Continentality Indices Methodological Revision and Proposition (Kontinentalitätsindizes: Methodologische Revisionen Und Vorschl

Total Page:16

File Type:pdf, Size:1020Kb

Continentality Indices Methodological Revision and Proposition (Kontinentalitätsindizes: Methodologische Revisionen Und Vorschl 51 Juan L. Minetti: Continentality Indices BERICHTE UND MITTEILUNGEN CONTINENTALITY INDICES METHODOLOGICAL REVISION AND PROPOSITION With 9 figures and 1 table Juan L. Minetti Zusammenfassung: Kontinentalitatsindizes: Methodologische into the atmosphere for a given latitude and the Revisionen und Vorschlage annual amplitude of themonthly average of temper ature. Latitude is included in Brunt's index in the Kontinentalitatsindizes wurden schon in der Vergangen radiation coming into the atmosphere. The mathe heit behandelt, aber die mathematische Behand eingehend matical has a now. lung der jahreszeitlich bedingten thermischen Wellen hat algorithm physical meaning neue Berg used a new of the in der Gegenwart eine Bewertung der Indizes erlaubt. concept continentality: pre continental air masses in a in relation Die jahrliche thermische Welle irgendeiner im aufier vailing region to mass a tropischen Gebiet liegenden Station weist einen Amplitu the total present during year. deneffekt auf, der dem Kontinentalitatsgrad zuzuschreiben Because of the difficulty to identify the types of air aber sie auch eine und masses as come sources ist, zeigt Verschiebung Asymmetrie they out from their and the in zur an der Beziehung Sonneneinstrahlung Obergrenze lack of information concerning the altitude for a der Atmosphare. three-dimensional in these Berg's In dieser Arbeit wird dafi der Phasen winkel study regions, dargestellt, is not to der ersten Harmonischen einer Fourierschen Reihe der methodology easily apply. The indices, which are based on thermal Temperatur-Monatsmittel nicht nur in Verbindung mit previous von and are difficult to in low der Verzogerung Maxima und Minima einer Welle amplitude latitude, apply er to steht, sondern dafi auch einen Index der Asymmetrie latitudes (Conrad and Pollak 1950) due the low wird Phasen darstellt. Abschliefiend gezeigt, dafi dieser temperature amplitudes of tropical humid continen winkel als Indikator des Kontinentalitats- oder Maritimi tal climates. Ratisbona (1976) says that with these zu tatsgrades eines Ortes interpretieren ist, und es wird indices the basin of Amazonas River seems to be a eine Qualifikationsskala vorgeschlagen. large ocean. This disturbing effectcaused by themen tioned variable spreads from the humid Tucumano to 1. Introduction Oranense forest, in the northwest of Argentine, the Sierras de Cordoba and the Sierras de San Luis. oceans masses not The effects of continents and upon the Oceanic only regulate the annual tem a are a wave climate of region well known in climatologi perature of region but also the phase and cal literature. Gorczynski (1920), Brunt (1924), asymmetry with regard to the external radiative Berry et wave which force the land-ocean Johansson (1926), Berg (mentioned by al. atmosphere system. 1945), Conrad (1946) and Barry and Chorley Johansson (1926) introduced an index which some account (1972) suggested indices to quantify those takes into the asymmetry of the seasonal ther effects. mal wave, the thermal amplitude and the latitude of a Due to the dependence between temperature and place. Afterwards, Prohaska (1976) discussing the Gorczynski to estimate the conti seasonal of latitude, suggested change the temperature in extratropical of a account South a or ocean nentality region by taking into the ampli America, introduced continentality tude of the annual temperature oscillation and the ity classification based upon the difference between latitude of the Later the of autumn place. on, Johansson proposed average temperatures and spring tomodify these variables and Conrad mapped them (asymmetry synonym). (Conrad and Pollak 1950). This paper will show that