The Generalised Continuum Hypothesis Implies the Axiom of Choice in Coq

Total Page:16

File Type:pdf, Size:1020Kb

The Generalised Continuum Hypothesis Implies the Axiom of Choice in Coq The Generalised Continuum Hypothesis Implies the Axiom of Choice in Coq Dominik Kirst Felix Rech Saarland University Saarland University Saarland Informatics Campus, Saarbrücken, Germany Saarland Informatics Campus, Saarbrücken, Germany [email protected] [email protected] Abstract between X and P¹Xº for every infinite X. Therefore, GCH We discuss and compare two Coq mechanisations of Sier- narrows the range of the power set operation otherwise left piński’s result that the generalised continuum hypothesis rather underspecified by the usual Zermelo-Fraenkel (ZF) (GCH) implies the axiom of choice (AC). The first version axioms. AC, in one typical set-theoretic formulation, states shows the result, originally stated in first-order ZF set-theory, that every set X of non-empty sets admits a choice function for a higher-order set theory convenient to work with in Coq. f such that f ¹xº 2 x for all x 2 X. The second version presents a corresponding theorem for That GCH as a statement about power sets and cardinal- Coq’s type theory itself, concerning type-theoretic formu- ity implies AC, a statement providing a means to uniformly lations of GCH and AC. Both versions rely on the classical pick elements from non-empty sets, may seem surprising law of excluded middle and extensionality assumptions but indeed [14]. However, since AC is equivalent to the well- we localise the use of axioms where possible. ordering theorem (WO), asserting that every (infinite) set can be well-ordered, and since well-orders transport along in- CCS Concepts: • Theory of computation ! Type the- jections, there is a well-established strategy how Sierpiński’s ory; Constructive mathematics; Higher order logic. result can be deduced. Intuitively, given an infinite set X, the ¹ º Keywords: dependent type theory, higher-order set theory, intermediate step is to construct a well-ordered set H X , for generalised continuum hypothesis, axiom of choice, Coq instance the Hartogs number of X [18], which is not embed- dable into X but bounded by a finite iteration of the power ACM Reference Format: set on X, i.e. with jH¹Xºj 6≤ jX j but jH¹Xºj ≤ jPk ¹Xºj for Dominik Kirst and Felix Rech. 2021. The Generalised Continuum some number k. Deducing jX j ≤ jH¹Xºj would now suffice Proceedings Hypothesis Implies the Axiom of Choice in Coq. In in order to transport the well-order of H¹Xº onto X and to of the 10th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP ’21), January 18–19, 2021, Virtual, Den- conclude WO and thus AC. However, since cardinalities need j ¹ ºj 6≤ j j mark. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/ not be comparable in the absence of AC, just H X X 3437992.3439932 is not enough to deduce jX j ≤ jH¹Xºj. Yet applying GCH on a suitable instance yields that either jX j ≤ jH¹Xºj as desired k−1 1 Introduction or jH¹Xºj ≤ jP ¹Xºj, the latter allowing for iterating the argument ultimately terminating since jH¹Xºj 6≤ jX j.1 An early but somewhat surprising result in axiomatic set the- Sierpiński’s theorem as a result in first-order set theory has ory states that the generalised continuum hypothesis (GCH) been canonised in standard textbooks (e.g. [38], we follow implies the axiom of choice (AC), already announced by their wording of “Sierpiński’s theorem” for simplicity and Tarski in 1926 [27] and proven by Sierpiński in 1947 [35]. are conscious of other results referred to by the same name) GCH, generalising Cantor’s continuum hypothesis stating and in fact mechanised in Metamath by Carneiro [9].2 In that there are no cardinalities between the set N of natu- this paper, in contrast, we study Sierpiński’s theorem as a ral numbers and its power set P¹Nº, rules out cardinalities statement in higher-order set theory, disposing of the need Permission to make digital or hard copies of all or part of this work for for first-order encodings, as well as in dependent type the- personal or classroom use is granted without fee provided that copies ory, disposing of the axiomatic framework altoghether, and are not made or distributed for profit or commercial advantage and that provide respective mechanisations in Coq [42].3 copies bear this notice and the full citation on the first page. Copyrights As argued in a previous paper [24], higher-order set theory for components of this work owned by others than the author(s) must is a natural framework for mechanising set-theoretic results be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific in proof assistants implementing a higher-order logic. Specif- permission and/or a fee. Request permissions from [email protected]. ically, the ZF axiom scheme used to express replacement for CPP ’21, January 18–19, 2021, Virtual, Denmark © 2021 Copyright held by the owner/author(s). Publication rights licensed 1Sierpiński’s original proof works with k = 3 and hence applies GCH three to ACM. times. A proof applying GCH only twice was later given by Specker [40]. ACM ISBN 978-1-4503-8299-1/21/01...