Cambridge University Press 978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics Edited by Michael E
Total Page:16
File Type:pdf, Size:1020Kb
Cambridge University Press 978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics Edited by Michael E. Cuffaro , Samuel C. Fletcher Index More Information Index k relation, 214 Aristotle, 34 k relation, 214 arithmetical relation, 214 1 relation, 214 arithmetical set, 213 ǫ-closeness condition, 133 asymmetry, temporal, 236 ǫ-commuting diagram, 133–135, 147 asymptotic behavior, 175 λ-calculus, 2, 155, 161, 226 asymptotic methods, 175, 180–183, 194 λ-definability, 64 Avogadro’s number, 253 μ-recursion, 155, 161 axiomatic method, 60, 62–63 axiomatization of computability, 153–156 Aaronson, Scott, 48 of geometry, see Hilbert’s axiomatization of Abstraction/Representation theory, 15–16, geometry 127–149 of physics, 155, 165 diagram, 128, 133 of quantum theory, 257, 277 essential components, 140 of relativity, 166 Ackermann function, 158–161 affine-linear symmetry, 269, 272 agency, 16, 119–125 Babbage, Charles, see difference engine algebra of concepts, 72 backward error analysis, 181 algorithm, 65, 83–84, 97, 173–174, 176, Banach-Tarski paradox, 147 187, 189 basic linear algebra subprograms, 187 asynchronous, 52 basic polynomial algebra subprograms, 192 feasible, 173 Bell experiment, 263 probabilistic, 52 Berlekamp-Zassenhaus algorithm, 173 quantum, 77, 88, 90–91, 101–102 Bernoulli, Johann, 177 symbolic, 192 black hole, 17, 123, 199–200 analytical engine, 141–142 electrically charged, 208 ancilla bit, 85 Kerr, see rotating anti-hypercomputation thesis, see also rotating, 51, 196, 200–204, 208, 210, 214 physical Church-Turing thesis, 49 Schwarzschild, 200, 203, 208 anti-realism, 43–45 BLAS, see basic linear algebra subprograms Antikythera mechanism, 141 Bloch sphere, 78, 268–269 approximation, 173–177, 179–181, 183–184, blue-shift problem, 210–212 186, 187, 189–191, 193–194, 274 Blum’s speed-up theorem, 160 asymptotic, 180, 191 Bohmian mechanics, see interpretation of error, 181 quantum mechanics, Bohmian feasible, 173 Bohr, Niels, 263 methods in physics, 194 Born rule, 262 solution to a differential equation, 176 boundary layer theory, 175 AR theory, see Abstraction/Representation Bourbaki, Nicolas, 155 theory boxworld, 266–267, 272–273, 276 303 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics Edited by Michael E. Cuffaro , Samuel C. Fletcher Index More Information 304 Index BPAS, see basic polynomial algebra criteria for, 117 subprograms feasible BPP (complexity class), 6–7 pattern, 183–187, 190–192, 194 BQP (complexity class), 7 recursive, 187–188 Brillouin, Leon´ , 247 hyper-, 11, 13, 48, 54, 110, 129, 147–148, Brownian motion, 242, 244 168–170, 227 Bub, Jeffrey, 90–92, 258, 262 irreversible, 219 bulk matter, 224, 237 Niagara Falls, 109, 114, 122 objet trouve´, 108 ∗ C -algebra, 258–259 physics of, 219, 227 calculus of variations, 184 relativistic, see also relativistic computer, calculus ratiocinator, 62, 72 17, 195–215 Carnap, Rudolf, 131 reversible, 109, 170 Cauchy, Augustin-Louis, 177 rock, 145–146 CBH theorem, 258–260 slime mold, 16, 139–140, 142–144 cbit, 91, 96 stationary, 109, 114, 118–119, 122 cellular automaton, 13, 16, 25–26, 39–40, quantum, 114 104, 154 super-Turing, 148 number 110, 16, 166–167 symbolic, 174, 190, 192–193 universality proof, 170 unconventional, see computation, exotic Chaitin’s , 165 models of Chalmers, David, 221 universal, 261 characteristic function, 168 vs. scientific theory, 129 chemotaxis, 139 computational explanation, 84, 86–88, Chinese remainder theorem, 191 100–102 chlorine atoms information storage, 159 computational implementation, 9, 51, 161, CHSH-Bell inequality, 272 220–222, 226–230, 233–235 see also Church, Alonzo, Church-Turing BCC account of, 51 thesis, 14, 64–66 causal account of, 9, 51 Church-Turing thesis, 4, 10–11, 65, 70, 76, 79, counterfactual account of, 9 155, 172, 219 criteria for a logical operation, 116–119 physical, see physical Church-Turing thesis dispositional account of, 9 strong or extended, 6–7 intensional, 18 Clairaut, Alexis, 177, 182 mapping account of, 9, 112–113 classical mechanics, 235 mechanistic account of, 9, 15, 24, 51, Clifton, Robert, 258 83–88, 96, 100, 102 closed computational system, 139–140 Cobham-Edmonds thesis, 5 modally robust, 18 coding function, 156 semantic account of, 9, 24, 51, 130, 136 complexity syntactic account of, 9 see algebraic, 190 computational Pythagoreanism, algorithmic, 159, 173, 185, 190–193 Pythagoreanism, computational see also communication, 260 computational science, scientific computational, 5, 9, 17, 104, 106–108, computing, 17, 173–174, 187, 192–194 