some of the indices which Conrad and Pollak carried on the are methodologi used to identify continental ormaritime effects in an are not cal study of the proposed indices. They regard extratropical place effective, and therefore Brunt's as a index promising one, because itworked suggests an improved classification based upon the to according the average radiation amplitude coming phase and asymmetry of the seasonal thermal wave. 43/1989 52_Erdkunde_Band 2. Materials andMethods 3. Results and Discussion means ocean as a Monthly of 30-year temperature records in In this paper the is regarded reservoir of 356 places of the Southern Hemisphere (176 belong energy, large enough to regulate the amplitude of were to sea to Argentine) computed in this analysis. The annual temperature, delay and change the sources were wave the Climatological Statistics published sonal thermal in large regions. by the ServicioMeteoroldgico Nacional (1944, 1958, It is useful to remember that the local variation of 1969, 1974, 1981), theUSA Department ofCommerce temperature T? may be represented by themodel: (1959, 1966) and Prohaska (1976). _ dT? = dT? _> The following indicators of continentality were (4) used in the -r-_?H.VHT? analysis: with: a) Index of Johansson (1926), used by Conrad Sometimes it is mentioned as Conrad's ar (1946). ?-= local variation of a fixed index. * temperature (in geographical station) ???dT? with: = individual variation of * temperature (mov K: index of able to the continentality (%) * according parcel) T? = horizontal advection A: range of annual temperature vH Vh temperature = = a and b: constants, (a 1.7; b 14) Moreover, <p:latitude 1 ~= dT? dW _ b) Prohaska (1976, p. 43) classifies extratropical (5) South American into continental and mari cF"""ir-w" places with: time ones, on the base of the of the asymmetry = at constant Cp specific heat of air pressure seasonal change of temperature (difference between the of autumn and average temperatures spring). = variation of the received and emitted The criteria are: energy Continental climates: w = vertical of air - velocity = May average temperature September average g gravity acceleration <0 = temperature q air density Maritime climates: - or term - wg q air compression expansion (it repre May average temperature September average sents the adiabatic variations of parcel temperature) temperature >0 In this case the limit between continental and mari The variation of energy with time is a function of time climates is given by the same temperature the energy balance. The balance of energy may be autumn reached in and spring. represented by: c) This work is based upon the following hypothesis. = W (Q+q)(l-a) + Ii-It (6) It is supposed that the phase angle as well as the wave = asymmetry of the seasonal thermal could be W H + LE +AF (7) the of the first har properly represented by phase where the three terms of show the balance of short from a Fourier's for discrete series (6) monic, analysis and wave radiation or net radiation and to N = so that the wave for the most long (Rn), according 12, shows the flow of sensible and latent heat and the of the be as: (7) part variability may represented one acts balance surface net energy. The last only over ocean Afterwards: T,= T + (2) the (Sellers 1972). A,si?(ifl,)+B,cos(Jfl?) dw aw _ = = (8) with Tt monthy average temperature, T annual ir=ir+VH,vw average temperature and It is supposed by the aforesaid that the variation of = = temperature of a place is a function of energy balance A1 2/N I N P=12 Ttsin(^-t)V 7 fluctuation, adiabatic processes and energy advec (3) tion. This situationmay be represented by themodel: = = = Bj 2/N E Tt cos (?? N P 12 - xj ar /aw - \ =f vh VHw, (9) = "37" \~^~' wge) 0 arc tgBj/Aj, called phase angle. some Land and sea features different answers to the Later on, adjustments between variables give because of their different (containing simple or logarithmically transformed balance of local energy