Download PDF Brochure
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basement Composition and Basin Geometry Controls on Upper-Crustal Deformation in the Southern Central Andes (30–36° S)
Geol. Mag.: page 1 of 17 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000364 Basement composition and basin geometry controls on upper-crustal deformation in the Southern Central Andes (30–36° S) ∗ ∗ ∗ JOSÉ F. MESCUA †, LAURA GIAMBIAGI , MATÍAS BARRIONUEVO , ∗ ∗ ANDRÉS TASSARA‡, DIEGO MARDONEZ , MANUELA MAZZITELLI ∗ & ANA LOSSADA ∗ Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Centro Científico Tecnológico Mendoza, CONICET. Av. Ruiz leal s/n Parque General San Martín, Mendoza (5500) Argentina ‡Departamento de Ciencias de la Tierra, Universidad de Concepción, Victor Lamas 1290, Barrio Universitario, Concepción, Casilla 160-C, Chile (Received 13 December 2015; accepted 5 April 2016) Abstract – Deformation and uplift in the Andes are a result of the subduction of the Nazca plate below South America. The deformation shows variations in structural style and shortening along and across the strike of the orogen, as a result of the dynamics of the subduction system and the features of the upper plate. In this work, we analyse the development of thin-skinned and thick-skinned fold and thrust belts in the Southern Central Andes (30–36° S). The pre-Andean history of the area determined the formation of different basement domains with distinct lithological compositions, as a result of terrane accretions during Palaeozoic time, the development of a widespread Permo-Triassic magmatic province and long-lasting arc activity. Basin development during Palaeozoic and Mesozoic times produced thick sedimentary successions in different parts of the study area. Based on estimations of strength for the different basement and sedimentary rocks, calculated using geophysical estimates of rock physical properties, we propose that the contrast in strength between basement and cover is the main control on structural style (thin- v. -
Territorial Studies in Argentina
TERRITORIAL STUDIES IN ARGENTINA AN INTERDISCIPLINARY APPROACH ARGENTINA, A COUNTRY OF CONTRAST Course Main Goal To gain insights into Argentina’s cultural diversity and its main productive areas from the economic, cultural and environmental perspective. Course description Students will get a cross-cultural experience and perspectives on Argentina’s main productive areas and its historic and economic role as a major food producer, where people, culture, landscapes, plant and animal life are diverse. In addition, they will be culturally enriched by experiencing a blend of culture, language, history, art and traditions related to the main productive areas. The course comprises different group activities, such as, discussion groups, seminars, etc. Courseload 45 hours (2 hours period, 4 days a week plus visit sites). Students will have the chance to visit main productive sites and experience short study trips (as livestock markets, ecological reservation and Delta del Paraná Biosphere Reserve) throughout the program. Course Contents The role of Agriculture in Argentina. Economic, Political & Social Changes. Historical and Anthropological perspectives. Argentina’s main regions. The Humid Pampas, Cuyo, Patagonia, etc. (I): Demographical, socioeconomic, agricultural, historical, landscape and cultural (music, art, customs) aspects. Other relevant regions. Territorial Studies. Areas of Study. 1- Pampa Húmeda (Humid Pampas) 2- Patagonia 3- Iguazú Falls – Mesopotamia 4- Cuyo 5- North West Region. 1) The Humid Pampas Myths and Economic facts (gauchos, soybean myth). Leading roles. Agroexporting model. Agricultural clusters and soybean production – agricultural production, cattle raising and beef production. Agrifood and commoditization. The Rural and Urban tandem. Immigration and cultural perspectives. Buenos Aires port as a cultural bridge. -
Request for Proposals – Renovar Program – Round 2
