Novel Coding, Translation, and Gene Expression of a Replicating Covalently Closed Circular RNA of 220 Nt

Total Page:16

File Type:pdf, Size:1020Kb

Novel Coding, Translation, and Gene Expression of a Replicating Covalently Closed Circular RNA of 220 Nt Correction MICROBIOLOGY Correction for “Novel coding, translation, and gene expression of The authors note, “Figs. 2, 3, and 5 were not in compliance a replicating covalently closed circular RNA of 220 nt,” by Mounir with PNAS figure preparation policies because some gel lanes Georges AbouHaidar, Srividhya Venkataraman, Ashkan Golshani, from noncontiguous experiments were spliced together. The cor- Bolin Liu, and Tauqeer Ahmad, which appeared in issue 40, Oc- rected figures shown below have white spaces inserted to indicate tober 7, 2014, of Proc Natl Acad Sci USA (111:14542–14547; first noncontiguous experiments.” published September 24, 2014; 10.1073/pnas.1402814111). Fig. 2. In vitro transcription/translation and immunoprecipitation of translated products using antiserum raised against the scRYMV ORF-encoded protein. (A) Lane 2 shows 19-kDa and 16-kDa proteins from reaction using pET52 DNA, whereas lane 3 shows only the 19 kDa from reaction using the truncated pETdimer DNA. Lane 1: Negative control reaction using pET29 (empty vector). Arrows on left indicate molecular size of proteins, from top to bottom: 36 kDa, 19 kDa, and 16 kDa. (B) In vitro translation reaction depicting the 16-kDa protein from the scRYMV circular RNA (purified from denaturing polyacrylamide gels) is shown in lane 3, whereas that of the reaction from total RNA of RYMV-infected rice is shown in lane 2. Lane 5 demonstrates the 16-kDa product from reaction using total viral RNA extracted from RYMV virus particles, and lane 4 shows the enhanced 16-kDa signal from reaction using RYMV total viral RNA but supplemented with the same amount of gel-purified circular RNA as that used in the reaction of lane 3. Lanes 1 and 6 represent negative control reactions using healthy rice and the endogenous empty lysate, respectively. Arrows on right depict the position of molecular weight markers 25, 16, and 14 kDa from top to bottom, respectively. (C) Northern analysis to detect the nature of scRYMV RNA species. Denaturing 4–20% PAGE in presence of 8 M urea was carried out. Lanes 2 and 3 demonstrate presence of linear (marked as “L”), circular (“C”), dimer (“D”), and trimer (“T”) forms of the scRYMV RNA in total RNA preparations from RYMV-infected rice and RYMV particles, respectively. Lane 1 shows the negative control of total RNA from healthy rice. Lane 4: 7 M urea- PAGE stained with ethidium bromide and showing the purified circular RNA extracted from the band corresponding to circular RNA (shown in lane 3). This purified circular RNA is used for in vitro translation. Arrows indicate the positions of RNA size markers: 220 (marked as “L” or “C”), 440 (“D”), and 660 (“T”)nt. E5252–E5253 | PNAS | August 30, 2016 | vol. 113 | no. 35 www.pnas.org Downloaded by guest on September 26, 2021 Fig. 3. SDS/PAGE, Western detection, and time course of expression of the scRYMV-encoded proteins. (A) Western analysis using antibodies specific to the scRYMV ORF-encoded protein to detect the 16-kDa proteins among total plant proteins from RYMV infected (lane 1), healthy uninfected plant (lane 3), and purified RYMV virus (lane 2). Arrows on right indicate the positions of the 39-, 32-, and 16-kDa proteins (from top to bottom). (B) Western analysis time course of the appearance of the scRYMV 16 kDa during infection in rice plants. Lane 1 contains total proteins extracted from noninfected rice plants (negative control). Lane 2 contains total proteins from RYMV-infected plants at 4 d postinoculation. Lanes 4–7 contain total rice proteins extracted from RYMV-infected plants at 10, 14, 21, and 28 d post- inoculation, respectively. Lane 3 and arrow (16 kDa) depict molecular weight size markers 116, 66, 45, 35, 25, and 18 kDa, from top