spe 1 an of for two values) are made, using the least square method cific heats. Fig. shows example "Q" America. So it is seen that the (Brooks and Carruthers 1953). places of South easily Juan L. Minetti: Continentality Indices 53 2 calcm dia0 I Riode Janeiro (Brazil) I ?Cr30 11001 asymmetry of the wave, changing the sine-shaped iooo- '28 y^y\ ^^^V I type. On thewhole, the thermal wave shiftsfrom 15 days Insolation900- / (Argentine) -26 | f j to one '^-^Rivadavia month in the continental regions and from "800- 15 to twomonths in the oceanic ones with y/S\s | jj -24. days respect to the incoming radiation wave. In order to delimit how effective the advection of the "inland" sea -S600- -20 to accurate a / / ?l vL I energy is thermal control, quantifica tion of the 0" is necessary. This hori 500- / I \ -18 "phase angle j movement sea zontal zonal takes place from the to I 400-I -16 continent and vice versa. I I tem -I-.-.-,-1-r-J-1-.-1-,-,-r-J-V14300 Fig. 2 shows the seasonal variation of average JASONOJ FMAMJ J some M o n t h s perature for places in Australia and South a America and oceanic zones and western Fig. 1: Annual distributions of temperature for maritime (continental - a and eastern city (Rio de Janeiro Brazil) and continental city (Riva coasts). - davia of In order to waves to Argentine). Quantities (by cal/cm2 day) compare thermal with regard are received energy indicated by uninterrupted line. phase and distortion and to eliminate amplitude, of with to the insolation Delays temperatures respect Fig. 3 shows the same graphics in terms of the relative curve are represented by arrows temperature with respect to the annual thermal Jahrliche Temperaturverteilung fiir eine maritime Stadt - amplitude. de und Stadt (Rio Janeiro Brasilien) eine kontinentale to - According Prohaska's criteria, temperatures (Rivadavia Argentinien). Die Energiemengen der Inso are higher in autumn than in spring in places located lation (in cal/cm2 und Tag) sind mit einer durchgezoge in the oceans and on the coasts; the seasonal wave nen Linie dargestellt. Verzogerungen der Temperatur in on zur delay the Southeastern Pacific Ocean is lower Bezug Insolationskurve sind durch Pfeile gekenn zeichnet than on the Southwestern one; there is a three month mild winter maximum in South America compared with a short minimum in Australia.
Recommended publications
  • Supplementary Data
    Supplementary data Water sources Places Sites Samples Rivers Vacas, Cuevas, Tupungato and Mendoza 7 42 rivers in Punta de Vacas. Cuevas River in Puente del Inca. Horcones Superior and Horcones rivers at Mt. Aconcagua Confluencia Camp. Ice bodies Horcones Inferior Glacier and Mt. Tolosa 2 34 rock glaciers conglomerate. Groundwaters Vertiente del Inca, La Salada Stream, 6 41 Confluencia Nueva Spring, Confluencia Vieja Spring and geothermal waters of "Copa de Champagne" and "Viejo Túnel", both in "Puente del Inca". Precipitations Collectors at Laguna de Horcones and 2 4 Confluencia Camp, both in the Mt. Aconcagua Park Snow basins Valle Azul, Los Puquios and Santa María 3 33 Table S1 Sampling along the melting period 2013-2014 in Cordillera Principal geological province. Ice body type classification corresponds to the official inventory of glaciers (IANIGLA-ING, 2015a). Sites refers to quantity of sampling sites for each water source Station 2 and MDS HI m3/s Soil MDT °C Air MDT °C DMaxT DMinT °C max-min °C HI Glacier °C streamflow Mean 2.09 7.17 4.90 3.55 0.77 2.72 SD 0.95 3.15 3.35 4.35 3.30 3.02 VC% 45.34 43.90 68.31 122.56 430.53 111.07 Max 4.88 11.60 10.68 11.27 6.41 11.27 Min 0.52 1.35 -3.65 -5.95 -7.28 -5.95 Rock glaciers streamflow MDS Tolosa m3/s Mean 0.02 SD 0.01 VC% 70.80 Max 0.05 Min 0.00 Station 1 Atm Press hPa Air MDT °C DMaxT °C DMinT °C RH% Mean 706.44 11.12 17.82 4.74 37.27 SD 1.55 2.88 3.41 2.66 17.39 VC% 0.22 25.89 19.15 56.17 46.67 Max 710.04 16.57 24.84 11.20 97.60 Min 703.11 2.89 6.25 -0.53 13.60 Station 1 Soil DMT °C Wind Dir.° W mean vel.