REQUEST FOR PROPOSALS – RENOVAR PROGRAM – ROUND 2 1. Subject-matter Pursuant to the provisions set forth in Resolution ME&M No. 275 passed on August, 16th. 20171 CAMMESA calls for the submission of bids (the ‘Open Call for Tenders’) for the qualification of and possible award to national or foreign legal entities, for the purpose of executing renewable power purchase agreements to be signed with CAMMESA, acting in representation of Distribution Companies and Large Users of the Wholesale Electric Market (henceforth “MEM”), with the aim of increasing the share of renewable sources of energy in the country’s energy mix, pursuant to Laws N° 26190 and N° 27191 and Decree N° 531/2016 and its amendments. 2. Definitions ‘Additional Provider of the Technical Transmission Function’ is defined in The Procedures. ‘Adjusted Offered Price’ or ‘AOP’ is defined in Provision 18.1 of the RFP. ‘Annual Adjustment Factor’ is the value shown, for each Production Year, in the column named ‘Annual Adjustment Factor’ of Annex 8. ‘Annual Price’ is, for each Production Year, the price detailed in Annex B of the Power Purchase Agreement. ‘Argentine Peso/s’ or ‘$’ is, at any time, the effective legal tender in the Argentine Republic for that date. ‘Awarded Price’ is defined in Provision 13.1.3 of this RFP. ‘Awardee’ is the qualified Bidder who has been chosen by CAMMESA, in accordance with the instructions from the Enforcement Authority, to sign the Power Purchase Agreement by means of a Specific Purpose Entity (SPE). ‘Beneficiary’ is defined in Annex 7 of this RFP. ‘Bid Bond’ is the guarantee granted to CAMMESA by the Bidder pursuant to the terms and conditions set forth in Provision 10 of the RFP. -
2021 Sample (PDF)
® field guides BIRDING TOURS WORLDWIDE [email protected] • 800•728•4953 ITINERARY BIRDS & WINES OF CHILE AND ARGENTINA February 6-20, 2021 One of the special birds found in Chile and Argentina is the Diademed Sandpiper-Plover. These unusual shorebirds live in high-elevation wetlands such as the Yeso Valley in Chile. Photograph by guide Marcelo Padua. We include here information for those interested in the 2021 Field Guides Birds & Wines of Chile and Argentina tour: ¾ a general introduction to the tour ¾ a description of the birding areas to be visited on the tour ¾ an abbreviated daily itinerary with some indication of the nature of each day’s birding outings These additional materials will be made available to those who register for the tour: ¾ an annotated list of the birds recorded on a previous year’s Field Guides trip to the area, with comments by guide(s) on notable species or sightings (may be downloaded from our web site) ¾ a detailed information bulletin with important logistical information and answers to questions regarding accommodations, air arrangements, clothing, currency, customs and immigration, documents, health precautions, and personal items ¾ a reference list ¾ a Field Guides checklist for preparing for and keeping track of the birds we see on the tour ¾ after the conclusion of the tour, a list of birds seen on the tour Argentina and Chile, two countries divided by the longest mountain range on Earth, are joined by a passion for making and drinking excellent wine! This new tour aims to take you to the wine-producing regions of these two countries while showing you the exuberant natural world that surrounds them. -
FABRE MONTMAYOU MENDOZA , a RGENTINA Hervé Joyaux Fabre, Owner and Director of Fabre Montmayou, Was Born in Bordeaux, France, to a Family of Wine Negociants
FABRE MONTMAYOU MENDOZA , A RGENTINA Hervé Joyaux Fabre, owner and director of Fabre Montmayou, was born in Bordeaux, France, to a family of wine negociants. When he arrived in Argentina in the early 90’s looking for opportunities to invest in vineyards and start a winery, he was impressed by the potential for Malbec in Mendoza. As a true visionary, he bought very old Malbec vineyards, planted in 1908, and built the Fabre Montmayou winery in the purest Château style from Bordeaux. The winery was built in Vistalba – Lujan de Cuyo, 18 Km North of Mendoza city at 3800 feet elevation (1,150 meters of altitude), and is surrounded by the first 37 acres of Malbec vineyards that the company bought. For the Fabre Montmayou line of wines, the owners decided to buy exclusively old-vine vineyards in the best wine growing areas of Mendoza. With constant care and personal style – essential elements for great quality – Fabre Montmayou combines modern winemaking, Mendoza’s terroir and the Bordeaux “savoir faire” to produce wines of unique personality. MENDOZA, ARGENTINA Mendoza Province is one of Argentina's most important wine regions, accounting for nearly two-thirds of the country's entire wine production. Located in the eastern foothills of the Andes, in the shadow of Mount Aconcagua, vineyards are planted at some of the highest altitudes in the world, with the average site located 600–1,100 metres (2,000–3,600 ft) above sea level. The principal wine producing areas fall into two main departments Maipúand Luján, which includes Argentina's first delineated appellation established in 1993 in Luján de Cuyo. -
Supplementary Data
Supplementary data Water sources Places Sites Samples Rivers Vacas, Cuevas, Tupungato and Mendoza 7 42 rivers in Punta de Vacas. Cuevas River in Puente del Inca. Horcones Superior and Horcones rivers at Mt. Aconcagua Confluencia Camp. Ice bodies Horcones Inferior Glacier and Mt. Tolosa 2 34 rock glaciers conglomerate. Groundwaters Vertiente del Inca, La Salada Stream, 6 41 Confluencia Nueva Spring, Confluencia Vieja Spring and geothermal waters of "Copa de Champagne" and "Viejo Túnel", both in "Puente del Inca". Precipitations Collectors at Laguna de Horcones and 2 4 Confluencia Camp, both in the Mt. Aconcagua Park Snow basins Valle Azul, Los Puquios and Santa María 3 33 Table S1 Sampling along the melting period 2013-2014 in Cordillera Principal geological province. Ice body type classification corresponds to the official inventory of glaciers (IANIGLA-ING, 2015a). Sites refers to quantity of sampling sites for each water source Station 2 and MDS HI m3/s Soil MDT °C Air MDT °C DMaxT DMinT °C max-min °C HI Glacier °C streamflow Mean 2.09 7.17 4.90 3.55 0.77 2.72 SD 0.95 3.15 3.35 4.35 3.30 3.02 VC% 45.34 43.90 68.31 122.56 430.53 111.07 Max 4.88 11.60 10.68 11.27 6.41 11.27 Min 0.52 1.35 -3.65 -5.95 -7.28 -5.95 Rock glaciers streamflow MDS Tolosa m3/s Mean 0.02 SD 0.01 VC% 70.80 Max 0.05 Min 0.00 Station 1 Atm Press hPa Air MDT °C DMaxT °C DMinT °C RH% Mean 706.44 11.12 17.82 4.74 37.27 SD 1.55 2.88 3.41 2.66 17.39 VC% 0.22 25.89 19.15 56.17 46.67 Max 710.04 16.57 24.84 11.20 97.60 Min 703.11 2.89 6.25 -0.53 13.60 Station 1 Soil DMT °C Wind Dir.° W mean vel. -
Discovery of Two New Species of Phymaturus (Iguania: Liolaemidae) from Patagonia, Argentina, and Occurrence of Melanism in the Patagonicus Group
Trabajo Cuad. herpetol. 29 (1): 5-25 (2015) Discovery of two new species of Phymaturus (Iguania: Liolaemidae) from Patagonia, Argentina, and occurrence of melanism in the patagonicus group Fernando Lobo¹, Santiago Javier Nenda² ¹ Instituto de Bio y Geociencias del NOA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONI- CET)–Universidad Nacional de Salta, Avenida Bolivia 5150, 4400–Salta, Argentina. ² División Herpetología, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’-CONICET, Avenida Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina Recibido: 03 Abril 2014 ABSTRACT Revisado: 12 Mayo 2014 Comprehensive studies recently published on the evolution and systematics of Phymaturus Aceptado: 25 Junio 2014 (morphological and molecular ones) revealed not only a historical pattern and subclades within Editor Asociado: A. S. Quinteros the traditional P. palluma and P. patagonicus species groups but also a still not fully understood unsuspected diversity. Several populations in northern and southern Argentina may represent independent lineages that deserve formal description. Two of these populations were studied for the present contribution and are easily distinguished from all the other species in the genus. One of these populations is from Río Negro province and belongs to the P. patagonicus group; it exhibits a unique dorsal color pattern and several individuals are melanic, a characteristic never reported before for the genus, with the exception of P. tenebrosus. A careful examination of melanic individuals revealed the same dorsal pattern as that of non-melanic ones, although it is obscured. We also report the discovery of melanic individuals of two other species that are probably closely related: P. ceii and P. sitesi. The melanism found in the P. -