to bottom, respectively. (C) North- Western analysis showing the RNA-binding activity of scRYMV-encoded proteins. Lane 1 shows the presence of the 16-kDa RNA-binding protein in infected rice, whereas lanes 2 and 9 demonstrate the detection of the 16-kDa, 18-kDa, and 19-kDa RNA-binding proteins in protein extracts from E. coli carrying pET52. Lanes 4 and 5 are the negative controls from healthy rice and pET29 protein extracts, respectively. Lanes 6 and 7 are negative control from E. coli alone and E. coli carrying pET29, respectively. Lanes 3 and 8 contain the molecular weight markers including the 14-kDa positively charged lysozyme. The 35S-labeled scRYMV and PVX probes were used in lanes 1–5and6–9, respectively. Arrows on left indicate the positions of molecular size markers (from top to bottom, 19, 18, 16, and 14 kDa, respectively). Fig. 5. Mutational analysis of scRYMV. (A) In vitro transcription/translation and immunoprecipitation profile of scRYMV AUG to AUU (in the sequence UGAUGA) mutant shows abolition of 16-kDa translation. Lane 1: radiolabeled dots indicating the positions of protein molecular weight size markers (top to bottom, 35, 25, 20, 17, 11, and 5 kDa). Lane 2: in vitro reaction (with scRYMV 19-kDa antibody) with purified RYMV genomic RNA alone (without scRYMV) used as template shows no 16-kDa protein and was used as infectious transcript in plants. Lane 3: same reaction as in lane 2 except for addition of mutated scRYMV construct (AUG to AAU mutant pBS-trimer). Lane 4: empty lane. Lane 5: same reaction as in lane 2 except for the addition of pBS-trimer (intact construct) demonstrating the synthesis of a 16-kDa protein. Lane 6: reaction containing total RYMV viral RNA obtained from purified virus containing scRYMV. Lane 7: reaction containing purified WT scRYMV RNA alone (obtained from virus particles). (B) Replication of AUG to AAU scRYMV mutant is abolished in plants. Lane 1: RYMV viral RNA profile from purified virus particles of plants infected with infectious RYMV RNA along with T7 polymerase- generated in vitro transcripts from WT pBS-trimer scRYMV clone. Lane 2: RYMV infectious RNA plus in vitro transcripts from AUG to AAU mutant pBS-trimer clone showing complete absence of the scRYMV RNA (no replication). Upper arrow indicates the position of genomic RYMV RNA (4450 nt) and the bottom arrow indicates the position of circular scRYMV RNA (220 nt). (C) UGAUGA codons influence translation termination: Western blotting analysis of total E. coli proteins using pET dimer and anti–His-tag antibody for intact and a UGAUGA-to-CUCGAG mutant construct. Lane 1: protein molecular weight ladder (top to bottom, 135, 100, 75, 63, 48, 35, 25, 20, 17, and 11 kDa). Lane 2: E. coli containing empty pET29 plasmid. Lane 3: E. coli containing intact construct with UGAUGA terminator upstream of a His-tag. No protein product is detected. Lane 4: E. coli containing UGAUGA to CUCGAG mutant construct. A 20-kDa protein is detected by using anti–His-tag antibody. This is in accord with a translation read-through over the mutated UGAUGA-to-CUCGAG region producing a His-tagged fusion protein. www.pnas.org/cgi/doi/10.1073/pnas.1611407113 CORRECTION PNAS | August 30, 2016 | vol. 113 | no. 35 | E5253 Downloaded by guest on September 26, 2021 Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt Mounir Georges AbouHaidara,1, Srividhya Venkataramana, Ashkan Golshanib, Bolin Liua, and Tauqeer Ahmada aDepartment of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada M5S 3B2; and bBiology Department, Carleton University, Ottawa, ON, Canada K1S 5B6 Edited by David C. Baulcombe, University of Cambridge, Cambridge, United Kingdom, and approved August 28, 2014 (received for review February 14, 2014) The highly structured (64% GC) covalently closed circular (CCC) N- and C-terminal halves of the 16-kDa protein translated RNA (220 nt) of the virusoid associated with rice yellow mottle from the same 220-nt circular sequence and the