    [Show full text]
  • Geo-Climatic Hazards in the Eastern Subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M
    https://doi.org/10.5194/nhess-2019-381 Preprint. Discussion started: 21 January 2020 c Author(s) 2020. CC BY 4.0 License. Geo-climatic hazards in the eastern subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M. Moreiras2, 3, Diego Araneo2, 3 and René Garreaud4, 5 1 CONICET-IPATEC, Bariloche, 8400, Argentina 5 2 CONICET-IANIGLA, Mendoza, 5500, Argentina 3 National University of Cuyo, Mendoza, 5502, Argentina 4 University of Chile, Santiago, 8330015, Chile 5 Center for Climate and Resilience Research, Santiago, 8320198, Chile 10 Correspondence to: Iván Vergara (ivergara@comahue-conicet.gob.ar) Abstract. Detection and understanding of historical changes in the frequency of geo-climatic hazards (G-CHs) is crucial for the quantification of current hazard and their future projection. Here we focus in the eastern subtropical Andes (32-33° S), using meteorological data and a century-long inventory on 553 G-CHs triggered by rainfall or snowfall. First we analysed their spatio-temporal distributions and the role of climate variability on the year-to-year changes in the number of days with 15 G-CHs. Precipitation is positively correlated with the number of G-CHs across the region and year-round; mean temperature is negatively correlated with snowfall-driven hazards in the western (higher) half of the study region during winter, and with rainfall-driven hazards in the eastern zone during summer. The trends of the G-CHs frequency since the mid-20th century were calculated taking cautions for their non-systematic monitoring. The G-CHs series for the different triggers, zones and seasons were generally stationary.
    [Show full text]
  • Darwin at Puente Del Inca: Observations on the Formation of the Inca's Bridge and Mountain Building
    170 Revista de la Asociación Geológica Argentina 64 (1): 170- 179 (2009) DARWIN AT PUENTE DEL INCA: OBSERVATIONS ON THE FORMATION OF THE INCA'S BRIDGE AND MOUNTAIN BUILDING Victor A. RAMOS Laboratorio de Tectónica Andina, FCEN, Universidad de Buenos Aires - CONICET. Email: andes@gl.fcen.uba.ar ABSTRACT The analyses of the observations of Charles Darwin at Puente del Inca, during his second journey across the High Andes drew attention on two different aspects of the geological characteristics of this classic area. Most of his descriptions on the characteristics and the origin of the natural bridge were not published, mainly due to his poor impression of Puente del Inca. However, the application of the uniformitarian principles shows that it was formed as an ice bridge associated with snow and debris avalanches later on cemented by the minerals precipitated by the adjacent hot-water springs. Darwin's observations on the complex structural section at Puente del Inca, together with his findings of shallow water marine fossil mollusks in the thick stratigraphic column of the area interfingered with volcanic rocks, led him to speculate on several geological processes. Based on his geological observations, Darwin argued on the mountain uplift, the subsidence of the marine bottom, the epi- sodic lateral growth of the cordillera, and their association with earthquakes and volcanic activity, which was an important advance in the uniformitarian hypothesis of mountain uplift proposed by Charles Lyell. Darwin was able to recognize the epi- sodic nature of mountain uplift, and based on these premises he concluded that the Andes were still undergoing uplift.