Ucla Archaeology Field School
THE USPALLATA ARCHAEOLOGICAL PROJECT, ARGENTINA Course ID: ARCH XL159 June 1–July 1, 2017 DIRECTOR: Dr. Erik J. Marsh, CONICET. Laboratorio de Paleo-Ecología Humana & Universidad Nacional de Cuyo, Mendoza, Argentina ([email protected]) INTRODUCTION The Uspallata Valley in Mendoza, Argentina lies below the snow-peaked Andes. The valley has been occupied since the Late Pleistocene. It includes 1) the site Agua de la Cueva, which dates to over 13,000 years ago and is earliest human occupation of this part of the Andes, 2) Mendoza’s densest concentration of prehispanic rock art at Cerro Tunduqueral, and 3) the southernmost extension of the vast Inca Empire and its road system, including a high-altitude child sacrifice on Mount Aconcagua, the highest peak in the Americas. The project’s research focuses on the translation from foraging to pastoralism and agriculture. Both practices were present in the valley in the first millennium AD, but the timing and nature of the transition are unclear. This is most likely when the rock art at Cerro Tunduqueral was engraved, but this connection has not yet been demonstrated. We will investigate to what extend people remained people as they added novel subsistence strategies. These issues will be addressed with 1) survey data from a large area called Uspallata Norte (~8 km2) that includes dense and extensive surface dispersals of ceramics, ground stone, and expedient lithic tools and 2) excavations of a high altitude rock shelter, Paramillos. Both sets of data will complement the data from the 2016 field school, which excavated a surveyed and excavated rock shelter around Cerro Tunduqueral. -
Geo-Climatic Hazards in the Eastern Subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M
https://doi.org/10.5194/nhess-2019-381 Preprint. Discussion started: 21 January 2020 c Author(s) 2020. CC BY 4.0 License. Geo-climatic hazards in the eastern subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M. Moreiras2, 3, Diego Araneo2, 3 and René Garreaud4, 5 1 CONICET-IPATEC, Bariloche, 8400, Argentina 5 2 CONICET-IANIGLA, Mendoza, 5500, Argentina 3 National University of Cuyo, Mendoza, 5502, Argentina 4 University of Chile, Santiago, 8330015, Chile 5 Center for Climate and Resilience Research, Santiago, 8320198, Chile 10 Correspondence to: Iván Vergara ([email protected]) Abstract. Detection and understanding of historical changes in the frequency of geo-climatic hazards (G-CHs) is crucial for the quantification of current hazard and their future projection. Here we focus in the eastern subtropical Andes (32-33° S), using meteorological data and a century-long inventory on 553 G-CHs triggered by rainfall or snowfall. First we analysed their spatio-temporal distributions and the role of climate variability on the year-to-year changes in the number of days with 15 G-CHs. Precipitation is positively correlated with the number of G-CHs across the region and year-round; mean temperature is negatively correlated with snowfall-driven hazards in the western (higher) half of the study region during winter, and with rainfall-driven hazards in the eastern zone during summer. The trends of the G-CHs frequency since the mid-20th century were calculated taking cautions for their non-systematic monitoring. The G-CHs series for the different triggers, zones and seasons were generally stationary. -
Darwin at Puente Del Inca: Observations on the Formation of the Inca's Bridge and Mountain Building
170 Revista de la Asociación Geológica Argentina 64 (1): 170- 179 (2009) DARWIN AT PUENTE DEL INCA: OBSERVATIONS ON THE FORMATION OF THE INCA'S BRIDGE AND MOUNTAIN BUILDING Victor A. RAMOS Laboratorio de Tectónica Andina, FCEN, Universidad de Buenos Aires - CONICET. Email: [email protected] ABSTRACT The analyses of the observations of Charles Darwin at Puente del Inca, during his second journey across the High Andes drew attention on two different aspects of the geological characteristics of this classic area. Most of his descriptions on the characteristics and the origin of the natural bridge were not published, mainly due to his poor impression of Puente del Inca. However, the application