Download PDF Brochure

Total Page:16

File Type:pdf, Size:1020Kb

Download PDF Brochure AUDIOVISUAL SECTOR MENDOZAMENDOZA GEOGRAPHIC LOCATION Distance from Mendoza to other cities (flying Mendoza is well-connected to the rest of Argentina and hours): Buenos Aires: 1:20 hrs, Santiago de Chile: the world by 139 flights per week, and by land routes 30 mins, Miami: 8 hrs, New York: 10 hrs, São Paulo: stretching across the country to connect the city to the 3 hrs, London: 16 hrs, Madrid: 16 hrs, Cape Town: rest of the Argentine provinces. 10 hrs, Los Angeles: 12 hrs, Tokyo: 21 hrs. PRODUCING IN MENDOZA ADVANTAGES From the perspective of a producer or a film or photography director, the province of Mendoza offers countless suitable locations for all types of audiovisual productions. It is a privileged place as far as natural beauty and infrastructure are concerned. Mendoza offers a number of comparative advantages for audiovisual production in relation to other parts of the world. The scenery changes dramatically from season to season. With over 300 annual days of sunshine and very little rainfall, it is possible to have film and photography shootings at any time of year. In regard to production costs, Mendoza is competitive with respect to other locations, especially when it comes to aspects such as food and accommodation, rentals, transport, specialized local talent, extras, or equipment rental. UNEXPLORED LOCATIONS The province of Mendoza offers a wide variety of scenic Mountain Scenery locations that have not been used for large or medium-sized The Andes mountain range, located between 11° north audiovisual productions yet. latitude and 55° south latitude, stretches along Argentina, Bolivia, Chile, Colombia, Ecuador, Peru and part of Rivers, high mountain landscapes, hills, lakes, lagoons, Venezuela. Its height averages around 4000 m and its deserts, crop fields, groves, parks, roads and highways, highest point is Mount Aconcagua, which is located in urban and country sites which make ideal settings for both Mendoza and is, with its 6960 m, the highest mountain in film and photographic productions. Some places to note down the world out of the Himalayan range. Some areas in are the Andes Mountains, Cordón del Plata, Villavicencio, Mendoza have snow all year round, even in summer. Payunia, Cañón del Atuel, Laguna de Llancanelo, Laguna del Diamante, Puente del Inca, Valle de las Leñas, Caverna de The Towns las Brujas, Potrerillos, Uspallata, Valle de Uco, mountain Town squares and churches, large colonial houses, street roads, vineyards and croplands, the Lavalle desert, the San markets and cobbled streets. Mendoza can offer the hotel Rafael sand dunes, among many beautiful places. facilities as well as the communication services and the infrastructure necessary to host large film, photography, Cultivated Areas television and commercial production teams. Mendoza also presents different types of cultivated soils, including vineyards, fruit orchards and vegetable fields, which make a varied display of landscapes at different times of the year. The City of Mendoza Located a 30-minute drive from the International Airport, the The tree-lined avenues are one of the most distinctive city of Mendoza constitutes an important cultural, industrial and characteristics of the General San Martín Park, with superb business center featuring tall buildings, museums, art galleries, plane-trees and sycamores, palm trees and pepper trees. squares, markets, both traditional and modern neighborhoods, and big parks, among other locations. The majestic General Vast lawn yards called prados stretch alongside the park San Martín Park is worth describing in detail for its unique streets. They are much used for playing soccer and meeting identity and beauty. family and friends over a picnic. These beautiful spaces host more than 300 vegetative species from around the world and General San Martín Park make up a spectacular habitat. The oldest and most important park in Mendoza, comprising 307 cultivated hectares (760 acres) and 86 hectares (213 Sculptures and Monuments acres) in expansion, San Martín Park is located within the city. There are dozens of artistic works all over the park, but the finest are the Marly Horses (a replica of those found in the The lake, bordered at one side by the rosedal (rose garden) Champs-Élysées in Paris) and La Fontaine de and framed by a background view of the mountains, is the L'Observatoire or Fountain of the Continents (wrongly known heart of the park. as Fountain of the Americas), a piece by the renowned sculptress Lola Mora. The rosedal is a walking area ornamented with rose bushes and pergolas and furnished with pathways and benches from where to enjoy beautiful views of the lake. Its pergolas are attractive any time of year. Rivers, Lakes and Dams Los Reyunos Dam: Located in the proximity of the city of 25 Among Mendoza's most important rivers are the Desaguadero, de mayo, San Rafael, it has given origin to a lake