages of the RGB Color Space ............................ 2 y (λ) 1,5 z (λ) 4. Advantages of a Calibrated Camera.............................. 2 5. Different Color Systems...................................................... 3 1.0 6. Four Steps of Color Calibration Used by Basler ........ 3 0.5 7. Summary .................................................................................. 5 0.0 This White Paper describes in detail what color is, how 400 500 600 700 it can be described in figures and how cameras can be λ nm color-calibrated. Figure 1: Color sensitivities of the three receptor types in the human eye The topic of color is relevant for many applications. One example is post-print inspection. Today, thanks to But how can colors be described so that they can be high technology, post-print inspection is an automated handled in technical applications? In the course of time, process.
    [Show full text]
  • Visualization of Medical Content on Color Display Systems
    White Paper # 44 Level: Advanced Date: April 2016 Visualization of medical content on color display systems 1. Introduction Since 1993, the International Color Consortium (ICC) has worked on standardization and evolution of color management architecture. The architecture relies on profiles which describe the color characteristics of a device in a reference color space. The ICC1 describes its profiles as “… tools to translate color data created on one device into another device's native color space […] permitting tremendous flexibility to both users and vendors. For example, it allows users to be sure that their image will retain its color fidelity when moved between systems and applications”. This document focuses on results and recommendations for the correct use of ICC profiles for visualization of grayscale (GSDF [1]) and color medical images on color displays. These recommendations allow for visualization of medical content on color display systems, whereby DICOM GSDF images, pseudo color images and color accurate images can all be presented effectively on the same display. The results and recommendations in this document were first discussed in the ICC Medical Imaging Working Group (MIWG). 2. Calibration requirements, standards and guidelines for medical displays Medical displays that are used for primary diagnosis need to achieve minimum performance levels to ensure that subtle details in radiological images are visible to the radiologist. The National Electrical Manufacturers Association (NEMA) and The American College of Radiology (ACR) developed a Standard for Digital Imaging and Communications in Medicine (DICOM) [1]. Part 14 describes the Grayscale 1 http://color.org/abouticc.xalter Standard Display Function (GSDF). This standard defines a way to take the existing Characteristic Curve of a display system (i.e.
    [Show full text]
  • Color Calibration of Digital Brightfield Microscope Images Using Colorimetry with a Color Standard Slide
    TITLE: Color Calibration of Digital Brightfield Microscope Images Using Colorimetry with a Color Standard Slide AUTHORS: Mark Clymer, Hong Wei Datacolor Inc., Lawrenceville, NJ, USA ABSTRACT: Color in digital brightfield images varies widely due to a number of hardware, software and firmware influences in addition to preparation of the specimen itself. Traditionally, color is adjusted both pre- and post-acquisition using software algorithms and/or image editing. In this poster, we present the effectiveness of an objective, color standard-based post-acquisition color calibration method. INTRODUCTION: Aside from the microscope components, the color accuracy of digital brightfield images is typically determined by the quality of the detector (i.e. digital camera), the nature of on-board color correction algorithms, software-based user-selectable color and contrast enhancements, white balancing and monitor display accuracy. Variation in any of these elements leads to inconsistency in images between imaging sessions, operators and systems. A variety of software applications afford researchers the ability to adjust color in images, but none use a color standard and objective determination of the color variance from the specimen itself in order to effect a color correction. We present a colorimetric and objective approach to color calibrating digital brightfield images. MATERIALS & METHODS: Prepared histology slides (Triarch Incorporated, Ripon, WI, USA) were selected to provide a sample of commonly used stains and tonal ranges. Stains included H&E, Wright, Verhoeff’s, Masson’s trichrome, Iron Hematoxylin, silver, and no stain. Image acquisition was performed using a Lumenera Infinity 2-1R color microscope camera mounted on a Zeiss Axio Scope.A1 with planachromat optics and 100W halogen light source (Carl Zeiss Inc., Thornwood, NY, USA).