    [Show full text]
  • Aconcagua Expedition Trip Notes 2021/22
    ACONCAGUA 6,962M / 22,841FT 2021/22 EXPEDITION TRIP NOTES ACONCAGUA EXPEDITION NOTES 2021/22 EXPEDITION DETAILS Dates: November 29 to December 18, 2021 January 3–22, 2022 Duration: 20 days Departure: ex Mendoza, Argentina Price: US$6,350 per person A successful team prepares to descend the mountain. Photo: Suze Kelly Aconcagua, the “Sentinel of Stone”, is the highest peak outside of the Himalayas. Located in western Argentina, the heart of the Central Andes, it is South America’s highest peak and one of the much sought after Seven Summits. An ascent of this eminent Andean Peak is ideal for on the only available summit day. Our climbing those wishing to experience high altitude expedition route traverses over the mountain making best use mountaineering and is often undertaken as a preparation of the time available and allowing for a faster exit climb for the big mountains of the Himalayas. via the shorter Horcones Valley, whilst giving us the opportunity to appreciate the relative remoteness of The Adventure Consultants Aconcagua expedition the Vacas Valley on the approach. provides the very best opportunity for you to climb this lofty mountain in an environment that Unlike most of the operators on Aconcagua, we provide is properly managed to give you the best chance a client focused expedition that is geared towards to succeed in safety and relative comfort. You will giving you the maximum opportunity of succeeding benefit from our many years of experience on this on this peak. Our success rate is an indication of the and other high mountains across the globe and our emphasis we place on your well-being and a successful highly qualified guides will offer you an experience outcome for you.
    [Show full text]
  • Observations of Large Stratospheric Ozone Variations Over Mendoza, Argentina C
    Observations of large stratospheric ozone variations over Mendoza, Argentina C. Puliafito, S. Enrique Puliafito, G. K. Hartmann To cite this version: C. Puliafito, S. Enrique Puliafito, G. K. Hartmann. Observations of large stratospheric ozonevari- ations over Mendoza, Argentina. Atmospheric Chemistry and Physics Discussions, European Geo- sciences Union, 2002, 2 (3), pp.507-523. hal-00300833 HAL Id: hal-00300833 https://hal.archives-ouvertes.fr/hal-00300833 Submitted on 2 May 2002 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys. Discuss., 2, 507–523, 2002 Atmospheric ACPD www.atmos-chem-phys.org/acpd/2/507/ Chemistry c European Geophysical Society 2002 and Physics 2, 507–523, 2002 Discussions Stratospheric ozone variations over Mendoza, Argentina C. Puliafito et al. Observations of large stratospheric ozone Title Page variations over Mendoza, Argentina Abstract Introduction Conclusions References C. Puliafito1,2, S. Enrique Puliafito1,2, and G. K. Hartmann3 Tables Figures 1Universidad de Mendoza – Instituto para el Estudio del Medio Ambiente, Mendoza, Argentina 2CONICET, Perito Moreno 2397, (5500) Godoy Cruz, Mendoza, Argentina J I 3Max Planck Institut fur¨ Aeronomie, Max Planck Str. 2, D-37191 Katlenburg-Lindau, Germany J I Received: 6 February 2002 – Accepted: 17 April 2002 – Published: 3 May 2002 Back Close Correspondence to: C.
    [Show full text]
  • Interactive Comment on “Mountain Water Cellars: a Chemical
    Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-212-AC2, 2018 HESSD © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Interactive comment Interactive comment on “Mountain water cellars: a chemical characterization and quantification of the hydrological processes and contributions from snow, glaciers and groundwater to the Upper Mendoza River basin (∼ 32◦ S), Argentina” by Sebastián A. Crespo et al. Sebastián A. Crespo et al. sebacrespo.oliva@gmail.com Received and published: 6 October 2018 Responses to Referee 1, identified as follows: (1) comments from Referee, (2) author’s response, (3) author’s changes in manuscript. Printer-friendly version Answer to Referee, comment 1. Discussion paper (1) An English proofreading must be performed for the manuscript, also including the C1 figure captures. It is out of scope of this review to address the frequent grammatical deficits or the necessity to rephrase sentences (e.g. “Cuevas, Vacas and Tupungato HESSD rivers when join in Punta de Vacas, form the Mendoza River.” (P22L7-8) should be “Cuevas, Vacas and Tupungato rivers form the Mendoza River in Punta de Vacas”. It is unclear, what “The logo of Copernicus Publications” means in this figure capture.). Interactive There are many examples which could be provided here. comment (2) We agree. The entire manuscript is being reviewed and corrected by a technical reviewer and native English speaker. (3) New Figure 1 and caption added. The figure captions were streamlined and the specific indication (P22L7-8) was framed by the legend, becoming no longer necessary in the figure caption.