$15.00 2See Section 8.3 for a more detailed comparison to Carneiro’s work. https://doi.org/10.1145/3437992.3439932 3Available at https://www.ps.uni-saarland.de/extras/sierpinski/. CPP ’21, January 18–19, 2021, Virtual, Denmark Dominik Kirst and Felix Rech every first-order formula ϕ¹x;yº describing a functional rela- Regarding the role of additional axioms, it is obvious tion can be condensed into a single axiom simply quantifying that a result from classical set theory does not necessar- over all relations, not just the first-order definable ones. So ily transport to Coq’s constructive type theory directly. In in consequence there is no need to represent the syntax of fact, we will assume functional extensionality (FE), proposi- first-order logic and the full expressivity of the meta-logic tional extensionality (PE), and the law of excluded middle can be used. In particular regarding Sierpiński’s theorem, LEM := P : P: P _:P throughout this paper. Note that every function on the meta-level can be encoded as a set- FE and PE8 together imply that predicates p : X ! P are theoretic representation, which makes the central notion of determined by their elements and that both PE and LEM sep- cardinality coincide on both levels. This is a fundamental arately imply proof irrelevance (PI) and hence the existence difference from first-order set theory, where, for instance, ex- of well-behaved subtypes Σx : X : px. While FE and PE are ternally countable models with internally uncountable sets only needed for the mentioned shortcuts and could possibly exist as noted early on by Skolem [36]. be circumvented, the necessity of LEM shall be subject of This simplification of axiom schemes, together with fur- further investigation. Furthermore, we first give a proof vari- ther streamlining of the foundation and infinity axioms, ant relying on a unique choice operator (UC) to identify total yields a higher-order version of ZF very convenient to work functional relations with functions for a simplified presenta- with in Coq. Therefore complementing [9], we give a com- tion in alignment with the usual set-theoretic practice. That pact Coq mechanisation using features like inductive pred- this requirement can be eliminated is shown afterwards. icates and recursive function definitions although still pre- The remaining text is organised as follows. We begin by senting the argument in its typical set-theoretic outline. Es- introducing the general notions of cardinality and orderings pecially, this framework admits a notion of inductively char- in Section2. Then, in the first part of the paper, the set- acterised ordinals similar to the inductive treatment of the theoretic version of Sierpiński’s theorem will be presented, cumulative hierarchy in [24]. Going one step further, in the with a focus on the representation of ordinals (Section3) second part of the paper, we will contrast this set-theoretic and the Hartogs numbers (Section4). The second part then development with a type-theoretic version of Sierpiński’s outlines the type-theoretic version, comprising the encod- result that does without any intermediate axiomatisation. ing of the Hartogs numbers as types (Section5) and the The fact that, if one interprets sets as types in a type uni- remaining argument with (Section6) and without (Section7) verse T, statements usually rendered in set theory have natu- employing UC. Both parts can be read independently, only ral counterparts in dependent type theory (possibly extended the analogous conclusion of Sierpiński’s theorem after con- with axioms regarding extensionality and classical logic) has structing the Hartogs numbers is left out in the first part been illustrated in many places, for instance in [19], [43], to avoid redundancy. We conclude with some remarks on and [37] with type-theoretic versions of Zermelo’s result that the comparison of both versions, on their respective Coq AC implies WO. In particular, type theories as implemented mechanisations, as well as on related and future work in in Coq with its impredicative universe P of propositions, pro- Section8. All statements in this PDF version are hyperlinked viding the necessary notions of anonymous propositional with HTML documentation of the Coq development. existence and power sets, are well-suited for such a synthetic reformulation of set-theoretic results. 2 Cardinality and Well-Orderings In our case, we can formulate GCH in Coq by We use common notation for dependent product x: Fx, de- 8 GCHT : P := XY : T: jNj ≤ jX j ≤ jY j ≤ jX ! Pj pendent sum Σx: Fx, (binary) product X × Y , (binary) sum 8 ! jY j ≤ jX j _ jX ! Pj ≤ jY j X + Y , and function types X ! Y in the type universe (hier- archy) T.