of the uniformitarian principles shows that it was formed as an ice bridge associated with snow and debris avalanches later on cemented by the minerals precipitated by the adjacent hot-water springs. Darwin's observations on the complex structural section at Puente del Inca, together with his findings of shallow water marine fossil mollusks in the thick stratigraphic column of the area interfingered with volcanic rocks, led him to speculate on several geological processes. Based on his geological observations, Darwin argued on the mountain uplift, the subsidence of the marine bottom, the epi- sodic lateral growth of the cordillera, and their association with earthquakes and volcanic activity, which was an important advance in the uniformitarian hypothesis of mountain uplift proposed by Charles Lyell. Darwin was able to recognize the epi- sodic nature of mountain uplift, and based on these premises he concluded that the Andes were still undergoing uplift. -
Debris Flows Occurrence in the Semiarid Central Andes Under Climate Change Scenario
geosciences Review Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario Stella M. Moreiras 1,2,* , Sergio A. Sepúlveda 3,4 , Mariana Correas-González 1 , Carolina Lauro 1 , Iván Vergara 5, Pilar Jeanneret 1, Sebastián Junquera-Torrado 1 , Jaime G. Cuevas 6, Antonio Maldonado 6,7, José L. Antinao 8 and Marisol Lara 3 1 Instituto Argentino de Nivología, Glaciología & Ciencias Ambientales, CONICET, Mendoza M5500, Argentina; [email protected] (M.C.-G.); [email protected] (C.L.); [email protected] (P.J.); [email protected] (S.J.-T.) 2 Catedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza M5528AHB, Argentina 3 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile; [email protected] (S.A.S.); [email protected] (M.L.) 4 Instituto de Ciencias de la Ingeniería, Universidad de O0Higgins, Rancagua 2820000, Chile 5 Grupo de Estudios Ambientales–IPATEC, San Carlos de Bariloche 8400, Argentina; [email protected] 6 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, Coquimbo 1780000, Chile; [email protected] (J.G.C.); [email protected] (A.M.) 7 Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile 8 Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47404, USA; [email protected] * Correspondence: [email protected]; Tel.: +54-26-1524-4256 Citation: Moreiras, S.M.; Sepúlveda, Abstract: This review paper compiles research related to debris flows and hyperconcentrated flows S.A.; Correas-González, M.; Lauro, C.; in the central Andes (30◦–33◦ S), updating the knowledge of these phenomena in this semiarid region. -
Where Does the Chilean Aconcagua River Come From? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments
water Article Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments Sebastián Andrés Crespo 1,* ,Céline Lavergne 2,3 , Francisco Fernandoy 4 , Ariel A. Muñoz 1, Leandro Cara 5 and Simón Olfos-Vargas 1 1 Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile; [email protected] (A.A.M.); [email protected] (S.O.-V.) 2 Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2581782, Chile; [email protected] 3 HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 234000, Chile 4 Laboratorio de Análisis Isotópico (LAI), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar 2531015, Chile; [email protected] 5 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza 5500, Argentina; [email protected] * Correspondence: [email protected] Received: 1 August 2020; Accepted: 12 September 2020; Published: 21 September 2020 Abstract: The Aconcagua river basin (Chile, 32 ◦S) has suffered the effects of the megadrought over the last decade. The severe snowfall deficiency drastically modified the water supply to the catchment headwaters. Despite the recognized snowmelt contribution to the basin, an unknown streamflow buffering effect is produced by glacial, periglacial and groundwater inputs, especially in dry periods. Hence, each type of water source was characterized and quantified for each season, through the combination of stable isotope and ionic analyses as natural water tracers. The δ18O and electric conductivity were identified as the key parameters for the differentiation of each water source.