    [Show full text]
  • Geo-Climatic Hazards in the Eastern Subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M
    Geo-climatic hazards in the eastern subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M. Moreiras2, 3, Diego Araneo2, 3 and René Garreaud4, 5 1 CONICET-IPATEC, Bariloche, 8400, Argentina 5 2 CONICET-IANIGLA, Mendoza, 5500, Argentina 3 National University of Cuyo, Mendoza, 5502, Argentina 4 University of Chile, Santiago, 8330015, Chile 5 Center for Climate and Resilience Research, Santiago, 8320198, Chile 10 Correspondence to: Iván Vergara (ivergara@comahue-conicet.gob.ar) Abstract. Detecting and understanding historical changes in the frequency of geo-climatic hazards (G-CHs) is crucial for the quantification of current hazards and project them into the future. Here we focus in the eastern subtropical Andes (32-33° S), using meteorological data and a century-long inventory of 553 G-CHs triggered by rainfall or snowfall. We first analyse their spatio-temporal distributions and the role of climate variability on the year-to-year changes in the number of days per 15 season with G-CHs. Precipitation is positively correlated with the number of G-CHs across the region and year-round; mean temperature is negatively correlated with snowfall-driven hazards in the western (higher) half of the study region during winter and with rainfall-driven hazards in the eastern zone during summer. The trends of the G-CHs frequency since the mid-20th century were calculated taking cautions for their non-systematic monitoring. The G-CHs series for the different triggers, zones and seasons were generally stationary. Nonetheless, there is a small positive trend in rainfall-driven G-CHs in 20 the eastern zone during summer congruent with a rainfall increase there.
    [Show full text]
  • Revista Del Iiicahgeo
    ACTAS DEL IIICAHGEO 1 IIICAHGEO 2 ACTAS DEL IIICAHGEO III Congreso Argentino de Historia de la Geología - iiicahgeo - 3 IIICAHGEO 4 IIICAHGEO Alonso, Ricardo N. III Congreso Argentino de Historia de la Geología / Ricardo N. Alonso ; edición literaria a cargo de Ricardo N. Alonso. - 1a ed. - Salta : Mundo Gráfico Salta Editorial, 2013. 248 p. ; 28x19,5 cm. ISBN 978-987-698-034-0 1. Historia de la Geología. 2. Actas de Congresos. I. Alonso, Ricardo N., ed. lit. CDD 551.09 Fecha de catalogación: 13/08/2013 Procesamiento y diseño de edición: Dis. Tec. Irene M. Blanco Imagen de tapa: Sabios de la Academia Nacional de Ciencias de Córdoba en la década de 1870. Imagen de contratapa: Salta, vista desde el cerro San Bernardo. Autor Carlos Penutti - 1854. Todos los derechos reservados. Esta publicación no puede ser reproducida, ni en todo ni en parte, ni registrada en o transmitida por ningún sistema de recuperación de información, en ninguna forma ni por ningún medio, sea mecánico, fotoquímico, electrónico, magnético, por fotocopia, o cualquier otro, sin el permiso previo por escrito de la editorial o del autor. Córdoba 714 • Tel/fax 54 387 4234572 libros@mundograficosa.com.ar A4400AWF • Salta • República Argentina 6 ACTAS DEL IIICAHGEO AUTORIDADES Universidad Nacional de Salta Rector: Víctor Hugo Claros Vicerector: Miguel Angel Bosso Facultad de Ciencias Naturales Decana: Adriana Ortín Vujovich Vicedecana: Socorro Chagra Secretaria Académica: María Mercedes Alemán Secretaria Técnica: Teresita del Valle Ruiz Cabildo Histórico de Salta Directora: María Ester Ríos 7 IIICAHGEO AUTORIDADES DEL IIICAHGEO Comisión Científica Honoraria Dr. Florencio Gilberto ACEÑOLAZA Dr.