Recommended publications
  • 1 Elementary Set Theory
    1 Elementary Set Theory Notation: fg enclose a set. f1; 2; 3g = f3; 2; 2; 1; 3g because a set is not defined by order or multiplicity. f0; 2; 4;:::g = fxjx is an even natural numberg because two ways of writing a set are equivalent. ; is the empty set. x 2 A denotes x is an element of A. N = f0; 1; 2;:::g are the natural numbers. Z = f:::; −2; −1; 0; 1; 2;:::g are the integers. m Q = f n jm; n 2 Z and n 6= 0g are the rational numbers. R are the real numbers. Axiom 1.1. Axiom of Extensionality Let A; B be sets. If (8x)x 2 A iff x 2 B then A = B. Definition 1.1 (Subset). Let A; B be sets. Then A is a subset of B, written A ⊆ B iff (8x) if x 2 A then x 2 B. Theorem 1.1. If A ⊆ B and B ⊆ A then A = B. Proof. Let x be arbitrary. Because A ⊆ B if x 2 A then x 2 B Because B ⊆ A if x 2 B then x 2 A Hence, x 2 A iff x 2 B, thus A = B. Definition 1.2 (Union). Let A; B be sets. The Union A [ B of A and B is defined by x 2 A [ B if x 2 A or x 2 B. Theorem 1.2. A [ (B [ C) = (A [ B) [ C Proof. Let x be arbitrary. x 2 A [ (B [ C) iff x 2 A or x 2 B [ C iff x 2 A or (x 2 B or x 2 C) iff x 2 A or x 2 B or x 2 C iff (x 2 A or x 2 B) or x 2 C iff x 2 A [ B or x 2 C iff x 2 (A [ B) [ C Definition 1.3 (Intersection).
    [Show full text]
  • Specifying Verified X86 Software from Scratch
    Specifying verified x86 software from scratch Mario Carneiro Carnegie Mellon University, Pittsburgh, PA, USA [email protected] Abstract We present a simple framework for specifying and proving facts about the input/output behavior of ELF binary files on the x86-64 architecture. A strong emphasis has been placed on simplicity at all levels: the specification says only what it needs to about the target executable, the specification is performed inside a simple logic (equivalent to first-order Peano Arithmetic), and the verification language and proof checker are custom-designed to have only what is necessary to perform efficient general purpose verification. This forms a part of the Metamath Zero project, to build a minimal verifier that is capable of verifying its own binary. In this paper, we will present the specification of the dynamic semantics of x86 machine code, together with enough information about Linux system calls to perform simple IO. 2012 ACM Subject Classification Theory of computation → Program verification; Theory of com- putation → Abstract machines Keywords and phrases x86-64, ISA specification, Metamath Zero, self-verification Digital Object Identifier 10.4230/LIPIcs.ITP.2019.19 Supplement Material The formalization is a part of the Metamath Zero project at https://github. com/digama0/mm0. Funding This material is based upon work supported by AFOSR grant FA9550-18-1-0120 and a grant from the Sloan Foundation. Acknowledgements I would like to thank my advisor Jeremy Avigad for his support and encourage- ment, and for his reviews of early drafts of this work. 1 Introduction The field of software verification is on the verge of a breakthrough.