    [Show full text]
  • Dell Ultrasharp Color Calibration Solution User's Guide
    Dell UltraSharp Color Calibration Solution User’s Guide Dell UltraSharp Color Calibration Solution Installing the Dell UltraSharp Color Calibration Solution Using the Dell UltraSharp Color Calibration Solution Dell UltraSharp Color Calibration Solution This solution lets you get the best, most accurate, color possible with your Dell UltraSharp UP3017 for this dispaly when used with an X-Rite i1Display Pro Colorimeter. The Dell UltraSharp Color Calibration Solution provides three major functions: 1. Based on measurements with the i1Display Pro Colorimeter, and using special monitor-based adjustments, it sets the display primaries to accurately emulate any of the five standard display color spaces: a. sRGB b. Adobe RGB c. REC709 d. DCI-P3 e. Monitor native 2. Based on measurements of standard test patches, it calibrates the display to standard gamma values, white points, and gray balance for the color space emulation that you select. 3. Based on measurements of a “characterization” set of test colors, it calculates and writes an ICC profile for the display and activates the profile in the Windows Operating System. Major benefits of using the Dell UltraSharp Color Calibration Solution along with the i1Display Pro Colorimeter on a regular basis include: Colors in photos, design work, movies, and web pages appear as the content creator intended Stable, predictable color – the colors look the same now and later Consistent and accurate colors assured across the Dell UltraSharp monitors Accurate profiles for use with “color managed” applications and printer drivers so that the color that prints is the color that you see and for accurate “soft proofing” Installing the Dell UltraSharp Color Calibration Solution 1.
    [Show full text]
  • Epson Color Calibration Utility Operation Guide
    Epson Color Calibration Utility Operation Guide CMP0045-00 EN Epson Color Calibration Utility Operation Guide Copyrights and Trademarks Copyrights and Trademarks No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Seiko Epson Corporation. The information contained herein is designed only for use with this Epson printer. Epson is not responsible for any use of this information as applied to other printers. Neither Seiko Epson Corporation nor its affiliates shall be liable to the purchaser of this product or third parties for damages, losses, costs, or expenses incurred by the purchaser or third parties as a result of accident, misuse, or abuse of this product or unauthorized modifications, repairs, or alterations to this product, or (excluding the U.S.) failure to strictly comply with Seiko Epson Corporation's operating and maintenance instructions. Seiko Epson Corporation shall not be liable for any damages or problems arising from the use of any options or any consumable products other than those designated as Original Epson Products or Epson Approved Products by Seiko Epson Corporation. Seiko Epson Corporation shall not be held liable for any damage resulting from electromagnetic interference that occurs from the use of any interface cables other than those designated as Epson Approved Products by Seiko Epson Corporation. EPSON, EPSON EXCEED YOUR VISION, EXCEED YOUR VISION and their logos are registered trademarks or trademarks of Seiko Epson. Microsoft® and Windows® are registered trademarks of Microsoft Corporation. Mac® and MacOS® are registered trademarks of Apple Inc.
    [Show full text]
  • Dell UP3221Q Color Management Software
    DELL Color Management Software User Manual Portrait Displays Inc. 6663 Owens Drive Pleasanton, California 94588 Tel: (925) 227-2700 Model: Color Management Regulatory model: Color Management 2020 - 12 Rev. A00 Contents Introduction . 4 DELL Color Management . 5 Common UI Elements. 5 Dashboard . 7 Advanced . 10 CAL 1 CAL 2 Management . 12 Settings . 13 Task Tray Menu . 14 │3 Introduction DELL Color Management software is a Windows application that manages the color spaces of the DELL UltraSharp UP3221Q display. DELL Color Management software allows quick selection of the color spaces stored in the display, creation and management of ICC profiles (v2 and v4.3), and uploading of customized color spaces created with Calman®, the industry standard color calibration software for professionals. Calman is a registered trademark of Portrait Displays, Inc. Dell™ and the Dell logo are trademarks of Dell Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies. 4│Introduction DELL Color Management Supported operating system: • Microsoft Windows 7, Windows 10 Hardware: • DELL UltraSharp UP3221Q display Communication: • USB – For setup information refer to DELL UltraSharp UP3221Q Quick Start Guide Common UI Elements The application has two views, Dashboard and Advanced. The top and bottom borders for both views have common elements. Table 1 – Top Border Monitor Model and Service Tag The display model and service tag are shown. For multi-monitor configurations (up to four displays) the multi-monitor drop- down menu displays all UP3221Q displays attached to the system. Selecting a display from the menu will make it the active display to control.
    [Show full text]