    [Show full text]
  • FOLLETO TURISMO.Cdr
    Evt. Leg.14931 Visitaremos dos bodegas de la Saldremos por la mañana hacia la micro- Recorreremos el Área Fundacional, microrregión de Maipú y Luján de Cuyo; rregión de Maipú, donde recorreremos en ciudad antigua, epicentro del en ambas bodegas seremos recibidos primer lugar la Bodega López, empresa terremoto de 1861, Centro de para una interesante visita guiada, que familiar, presente desde los orígenes de la Mendoza con las 5 plazas más finalizará con una exquisita degustación vitivinicultura en nuestra provincia; luego emblemáticas; Barrio Cívico, de vinos. seguiremos hasta Bodega El Enemigo, Parque Gral. San Martín y Cerro Luego, visitaremos una Olivícola, ubicada en la zona de Chachingo, una de de la Gloria, Lago, Fuente de agroindustria en expansión, premiada, las bodegas más premiadas de Mendoza. los Continentes y Estadio donde descubriremos los secretos de la Como broche de nuestra excursión, Mundialista – Villa Olímpica. oliva, a través de una visita guiada. almorzaremos en el lugar, en Casa Vigil, una experiencia única para disfrutar de la gastronomía argentina y los exquisitos vinos del famoso enólogo internacional Alejandro Vigil. Recorrido total 65 kms. Recorrido total 50 kms. Recorrido total 35 kms. *Excursión medio día, por la tarde *Excursión día completo. Incluye almuerzo *Excursión medio día, por la tarde. Hotel InterContinental | Of. 11 | Av. Acceso Este, Lateral Norte 3292 | Mendoza, Argentina sb.congresos /sbcongresosyeventos @sbcongresos @sbcongresos /sbcongresos Tel: +54 261 5218928 · Cel: +54 9 261 6564336 · Email: turismo@sbcongresos.com | www.sbcongresos.com La excursión más impactante de nuestra provincia, nos Saldremos temprano por la mañana por Ruta 40 hacia el dirigiremos a Alta Montaña por Ruta 82 atravesando el Sur; a 243 kms.
    [Show full text]
  • Jahrbuch Der Geologischen Bundesanstalt
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Jahrbuch der Geologischen Bundesanstalt Jahr/Year: 1995 Band/Volume: 138 Autor(en)/Author(s): Leber Diethard, Häusler Hermann Artikel/Article: High Mountain Remote Sensing and Geology of the Central Andes: Remarks on an International Symposium held in Mendoza (Argentina) 691-700 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at JAHRBUCH DER GEOLOGISCHEN BUNDESANSTALT Jb. Geol. B.-A. ISSN 0016–7800 Band 138 Heft 4 S. 691–700 Wien, Dezember 1995 High Mountain Remote Sensing and Geology of the Central Andes – Remarks on an International Symposium held in Mendoza (Argentina) DIETHARD LEBER & HERMANN HÄUSLER*) 4 Text-Figures Argentina Chile Precordillera Frontal Cordillera Principal Cordillera Remote Sensing Geographic Information Systems Geology Geomorphology High Mountain Ecology Contents Zusammenfassung ...................................................................................................... 691 Abstract ................................................................................................................. 692 Resumen ................................................................................................................ 692 1. Introduction ............................................................................................................. 692 2. Technical Session ......................................................................................................