    [Show full text]
  • Intransitivity, Utility, and the Aggregation of Preference Patterns
    ECONOMETRICA VOLUME 22 January, 1954 NUMBER 1 INTRANSITIVITY, UTILITY, AND THE AGGREGATION OF PREFERENCE PATTERNS BY KENNETH 0. MAY1 During the first half of the twentieth century, utility theory has been subjected to considerable criticism and refinement. The present paper is concerned with cer- tain experimental evidence and theoretical arguments suggesting that utility theory, whether cardinal or ordinal, cannot reflect, even to an approximation, the existing preferences of individuals in many economic situations. The argument is based on the necessity of transitivity for utility, observed circularities of prefer- ences, and a theoretical framework that predicts circularities in the presence of preferences based on numerous criteria. THEORIES of choice may be built to describe behavior as it is or as it "ought to be." In the belief that the former should precede the latter, this paper is con- cerned solely with descriptive theory and, in particular, with the intransitivity of preferences. The first section indicates that transitivity is not necessary to either the usual axiomatic characterization of the preference relation or to plau- sible empirical definitions. The second section shows the necessity of transitivity for utility theory. The third section points to various examples of the violation of transitivity and suggests how experiments may be designed to bring out the conditions under which transitivity does not hold. The final section shows how intransitivity is a natural result of the necessity of choosing among alternatives according to conflicting criteria. It appears from the discussion that neither cardinal nor ordinal utility is adequate to deal with choices under all conditions, and that we need a more general theory based on empirical knowledge of prefer- ence patterns.
    [Show full text]
  • The Metamathematics of Putnam's Model-Theoretic Arguments
    The Metamathematics of Putnam's Model-Theoretic Arguments Tim Button Abstract. Putnam famously attempted to use model theory to draw metaphysical conclusions. His Skolemisation argument sought to show metaphysical realists that their favourite theories have countable models. His permutation argument sought to show that they have permuted mod- els. His constructivisation argument sought to show that any empirical evidence is compatible with the Axiom of Constructibility. Here, I exam- ine the metamathematics of all three model-theoretic arguments, and I argue against Bays (2001, 2007) that Putnam is largely immune to meta- mathematical challenges. Copyright notice. This paper is due to appear in Erkenntnis. This is a pre-print, and may be subject to minor changes. The authoritative version should be obtained from Erkenntnis, once it has been published. Hilary Putnam famously attempted to use model theory to draw metaphys- ical conclusions. Specifically, he attacked metaphysical realism, a position characterised by the following credo: [T]he world consists of a fixed totality of mind-independent objects. (Putnam 1981, p. 49; cf. 1978, p. 125). Truth involves some sort of correspondence relation between words or thought-signs and external things and sets of things. (1981, p. 49; cf. 1989, p. 214) [W]hat is epistemically most justifiable to believe may nonetheless be false. (1980, p. 473; cf. 1978, p. 125) To sum up these claims, Putnam characterised metaphysical realism as an \externalist perspective" whose \favorite point of view is a God's Eye point of view" (1981, p. 49). Putnam sought to show that this externalist perspective is deeply untenable. To this end, he treated correspondence in terms of model-theoretic satisfaction.