generation of virus codes for a 16-kDa highly basic protein using novel modali- read-through proteins were examined. We discuss the evolu- ties for coding, translation, and gene expression. This CCC RNA is tionary implications of the genetic information and biological the smallest among all known viroids and virusoids and the only functions densely packed into a 220-nt nanogenome. one that codes proteins. Its sequence possesses an internal ribo- Results some entry site and is directly translated through two (or three) completely overlapping ORFs (shifting to a new reading frame at Expression in Escherichia coli of a Head-to-Tail Trimer Copy of a the end of each round). The initiation and termination codons scRYMV cDNA Clone. The original isolation, cloning, and several overlap UGAUGA (underline highlights the initiation codon AUG other properties of scRYMV RNA are described elsewhere within the combined initiation-termination sequence). Termina- (9, 11). The putative ORF generated from a linear trimeric head- tion codons can be ignored to obtain larger read-through proteins. to-tail cDNA copy of the 220 nt of scRYMV RNA (representing This circular RNA with no noncoding sequences is a unique natural a three-frame overlapped ORF present in the monomeric form supercompact “nanogenome.” of circular RNA) was constructed as a fusion protein with S-Tag/ thrombin under the T7 transcriptional and translational controls hammerhead ribozyme | sobemovirus | circular RNA translation | in plasmid expression tag (pET)29(c) vector. The resulting clone leaky termination codons was designated pET52 (Fig. 1). Thirteen amino acids at the N terminus of the putative scRYMV protein were replaced by 39 aa from thrombin to generate a fusion protein. Upon induction of iroids and virusoids (viroid-like satellite RNAs) are typically pET52 in E. coli cells, a major protein species of 19 kDa was de- small (220–450 nt) covalently closed circular (CCC) RNAs V tectable by SDS/PAGE and Coomassie brilliant blue R-250 staining with no coding capacity (i.e., no genetic information) (1–3) and (Fig.
Recommended publications
  • Molecular Variability of Apple Hammerhead Viroid from Italian
    Virus Research 270 (2019) 197644 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres Short communication Molecular variability of apple hammerhead viroid from Italian apple varieties supports the relevance in vivo of its branched conformation T stabilized by a kissing loop interaction Michela Chiumentia, Beatriz Navarroa, Pasquale Veneritob, Francesco Civitac, ⁎ ⁎ Angelantonio Minafraa, , Francesco Di Serioa, a Istituto per la Protezione Sostenibile delle Piante (CNR), Bari, Italy b Centro di Ricerca, Sperimentazione e Formazione in Agricoltura “Basile Caramia”, Locorotondo, Italy c SINAGRI – Università degli Studi di Bari “Aldo Moro”, Bari, Italy ARTICLE INFO ABSTRACT Keywords: In the absence of protein-coding ability, viroid RNAs rely on direct interactions with host factors for their Hammerhead infectivity. RNA structural elements are likely involved in these interactions. Therefore, preservation of a Non-Coding RNA structural element, despite the sequence variability existing between the variants of a viroid population, is Sequence variability considered a solid evidence of its relevant role in vivo. In this study, apple hammerhead viroid (AHVd) was first Secondary structure identified in the two apple cultivars ‘Mela Rosa Guadagno’ (MRG) and ‘Agostinella’ (AG), which are cultivated Co-Variation since long in Southern Italy, thus providing the first solid evidence of its presence in this country. Then, the Stem-Loop natural variability of AHVd viroid populations infecting MRG and AG was studied. The sequence variants from the two Italian isolates shared only 82.1–87.7% sequence identity with those reported previously from other geographic areas, thus providing the possibility of exploring the impact of this sequence divergence on the proposed secondary structure.