under the Mendoza, Tunuyán, Diamante and Atuel. All of them, except same name. the Desaguadero river, have their origin in the Andes and run El Nihuil Dam: Located at 35º04'S, 68º45'W, 1325 masl, and downhill across the province from west to east. They are used south of Agua del Toro Dam, near the city of San Rafael. for irrigation and for the generation of hydroelectric power by Valle Grande Dam: Located on Provincial Route No. 173, in means of dams. Additionally, they are among Mendoza's most the vicinity of the city of San Rafael. important tourist sites as they constitute attractive destinations Potrerillos Dam: Located on the Mendoza river, in the for eco-tourism and fishing. province of Mendoza, it is 69 km (43 miles) from the city and right on the Bioceanic Corridor. The reservoir presently has Among Mendoza's bodies of water, the most outstanding are an area of around 1500 hectares (3707 acres) with 14 km (9 the Diamante and Llancanelo lakes, which are surrounded by miles) of length and almost 3 km (2 miles) of maximum width. majestic natural scenery and have been declared protected El Carrizal Dam: Located in the upper middle course of the areas to safeguard their native plant and animal species. Tunuyán river, in the central north of the province of Mendoza, at 33º180’0’’S and 68º43’15’’W upstream from the The dams found in the province are: Presently, its surface is city of Rivadavia. around Agua del Toro Dam: Located at 34º35'S, 69º05'W, 1240 masl, Flora and Fauna of Mendoza and 200 km south of the city of Mendoza. Mendoza's climate is characterized by an extreme aridity due to the scarcity of rains, and by wide daily and seasonal temperature ranges. The oases of the Cuyo region developed by virtue of the irrigation of the rivers flowing from the Andes LOCATIONS glaciers and host human activity in the area. Native xeric plants and the absence of trees are typical traits This area is characterized by shrubby vegetation, including of the Mendocinian landscape. different jarilla varieties, piquillín, espinillos, garabatos and milk thistles or pencas. Toward the east, there are pepper On the other hand, the oases boast profuse artificially-planted trees (molles), ravennas and chañares or Chilean palos vegetation, mainly fruit trees, poplars, mulberries, ashes, verdes, and toward the northeast, carob trees and caldenes. plane-trees, sycamores, maples and vines. Trees and crops In the ravines along which the rivers flow, the vegetation is in Mendoza are watered by means of irrigation canals and much more varied and richer than in the scrubland region. ditches with meltwater from the mountains. In the south of Mendoza, encompassing the whole Payunia The Flora: Different kinds of vegetation exist depending on area, the shrubsteppe is predominant and reeds and the region. In the Andean region, extending parallel to the gramineous plants are observed, as well as chilcas and Andes, there are gramineous plants and shrubs such as jumes, among others. Further south, the typical grasses and ortiga de la sierra, a kind of stinging rock nettle, maihuenias shrubs of steppe areas are found, as well as espinales (areas or yerbas del guanaco and tree tobacco or palán. of low thorny deciduous shrubland forests). The Sub-Andean or scrubland region, east of the Andean Further east toward the plateau, trees up to 20 m tall are region, is very vast and comprises the foothills, the plains and found, with scrub as the predominant type of vegetation. the huayquerías area (low elevations cut through by dry riverbeds). ARCHITECTURE Mendoza has for a long time boasted a rich architectural heritage, as reflected in works of national and international Gómez Building significance erected by prominent architects. Location: 7 Garibaldi Street, Mendoza City. Hipotecario Bank Killka Espacio Salentein Location: España and Gutiérrez Streets - Mendoza City. Location: Tupungato Valley. Playas Serranas Building Malvinas Argentinas World Cup Stadium Location: Prado Español and Las Tipas Avenue, Mendoza City. Location: General San Martín Park. General San Martín Park. Emilio Civit Avenue Pasaje San Martín (San Martín Arcade) Location: It constitutes the extension of Sarmiento Avenue, Location: San Martín Avenue and Paseo Sarmiento (the city's stretching from Belgrano Street to the gates of General San pedestrian area). Martín Park. This traditional and prestigious thoroughfare concentrates some of the city's most imposing houses, many Agustín Álvarez National High School of which date from the beginning of the past century and have Location: 1050 Chile Street, Mendoza City. been declared part of the city's Cultural Heritage by the local National Historical Site. government. School of Architecture of the University of Mendoza Location: 750 Paseo Dr. Emilio Descotte, Mendoza. CLIMATE AND SEASONS Mendoza has a semiarid climate. There are broad Autumn: the autumn, from March 21 to June 21, is relatively temperature variations across the year and rains are scarce.