    [Show full text]
  • A Taste of Set Theory for Philosophers
    Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. A taste of set theory for philosophers Jouko Va¨an¨ anen¨ ∗ Department of Mathematics and Statistics University of Helsinki and Institute for Logic, Language and Computation University of Amsterdam November 17, 2010 Contents 1 Introduction 1 2 Elementary set theory 2 3 Cardinal and ordinal numbers 3 3.1 Equipollence . 4 3.2 Countable sets . 6 3.3 Ordinals . 7 3.4 Cardinals . 8 4 Axiomatic set theory 9 5 Axiom of Choice 12 6 Independence results 13 7 Some recent work 14 7.1 Descriptive Set Theory . 14 7.2 Non well-founded set theory . 14 7.3 Constructive set theory . 15 8 Historical Remarks and Further Reading 15 ∗Research partially supported by grant 40734 of the Academy of Finland and by the EUROCORES LogICCC LINT programme. I Journal of the Indian Council of Philosophical Research, Vol. XXVII, No. 2. A Special Issue on "Logic and Philosophy Today", 143-163, 2010. Reprinted in "Logic and Philosophy Today" (edited by A. Gupta ans J.v.Benthem), College Publications vol 29, 141-162, 2011. 1 Introduction Originally set theory was a theory of infinity, an attempt to understand infinity in ex- act terms. Later it became a universal language for mathematics and an attempt to give a foundation for all of mathematics, and thereby to all sciences that are based on mathematics.
    [Show full text]
  • Natural Numerosities of Sets of Tuples
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 1, January 2015, Pages 275–292 S 0002-9947(2014)06136-9 Article electronically published on July 2, 2014 NATURAL NUMEROSITIES OF SETS OF TUPLES MARCO FORTI AND GIUSEPPE MORANA ROCCASALVO Abstract. We consider a notion of “numerosity” for sets of tuples of natural numbers that satisfies the five common notions of Euclid’s Elements, so it can agree with cardinality only for finite sets. By suitably axiomatizing such a no- tion, we show that, contrasting to cardinal arithmetic, the natural “Cantorian” definitions of order relation and arithmetical operations provide a very good algebraic structure. In fact, numerosities can be taken as the non-negative part of a discretely ordered ring, namely the quotient of a formal power series ring modulo a suitable (“gauge”) ideal. In particular, special numerosities, called “natural”, can be identified with the semiring of hypernatural numbers of appropriate ultrapowers of N. Introduction In this paper we consider a notion of “equinumerosity” on sets of tuples of natural numbers, i.e. an equivalence relation, finer than equicardinality, that satisfies the celebrated five Euclidean common notions about magnitudines ([8]), including the principle that “the whole is greater than the part”. This notion preserves the basic properties of equipotency for finite sets. In particular, the natural Cantorian definitions endow the corresponding numerosities with a structure of a discretely ordered semiring, where 0 is the size of the emptyset, 1 is the size of every singleton, and greater numerosity corresponds to supersets. This idea of “Euclidean” numerosity has been recently investigated by V.
    [Show full text]
  • How to Study Mathematics – the Manual for Warsaw University 1St Year Students in the Interwar Period
    TECHNICAL TRANSACTIONS CZASOPISMO TECHNICZNE FUNDAMENTAL SCIENCES NAUKI PODSTAWOWE 2-NP/2015 KALINA BARTNICKA* HOW TO STUDY MATHEMATICS – THE MANUAL FOR WARSAW UNIVERSITY 1ST YEAR STUDENTS IN THE INTERWAR PERIOD JAK STUDIOWAĆ MATEMATYKĘ – PORADNIK DLA STUDENTÓW PIERWSZEGO ROKU Z OKRESU MIĘDZYWOJENNEGO Abstract In 1926 and in 1930, members of Mathematics and Physics Students’ Club of the Warsaw University published the guidance for the first year students. These texts would help the freshers in constraction of the plans and course of theirs studies in the situation of so called “free study”. Keywords: Warsaw University, Interwar period, “Free study”, Study of Mathematics, Freshers, Students’ clubs, Guidance for students Streszczenie W 1926 r. i w 1930 r. Koło Naukowe Matematyków i Fizyków Studentów Uniwersytetu War- szawskiego opublikowało poradnik dla studentów pierwszego roku matematyki. Są to teksty, które pomagały pierwszoroczniakom w racjonalnym skonstruowaniu planu i toku ich studiów w warunkach tzw. „wolnego stadium”. Słowa kluczowe: Uniwersytet Warszawski, okres międzywojenny, „wolne stadium”, studio­ wanie matematyki, pierwszoroczniacy, studenckie koła naukowe, poradnik dla studentów DOI: 10.4467/2353737XCT.15.203.4408 * L. & A. Birkenmajetr Institute of History of Science, Polish Academy of Sciences, Warsaw, Poland; [email protected] 14 This paper is focused primarily on the departure from the “free study” in university learning in Poland after it regained its independence in 1918. The idea of the “free study” had been strongly cherished by professors and staff of the Philosophy Department of Warsaw University even though the majority of students (including the students of mathematics and physics) were not interested in pursuing an academic career. The concept of free study left to the students the decision about the choice of subjects they wished to study and about the plan of their work.