    [Show full text]
  • Replication of Avocado Sunblotch Viroid in the Cyanobacterium Nostoc Sp. PCC 7120
    atholog P y & nt a M Latifi et al., J Plant Pathol Microbiol 2016, 7:4 l i P c f r o o DOI: 10.4172/2157-7471.1000341 b l i Journal of a o l n o r g u y o J ISSN: 2157-7471 Plant Pathology & Microbiology Research Article Open Access Replication of Avocado Sunblotch Viroid in the Cyanobacterium Nostoc Sp. PCC 7120 Amel Latifi1*, Christophe Bernard1, Laura da Silva2, Yannick Andéol3, Amine Elleuch4, Véronique Risoul1, Jacques Vergne2 and Marie-Christine Maurel2 1Aix Marseille University, CNRS, UMR Chemistry Laboratory Bacterial 7283. 31 Chemin Joseph Aiguier 13009 Marseille Cedex 20, France 2Institute of Systematics, Evolution, Biodiversity ( ISyEB ), CNRS, MNHN , UPMC, EPHE, UPMC Sorbonne University, 57 rue Cuvier, PO Box 50, F-75005 Paris, France 3Team Enzymology of RNA, UR6, UPMC Sorbonne University, 75252 Paris Cedex 05 France 4Laboratory of Plant Biotechnology, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3000 Sfax, Tunisia Abstract Viroids are small infectious RNA molecules that replicate in plants via RNA-RNA replication processes. The molecular mechanism responsible for this replication has attracted great interest, and studies on this topic have yielded interesting biological findings on the processes in which RNA is involved. Viroids belonging to the Avsunviroidae family replicate in the chloroplasts of infected hosts. It has by now been established that chloroplasts and cyanobacteria share a common have ancestor. In view of this phylogenetic relationship, we investigated whether a member of the Avsunviroidae family could be replicated in a cyanobacterium. The results obtained here show that Avocado Sunblotch Viroid (ASBVd) RNA is able to replicate in the filamentous cyanobacterium Nostoc PCC 7120.
    [Show full text]
  • Hammerhead Ribozymes Against Virus and Viroid Rnas
    Hammerhead Ribozymes Against Virus and Viroid RNAs Alberto Carbonell, Ricardo Flores, and Selma Gago Contents 1 A Historical Overview: Hammerhead Ribozymes in Their Natural Context ................................................................... 412 2 Manipulating Cis-Acting Hammerheads to Act in Trans ................................. 414 3 A Critical Issue: Colocalization of Ribozyme and Substrate . .. .. ... .. .. .. .. .. ... .. .. .. .. 416 4 An Unanticipated Participant: Interactions Between Peripheral Loops of Natural Hammerheads Greatly Increase Their Self-Cleavage Activity ........................... 417 5 A New Generation of Trans-Acting Hammerheads Operating In Vitro and In Vivo at Physiological Concentrations of Magnesium . ...... 419 6 Trans-Cleavage In Vitro of Short RNA Substrates by Discontinuous and Extended Hammerheads ........................................... 420 7 Trans-Cleavage In Vitro of a Highly Structured RNA by Discontinuous and Extended Hammerheads ........................................... 421 8 Trans-Cleavage In Vivo of a Viroid RNA by an Extended PLMVd-Derived Hammerhead ........................................... 422 9 Concluding Remarks and Outlooks ........................................................ 424 References ....................................................................................... 425 Abstract The hammerhead ribozyme, a small catalytic motif that promotes self- cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically
    [Show full text]
  • Rna Ligation by Hammerhead Ribozymes and Dnazyme In
    RNA LIGATION BY HAMMERHEAD RIBOZYMES AND DNAZYME IN PLAUSIBLE PREBIOTIC CONDITIONS A Dissertation Presented to The Academic Faculty by Lively Lie In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Biology Georgia Institute of Technology DECEMBER 2015 COPYRIGHT 2015 BY LIVELY LIE RNA LIGATION BY HAMMERHEAD RIBOZYMES AND DNAZYME IN PLAUSIBLE PREBIOTIC CONDITIONS Approved by: Dr. Roger M. Wartell, Advisor Dr. Eric Gaucher School of Biology School of Biology Georgia Institute of Technology Georgia Institute of Technology Dr. Loren D. Williams Dr. Fredrik Vannberg School of Chemistry & Biochemistry School of Biology Georgia Institute of Technology Georgia Institute of Technology Dr. Nicholas Hud School of Chemistry & Biochemistry Georgia Institute of Technology Date Approved: August 13, 2015 ACKNOWLEDGEMENTS First, I would like to thank my family. Without the support of my mother and father, I would not have reached this far. To my husband, I thank him for his patience, love, and his knowledge of programming and computers. I would also like to thank the undergraduate students Rachel Hutto, Philip Kaltman, and Audrey Calvird who contributed to the research in this thesis and the lab technicians Eric O’Neill, Jessica Bowman, and Shweta Biliya, who seemed to know the answers to my troubleshooting. Finally, many thanks goes to my advisor Dr. Roger Wartell, always a helpful, patient, and kind mentor. iv TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iv LIST OF TABLES vii LIST OF FIGURES viii LIST OF SYMBOLS