Recommended publications
  • Basement Composition and Basin Geometry Controls on Upper-Crustal Deformation in the Southern Central Andes (30–36° S)
    Geol. Mag.: page 1 of 17 c Cambridge University Press 2016 1 doi:10.1017/S0016756816000364 Basement composition and basin geometry controls on upper-crustal deformation in the Southern Central Andes (30–36° S) ∗ ∗ ∗ JOSÉ F. MESCUA †, LAURA GIAMBIAGI , MATÍAS BARRIONUEVO , ∗ ∗ ANDRÉS TASSARA‡, DIEGO MARDONEZ , MANUELA MAZZITELLI ∗ & ANA LOSSADA ∗ Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), Centro Científico Tecnológico Mendoza, CONICET. Av. Ruiz leal s/n Parque General San Martín, Mendoza (5500) Argentina ‡Departamento de Ciencias de la Tierra, Universidad de Concepción, Victor Lamas 1290, Barrio Universitario, Concepción, Casilla 160-C, Chile (Received 13 December 2015; accepted 5 April 2016) Abstract – Deformation and uplift in the Andes are a result of the subduction of the Nazca plate below South America. The deformation shows variations in structural style and shortening along and across the strike of the orogen, as a result of the dynamics of the subduction system and the features of the upper plate. In this work, we analyse the development of thin-skinned and thick-skinned fold and thrust belts in the Southern Central Andes (30–36° S). The pre-Andean history of the area determined the formation of different basement domains with distinct lithological compositions, as a result of terrane accretions during Palaeozoic time, the development of a widespread Permo-Triassic magmatic province and long-lasting arc activity. Basin development during Palaeozoic and Mesozoic times produced thick sedimentary successions in different parts of the study area. Based on estimations of strength for the different basement and sedimentary rocks, calculated using geophysical estimates of rock physical properties, we propose that the contrast in strength between basement and cover is the main control on structural style (thin- v.
    [Show full text]
  • Territorial Studies in Argentina
    TERRITORIAL STUDIES IN ARGENTINA AN INTERDISCIPLINARY APPROACH ARGENTINA, A COUNTRY OF CONTRAST Course Main Goal To gain insights into Argentina’s cultural diversity and its main productive areas from the economic, cultural and environmental perspective. Course description Students will get a cross-cultural experience and perspectives on Argentina’s main productive areas and its historic and economic role as a major food producer, where people, culture, landscapes, plant and animal life are diverse. In addition, they will be culturally enriched by experiencing a blend of culture, language, history, art and traditions related to the main productive areas. The course comprises different group activities, such as, discussion groups, seminars, etc. Courseload 45 hours (2 hours period, 4 days a week plus visit sites). Students will have the chance to visit main productive sites and experience short study trips (as livestock markets, ecological reservation and Delta del Paraná Biosphere Reserve) throughout the program. Course Contents The role of Agriculture in Argentina. Economic, Political & Social Changes. Historical and Anthropological perspectives. Argentina’s main regions. The Humid Pampas, Cuyo, Patagonia, etc. (I): Demographical, socioeconomic, agricultural, historical, landscape and cultural (music, art, customs) aspects. Other relevant regions. Territorial Studies. Areas of Study. 1- Pampa Húmeda (Humid Pampas) 2- Patagonia 3- Iguazú Falls – Mesopotamia 4- Cuyo 5- North West Region. 1) The Humid Pampas Myths and Economic facts (gauchos, soybean myth). Leading roles. Agroexporting model. Agricultural clusters and soybean production – agricultural production, cattle raising and beef production. Agrifood and commoditization. The Rural and Urban tandem. Immigration and cultural perspectives. Buenos Aires port as a cultural bridge.