110–111, 153, 161, 168, 170, 173–175, computing system 180, 192–195, 247 quantum, 26–27 computability vs. computer, 24 effective, 2, 4, 10, 14, 64–66, 70, 76, conceptual analysis, 68, 72 172–173 conformal diagram, 207 of nature, 79–80, 274 consciousness, 54 theory, 2, 9, 16–17, 160–161, 165–166, 168, constructive mathematics, 64 169, 173, 192–194, 213 constructive physical theory, see principle computation theory vs. constructive theory analog, 108, 119, 143, 147 constructor theory, 79 exotic models of, 107–109, 114, 126, 148 contextuality, 8, 277 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics Edited by Michael E. Cuffaro , Samuel C. Fletcher Index More Information Index 305 continuous computational systems, see electromagnetism, 235 computation, analog empiricism, 132 continuous reversibility postulate, 275–278 encoding of a problem, 136–138, 140–146, control theory, 18 274 controlled operation, 231–233 engineering vs. science and computing, convex hull, 272 136–137 convex-operational framework, 259 entanglement, 8, 26, 90, 92–97, 99, 111, 211, convexity, 268–269 258, 273 cosmology, 224 entropy, 11, 219, 223–226, 232–233, 235–238, counterfactuals, 18, 89, 222, 238 240–241, 243–246, 249 CRT, see recursion theory thermodynamic vs. information theoretic, curve in a differentiable manifold, 205 220 causal, 206 Entscheidungsproblem, 68, 69 lightlike, 206 epistemic humility, 44–45 timelike, 206 Equivalence Principle, 198 cyclic tag system, 167 error analysis, 187 error probability for infinite computation, d’Alembert’s paradox, 175 212–215 d’Alembert, Jean le Rond, 178, 182 error-correction codes, quantum, 116 data, known vs. unknown, 230–231, 237 Euler’s method, 176, 178 Davis, Martin, 157, 168 Euler, Leonhard, 175–178, 181–182, 184 DDMA, see discrete deterministic mechanical evolution, 248 assembly explanation decidable relation, 214 causal, 263 decision problem, 2, 5, 70 structural, 263 Dedekind, Richard, 61 explanatory power, 19, 259, 261–265, density matrix, 266–268, 270, 273–275 278–279 Descartes, Rene,´ 62, 184 determinism, 71, 208–209 feasibly (un)computable problem, 173–174, Deutsch’s principle, 10, 14, 74 181, 184–185, 192 Deutsch, David, 40, 48, 49, 73–74, 76, 79, 258 Feferman, Solomon, 153, 155 Deutsch-Jozsa algorithm, 101 Fermat, Pierre de, 184 diagonal argument, 69, 157 Feynman, Richard, 74, 225, 231, 258 difference engine, 139–142 finite differences method, 177 difference equation, 188–189, 191 finite state automaton or machine, 89, 146, digital particles, 40 161, 169, 195, 221 digital philosophy, see discrete physics floating point number, 189–190, 192 digital physics, see discrete physics Diophantine equation, 168 fluid mechanics, 175, 183 discrete deterministic mechanical assembly, computational, 183 10, 13, 46, 49–51 Fock space, 132 discrete physics, 25, 166 Fourier transform, 190 DTIME, 5 Fredkin, Ed, 32, 166 DTM, see Turing machine, deterministic free energy, 231, 234, 239 Frege, Gottlob, 166 Friedman’s α function, 160–161 Earman, John, 211, 225 see see Friedman’s automaton, ordered partition ECT, Church-Turing Thesis, strong or automaton extended Friedman, Harvey, 160, 163–165, 169 effective procedure, 2–4, 61–62, 226 Fuchs, Christopher, 277 eigenstate, 95 functionalism, computational, 32–33 eigenvalue, 268 Einstein, Albert, 19, 242, 261–262, 264–265, 278 Godel¨ Argument, 54–58 Einstein-tensor, 209 Godel’s¨ incompleteness theorems, 13, 54, 60, Einstein-Tolman method, 234 63, 153 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-17119-0 — Physical Perspectives on Computation, Computational Perspectives on Physics Edited by Michael E. Cuffaro , Samuel C. Fletcher Index More Information 306 Index Godel,¨ Kurt, 14, 54–56, 60–61, 63–67, 69–70, Halvorson, Hans, 258 79, 161, 172 Hamiltonian, 108, 236, 249, 251 Galois theory, 184 Hamiltonian dynamics, 250–255 Game of Life, 39–44, 47 Hardy, Lucien, 260 Gandy machine, see also discrete deterministic Hartle, James, 53 mechanical assembly, 46–48, 50, 69 Heisenberg’s microscope, 247 Gandy’s principles for mechanisms, 46–52, 69 Heisenberg’s uncertainty principle, 71 Gandy’s thesis, 10–11, 13, 39, 45–49 Heisenberg, Werner, 263 Gandy, Robin, see also Gandy’s thesis, 39, Hensel construction, 191 69–70, 73 Herbrand, Jacques, 14, 63, 64 gate, logical, 77, 86, 221, 269 Herbrand-Godel¨ recursiveness, 64, 155, 161 π/2-phase, 94 physical realization, 161 ADD, 87 Hermitian matrix, 270 AND, 112–113, 122–123, 222, 227 heuristic algorithm, 194 bit-flip (X), 86, 92, 94 hidden variables, 259 Boolean, 126 Higman’s theorem, 160 Clifford group of, 94–95 Hilbert space, 19, 54, 71, 78, 114, 115, 153, controlled-not (CNOT), 86–87, 93–94, 232, 250–251, 253–257, 259, 262, 270