    [Show full text]
  • Homology-Independent Discovery of Replicating Pathogenic Circular Rnas by Deep Sequencing and a New Computational Algorithm
    Homology-independent discovery of replicating pathogenic circular RNAs by deep sequencing and a new computational algorithm Qingfa Wua,b,1, Ying Wangb,1, Mengji Caob, Vitantonio Pantaleoc, Joszef Burgyanc, Wan-Xiang Lib, and Shou-Wei Dingb,2 aSchool of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; bDepartment of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521; and cIstituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, Torino, Italy Edited by George E. Bruening, University of California, Davis, CA, and approved January 24, 2012 (received for review October 28, 2011) A common challenge in pathogen discovery by deep sequencing Application of deep sequencing technologies has facilitated approaches is to recognize viral or subviral pathogens in samples discovery of viruses by purification- and culture-independent of diseased tissue that share no significant homology with a known approaches. In metagenomic approaches, viral sequences are pathogen. Here we report a homology-independent approach for enriched by partial purification of viral particles before deep se- discovering viroids, a distinct class of free circular RNA subviral quencing (6, 7). In contrast, enrichment of viral sequences is pathogens that encode no protein and are known to infect plants achieved by isolating the fraction of small RNAs 20–30 nt in only. Our approach involves analyzing the sequences of the total length for deep sequencing in virus discovery by deep sequencing small RNAs of the infected plants obtained by deep sequencing and assembly of total host small RNAs (vdSAR) (8, 9). Pro- with a unique computational algorithm, progressive filtering of duction of virus-derived small interfering RNAs (siRNAs) is a key overlapping small RNAs (PFOR).
    [Show full text]
  • The Avocado Sunblotch Viroid: an Invisible Foe of Avocado
    viruses Review The Avocado Sunblotch Viroid: An Invisible Foe of Avocado José Ramón Saucedo Carabez 1,*, Daniel Téliz Ortiz 2 , Moisés Roberto Vallejo Pérez 3 and Hugo Beltrán Peña 4 1 Departamento de Investigación Aplicada-Driscolls, Libramiento Sur #1620, Jacona 59833, Michoacán, Mexico 2 Postgrado en Fitosanidad-Fitopatología, Colegio de Postgraduados, Km. 36.5, Montecillo, Texcoco 56230, Estado de México, Mexico; [email protected] 3 Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma de San Luis Potosí, Álvaro Obregón #64, San Luis Potosí 78000, San Luis Potosí, Mexico; [email protected] 4 Departamento de Ciencias Naturales y Exactas-Fitopatología, Universidad Autónoma de Occidente UR Los Mochis, Boulevard Macario Gaxiola, Los Mochis 81223, Sinaloa, Mexico; [email protected] * Correspondence: [email protected] Received: 1 May 2019; Accepted: 25 May 2019; Published: 29 May 2019 Abstract: This review collects information about the history of avocado and the economically important disease, avocado sunblotch, caused by the avocado sunblotch viroid (ASBVd). Sunblotch symptoms are variable, but the most common in fruits are irregular sunken areas of white, yellow, or reddish color. On severely affected fruits, the sunken areas may become necrotic. ASBVd (type species Avocado sunblotch viroid, family Avsunviroidae) replicates and accumulates in the chloroplast, and it is the smallest plant pathogen. This pathogen is a circular single-stranded RNA of 246–251 nucleotides. ASBVd has a restricted host range and only few plant species of the family Lauraceae have been confirmed experimentally as additional hosts. The most reliable method to detect ASBVd in the field is to identify symptomatic fruits, complemented in the laboratory with reliable and sensitive molecular techniques to identify infected but asymptomatic trees.