    [Show full text]
  • Notices of the American Mathematical Society
    June 18 and 19)- Page 341 Vl 0 ~ Mathematical Society Calendar of AMS Meetings THIS CALENDAR lists all meetings which have been approved by the Council prior to the date this issue of the Notices was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the Ameri· can Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Programs of the meetings will appear in the issues indicated below. First and second announcements of the meetings will have appeared in earlier issues. ABSTRACTS OF PAPERS presented at a meeting of the Society are published in the journal Abstracts of papers presented to the American Mathematical Society in the issue corresponding to that of the Notices which contains the program of the meet­ ing. Abstracts should be submitted on special forms which are available in many departments of mathematics and from the office of the Society in Providence. Abstracts of papers to be presented at the meeting must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline given below for the meeting. Note that the deadline for ab· stracts submitted for consideration for presentation at special sessions is usually three weeks earlier than that specified below. For additional information consult the meeting announcement and the list of organizers of special sessions. MEETING ABSTRACT NUMBER DATE PLACE DEADLINE
    [Show full text]
  • Adolf Lindenbaum: Notes on His Life, with Bibliography and Selected References
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Log. Univers. 8 (2014), 285–320 c 2014 The Author(s). This article is published with open access at Springerlink.com 1661-8297/14/030285-36, published online December 3, 2014 DOI 10.1007/s11787-014-0108-2 Logica Universalis Adolf Lindenbaum: Notes on his Life, with Bibliography and Selected References Jan Zygmunt and Robert Purdy Abstract. Notes on the life of Adolf Lindenbaum, a complete bibliography of his published works, and selected references to his unpublished results. Mathematics Subject Classification. 01A60, 01A70, 01A73, 03-03. Keywords. Adolf Lindenbaum, biography, bibliography, unpublished works. This paper is dedicated to Adolf Lindenbaum (1904–1941)—Polish- Jewish mathematician and logician; a member of the Warsaw school of mathe- matics under Waclaw Sierpi´nski and Stefan Mazurkiewicz and school of math- ematical logic under JanLukasiewicz and Stanislaw Le´sniewski;1 and Alfred Tarski’s closest collaborator of the inter-war period. Our paper is divided into three main parts. The first part is biograph- ical and narrative in character. It gathers together what little is known of Lindenbaum’s short life. The second part is a bibliography of Lindenbaum’s published output, including his public lectures. Our aim there is to be complete and definitive. The third part is a list of selected references in the literature attesting to his unpublished results2 and delineating their extent. Just to confuse things, we name the second and third parts of our paper, respectively, “Bibliography Part One” and “Bibliography Part Two”. Why, we no longer remember.