    [Show full text]
  • Geo-Climatic Hazards in the Eastern Subtropical Andes: Distribution, Climate Drivers and Trends
    Nat. Hazards Earth Syst. Sci., 20, 1353–1367, 2020 https://doi.org/10.5194/nhess-20-1353-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Geo-climatic hazards in the eastern subtropical Andes: distribution, climate drivers and trends Iván Vergara1, Stella M. Moreiras2,3, Diego Araneo2,4, and René Garreaud5,6 1CONICET-IPATEC, Bariloche, 8400, Argentina 2CONICET-IANIGLA, Mendoza, 5500, Argentina 3Department of Agricultural Sciences, National University of Cuyo, Mendoza, 5502, Argentina 4Department of Exact and Natural Sciences, National University of Cuyo, Mendoza, 5502, Argentina 5Department of Geophysics, University of Chile, Santiago, 8330015, Chile 6Center for Climate and Resilience Research, Santiago, 8320198, Chile Correspondence: Iván Vergara (ivergara@comahue-conicet.gob.ar) Received: 12 November 2019 – Discussion started: 21 January 2020 Revised: 27 March 2020 – Accepted: 30 March 2020 – Published: 20 May 2020 Abstract. Detecting and understanding historical changes in 1 Introduction the frequency of geo-climatic hazards (G-CHs) is crucial for the quantification of current hazards and project them into Geo-climatic hazards are natural phenomena that occur by the future. Here we focus in the eastern subtropical Andes a combination of atmospheric (e.g. precipitation, temper- (32–33◦ S), using meteorological data and a century-long in- ature, wind) and terrain (geotechnical and morphometric ventory of 553 G-CHs triggered by rainfall or snowfall. We properties) factors. This definition includes landslides, snow first analyse their spatio-temporal distributions and the role avalanches and phenomena of glacial (surges, glacier lake of climate variability in the year-to-year changes in the num- outburst floods – GLOFs, ice-dammed lake outburst floods ber of days per season with G-CHs.
    [Show full text]
  • ASOCIACIÓN GEOLÓGICA ARGENTINA Junio 2021
    Volumen 78 (2) REVISTA DE LA ASOCIACIÓN GEOLÓGICA ARGENTINA www.geologica.org.ar Junio 2021 Reinterpretación de los depósitos asignados a las glaciaciones pleistocenas en la cuenca del río Mendoza Luis FAUQUÉ1-2, Reginald L. HERMANNS3-4, Carlos WILSON1, Mario ROSAS5, Ana M. TEDESCO1, Silvia LAGORIO1 y Fernando MIRANDA1 1Servicio Geológico Minero Argentino. SEGEMAR. Parque Tecnológico Miguelete. Edificio 25. Colectora de Av. Gral. Paz Nº 5445 – B 1650 – WAB – San Martín, Provincia de Buenos Aires, Argentina. 2Universidad de Buenos Aires, FCEN, Depto. de Cs. Geológicas. Pabellón II, Ciudad Universitaria, Buenos Aires 3Geological Survey of Norway (NGU) - Trondheim, Norway. 4Institute for Geosciences and Petroleum, Norwegian University for Science and Technology (NTNU) Trondheim, Norway 5SEGEMAR. Mendoza. E-mails: fauqueluis@yahoo.com.ar Editor: Alfonsina Tripaldi Recibido: 10 de junio de 2015 Aceptado: 24 de enero de 2021 RESUMEN Debido a un plan de ordenamiento del territorio de la localidad de Puente del Inca (Mendoza), se confeccionó un mapa de suscep- tibilidad de movimientos en masa. El área a mapear incluía al depósito denominado Drift Horcones, asignado posteriormente a un movimiento en masa de tipo complejo. Por ello se comenzó con la revisión del depósito del Drift Horcones, llegando a la conclusión a medida que avanzaba el estudio, que debía revisarse completamente la estratigrafía glaciaria de la cuenca. A partir de las investiga- ciones realizadas se presenta una nueva propuesta según la cual se concluye que de los seis depósitos de drift vinculados a morenas terminales descriptos para la cuenca del río Mendoza, solo uno de ellos es de origen glacial. El Drift Uspallata es un antiguo depósito pedemontano afuncional.
    [Show full text]