    [Show full text]
  • Ribozymes Targeted to the Mitochondria Using the 5S Ribosomal Rna
    RIBOZYMES TARGETED TO THE MITOCHONDRIA USING THE 5S RIBOSOMAL RNA By JENNIFER ANN BONGORNO A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2005 Copyright 2005 by Jennifer Bongorno To my grandmother, Hazel Traster Miller, whose interest in genealogy sparked my interest in genetics, and without whose mitochondria I would not be here ACKNOWLEDGMENTS I would like to thank all the members of the Lewin lab; especially my mentor, Al Lewin. Al was always there for me with suggestions and keeping me motivated. He and the other members of the lab were like my second family; I would not have had an enjoyable experience without them. Diana Levinson and Elizabeth Bongorno worked with me on the fourth and third mouse transfections respectively. Joe Hartwich and Al Lewin tested some of the ribozymes in vitro and cloned some of the constructs I used. James Thomas also helped with cloning and was an invaluable lab manager. Verline Justilien worked on a related project and was a productive person with whom to bounce ideas back and forth. Lourdes Andino taught me how to use the new phosphorimager for my SYBR Green-stained gels. Alan White was there through it all, like the older brother I never had. Mary Ann Checkley was with me even longer than Alan, since we both came to Florida from Ohio Wesleyan, although she did manage to graduate before me. Jia Liu and Frederic Manfredsson were there when I needed a beer.
    [Show full text]
  • In Vitro Analysis of the Self-Cleaving Satellite RNA of Barley Yellow Dwarf Virus Stanley Livingstone Silver Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1993 In vitro analysis of the self-cleaving satellite RNA of barley yellow dwarf virus Stanley Livingstone Silver Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, Molecular Biology Commons, and the Plant Pathology Commons Recommended Citation Silver, Stanley Livingstone, "In vitro analysis of the self-cleaving satellite RNA of barley yellow dwarf virus " (1993). Retrospective Theses and Dissertations. 10274. https://lib.dr.iastate.edu/rtd/10274 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. _UMI MICROFILMED 1993 | INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • (10) Patent No.: US 9139554 B2
    US009139554B2 (12) United States Patent (10) Patent No.: US 9,139,554 B2 Hope et al. (45) Date of Patent: Sep. 22, 2015 (54) AMINO LIPIDS AND METHODS FOR THE 4,438,052 A 3, 1984 Weder et al. DELIVERY OF NUCLECACDS 4,469,863. A 9, 1984 Ts'o et al. 4476,301 A 10, 1984 Imbach et al. 4,515,736 A 5, 1985 Deamer (75) Inventors: Michael J. Hope, Vancouver (CA), Sean 4,522,803 A 6, 1985 Lenk et al. C. Semple, Delta (CA); Jianxin Chen, 4,588,578 A 5/1986 Fountain et al. Vancouver (CA); Thomas D. Madden, 4,598,051 A 7, 1986 Papahadjopoulos et al. Vancouver (CA); Pieter R. Cullis, - 2: A 3. E. SR etCa al Vancouver SCA) Marco A. Ciufolini, 4,839, 175 A ck 6, 1989 Guo et al. 424/450 Vancouver (CA), Barbara Low Shoud 4,845.205 A 7/1989 Huynh Dinh et al. Mui, Vancouver (CA) 4,897,355 A 1/1990 Eppstein et al. 4,957,773. A 9/1990 Spencer et al. (73) Assignees: Tekmira Pharmaceuticals E.- w A 3. : ech et calal. E.niversity of Briticini,British Columbia, 5,023,2435,013,556 A 6/19915/1991 WoodleTullis et al. Vancouver (CA) 5,034,506 A 7/1991 Summerton et al. 5,118,800 A 6/1992 Smith et al. (*) Notice: Subject to any disclaimer, the term of this 5,130,302 A 7/1992 Spielvogel et al. patent is extended or adjusted under 35 3. A RE SRN. tal U.S.C.
    [Show full text]
  • Hepatitis Delta: Virological and Clinical Aspects
    Botelho-Souza et al. Virology Journal (2017) 14:177 DOI 10.1186/s12985-017-0845-y REVIEW Open Access Hepatitis delta: virological and clinical aspects Luan Felipo Botelho-Souza1,2,3*, Mariana Pinheiro Alves Vasconcelos4, Alcione de Oliveira dos Santos1,2,3, Juan Miguel Villalobos Salcedo1,2,3 and Deusilene Souza Vieira1,2,3 Abstract There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels. Keywords: HDV, Virology, Clinical aspects Background Later it was demonstrated that HBV infection associ- The hepatitis delta or D virus (HDV) was discovered in ated with HDAg (HBV/HDV) did not develop in chim- 1977 by Rizzetto et al.