    [Show full text]
  • Alice in the Wonderful Land of Logical Notions)
    The Mystery of the Fifth Logical Notion (Alice in the Wonderful Land of Logical Notions) Jean-Yves Beziau University of Brazil, Rio de Janeiro, Brazilian Research Council and Brazilian Academy of Philosophy [email protected] Abstract We discuss a theory presented in a posthumous paper by Alfred Tarski entitled “What are logical notions?”. Although the theory of these logical notions is something outside of the main stream of logic, not presented in logic textbooks, it is a very interesting theory and can easily be understood by anybody, especially studying the simplest case of the four basic logical notions. This is what we are doing here, as well as introducing a challenging fifth logical notion. We first recall the context and origin of what are here called Tarski- Lindenbaum logical notions. In the second part, we present these notions in the simple case of a binary relation. In the third part, we examine in which sense these are considered as logical notions contrasting them with an example of a non-logical relation. In the fourth part, we discuss the formulations of the four logical notions in natural language and in first- order logic without equality, emphasizing the fact that two of the four logical notions cannot be expressed in this formal language. In the fifth part, we discuss the relations between these notions using the theory of the square of opposition. In the sixth part, we introduce the notion of variety corresponding to all non-logical notions and we argue that it can be considered as a logical notion because it is invariant, always referring to the same class of structures.
    [Show full text]
  • Geometry and Teaching
    Andrew McFarland Joanna McFarland James T. Smith Editors Alfred Tarski Early Work in Poland – Geometry and Teaching This book is dedicated to Helen Marie Smith, in gratitude for her advice and support, and to Maria Anna McFarland, as she enters a world of new experiences. Andrew McFarland • Joanna McFarland James T. Smith Editors Alfred Tarski Early Work in Poland—Geometry and Teaching with a Bibliographic Supplement Foreword by Ivor Grattan-Guinness Editors Andrew McFarland Joanna McFarland Páock, Poland Páock, Poland James T. Smith Department of Mathematics San Francisco State University San Francisco, CA, USA ISBN 978-1-4939-1473-9 ISBN 978-1-4939-1474-6 (eB ook) DOI 10.1007/978-1-4939-1474-6 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014945118 Mathematics Subject Classification (2010): 01A60, 01A70, 01A75, 03A10, 03B05, 03E75, 06A99, 28-03, 28A75, 43A07, 51M04, 51M25, 97B50, 97D40, 97G99, 97M30 © Springer Science+Business Media New York 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.
    [Show full text]
  • Mathematics in the Computer
    Mathematics in the Computer Mario Carneiro Carnegie Mellon University April 26, 2021 1 / 31 Who am I? I PhD student in Logic at CMU I Proof engineering since 2013 I Metamath (maintainer) I Lean 3 (maintainer) I Dabbled in Isabelle, HOL Light, Coq, Mizar I Metamath Zero (author) Github: digama0 I Proved 37 of Freek’s 100 theorems list in Zulip: Mario Carneiro Metamath I Lots of library code in set.mm and mathlib I Say hi at https://leanprover.zulipchat.com 2 / 31 I Found Metamath via a random internet search I they already formalized half of the book! I .! . and there is some stuff on cofinality they don’t have yet, maybe I can help I Got involved, did it as a hobby for a few years I Got a job as an android developer, kept on the hobby I Norm Megill suggested that I submit to a (Mizar) conference, it went well I Met Leo de Moura (Lean author) at a conference, he got me in touch with Jeremy Avigad (my current advisor) I Now I’m a PhD at CMU philosophy! How I got involved in formalization I Undergraduate at Ohio State University I Math, CS, Physics I Reading Takeuti & Zaring, Axiomatic Set Theory 3 / 31 I they already formalized half of the book! I .! . and there is some stuff on cofinality they don’t have yet, maybe I can help I Got involved, did it as a hobby for a few years I Got a job as an android developer, kept on the hobby I Norm Megill suggested that I submit to a (Mizar) conference, it went well I Met Leo de Moura (Lean author) at a conference, he got me in touch with Jeremy Avigad (my current advisor) I Now I’m a PhD at CMU philosophy! How I got involved in formalization I Undergraduate at Ohio State University I Math, CS, Physics I Reading Takeuti & Zaring, Axiomatic Set Theory I Found Metamath via a random internet search 3 / 31 I .
    [Show full text]