    [Show full text]
  • Review Chemistry and Biology of Self-Cleaving Ribozymes Randi M
    TIBS 1181 No. of Pages 14 Review Chemistry and Biology of Self-Cleaving Ribozymes Randi M. Jimenez,1 Julio A. Polanco,1 and Andrej Lupták1,2,3,* Self-cleaving ribozymes were discovered 30 years ago, but their biological Trends fi distribution and catalytic mechanisms are only beginning to be de ned. Each Self-cleaving ribozymes are distributed ribozyme family is defined by a distinct structure, with unique active sites throughout all branches of life. Cur- accelerating the same transesterification reaction across the families. Biochem- rently, there are nine distinct structural motifs that promote self-scission in ical studies show that general acid-base catalysis is the most common mecha- nature. nism of self-cleavage, but metal ions and metabolites can be used as cofactors. The six self-cleaving ribozymes that Ribozymes have been discovered in highly diverse genomic contexts through- have been investigated mechanistically out nature, from viroids to vertebrates. Their biological roles include self- all appear to use a general acid-base scission during rolling-circle replication of RNA genomes, co-transcriptional mechanism for catalysis. Magnesium, or another divalent metal ion, is largely processing of retrotransposons, and metabolite-dependent gene expression used to stabilize the tertiary structures regulation in bacteria. Other examples, including highly conserved mammalian of these ribozymes. ribozymes, suggest that many new biological roles are yet to be discovered. The broad distribution of self-cleaving ribozymes suggests several biological Guiding Principles for Ribozyme Exploration roles. The known functions include RNA processing during rolling-circle Small nucleolytic ribozymes carry out site-specific phosphodiester scission without the need for replication of single-stranded subviral protein chaperones or enzymes.
    [Show full text]
  • Phylogenetic Analysis of Viroid and Viroid-Like Satellite Rnas from Plants: a Reassessment
    J Mol Evol (2001) 53:155–159 DOI: 10.1007/s002390010203 © Springer-Verlag New York Inc. 2001 Letter to the Editor Phylogenetic Analysis of Viroid and Viroid-Like Satellite RNAs from Plants: A Reassessment Santiago F. Elena,1 Joaquı´n Dopazo,2 Marcos de la Pen˜a,3 Ricardo Flores,3 Theodor O. Diener,4 Andre´s Moya1 1 Institut Cavanilles de Biodiversitat i Biologia Evolutiva and Departament de Gene`tica, Universitat de Vale`ncia, Apartat 2085, 46071 Vale`ncia, Spain 2 Unidad de Bioinforma´tica, Centro Nacional de Investigaciones Oncolo´gicas Carlos III, Carretera Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain 3 Instituto de Biologı´a Molecular y Celular de Plantas (UPV-CSIC), Universidad Polite´cnica de Valencia, Avenida de los Naranjos, 46022 Valencia, Spain 4 Center for Agricultural Biotechnology, University of Maryland Biotechnology Institute, College Park, MD 20742, USA Received: 17 January 2001 / Accepted: 16 March 2001 Abstract. The proposed monophyletic origin of a Key words: Likelihood-mapping — Molecular phy- group of subviral plant pathogens (viroids and viroid-like logeny — Tree-likeness — Viroid — Viroid-like satel- satellite RNAs), as well as the phylogenetic relationships lite RNA and the resulting taxonomy of these entities, has been recently questioned. The criticism comes from the (ap- Viroids, subviral pathogens of higher plants, are small parent) lack of sequence similarity among these RNAs (246–400 nucleotide residues, nt), unencapsidated, necessary to reliably infer a phylogeny. Here we show single-stranded, circular RNAs characterized by highly that, despite their low overall sequence similarity, a se- base-paired secondary structures (Diener 1991; Flores et quence alignment manually adjusted to take into account al.
    [Show full text]