    [Show full text]
  • Request for Proposals – Renovar Program – Round 2
    REQUEST FOR PROPOSALS – RENOVAR PROGRAM – ROUND 2 1. Subject-matter Pursuant to the provisions set forth in Resolution ME&M No. 275 passed on August, 16th. 20171 CAMMESA calls for the submission of bids (the ‘Open Call for Tenders’) for the qualification of and possible award to national or foreign legal entities, for the purpose of executing renewable power purchase agreements to be signed with CAMMESA, acting in representation of Distribution Companies and Large Users of the Wholesale Electric Market (henceforth “MEM”), with the aim of increasing the share of renewable sources of energy in the country’s energy mix, pursuant to Laws N° 26190 and N° 27191 and Decree N° 531/2016 and its amendments. 2. Definitions ‘Additional Provider of the Technical Transmission Function’ is defined in The Procedures. ‘Adjusted Offered Price’ or ‘AOP’ is defined in Provision 18.1 of the RFP. ‘Annual Adjustment Factor’ is the value shown, for each Production Year, in the column named ‘Annual Adjustment Factor’ of Annex 8. ‘Annual Price’ is, for each Production Year, the price detailed in Annex B of the Power Purchase Agreement. ‘Argentine Peso/s’ or ‘$’ is, at any time, the effective legal tender in the Argentine Republic for that date. ‘Awarded Price’ is defined in Provision 13.1.3 of this RFP. ‘Awardee’ is the qualified Bidder who has been chosen by CAMMESA, in accordance with the instructions from the Enforcement Authority, to sign the Power Purchase Agreement by means of a Specific Purpose Entity (SPE). ‘Beneficiary’ is defined in Annex 7 of this RFP. ‘Bid Bond’ is the guarantee granted to CAMMESA by the Bidder pursuant to the terms and conditions set forth in Provision 10 of the RFP.
    [Show full text]
  • 2021 Sample (PDF)
    ® field guides BIRDING TOURS WORLDWIDE [email protected] • 800•728•4953 ITINERARY BIRDS & WINES OF CHILE AND ARGENTINA February 6-20, 2021 One of the special birds found in Chile and Argentina is the Diademed Sandpiper-Plover. These unusual shorebirds live in high-elevation wetlands such as the Yeso Valley in Chile. Photograph by guide Marcelo Padua. We include here information for those interested in the 2021 Field Guides Birds & Wines of Chile and Argentina tour: ¾ a general introduction to the tour ¾ a description of the birding areas to be visited on the tour ¾ an abbreviated daily itinerary with some indication of the nature of each day’s birding outings These additional materials will be made available to those who register for the tour: ¾ an annotated list of the birds recorded on a previous year’s Field Guides trip to the area, with comments by guide(s) on notable species or sightings (may be downloaded from our web site) ¾ a detailed information bulletin with important logistical information and answers to questions regarding accommodations, air arrangements, clothing, currency, customs and immigration, documents, health precautions, and personal items ¾ a reference list ¾ a Field Guides checklist for preparing for and keeping track of the birds we see on the tour ¾ after the conclusion of the tour, a list of birds seen on the tour Argentina and Chile, two countries divided by the longest mountain range on Earth, are joined by a passion for making and drinking excellent wine! This new tour aims to take you to the wine-producing regions of these two countries while showing you the exuberant natural world that surrounds them.
    [Show full text]
  • FABRE MONTMAYOU MENDOZA , a RGENTINA Hervé Joyaux Fabre, Owner and Director of Fabre Montmayou, Was Born in Bordeaux, France, to a Family of Wine Negociants
    FABRE MONTMAYOU MENDOZA , A RGENTINA Hervé Joyaux Fabre, owner and director of Fabre Montmayou, was born in Bordeaux, France, to a family of wine negociants. When he arrived in Argentina in the early 90’s looking for opportunities to invest in vineyards and start a winery, he was impressed by the potential for Malbec in Mendoza. As a true visionary, he bought very old Malbec vineyards, planted in 1908, and built the Fabre Montmayou winery in the purest Château style from Bordeaux. The winery was built in Vistalba – Lujan de Cuyo, 18 Km North of Mendoza city at 3800 feet elevation (1,150 meters of altitude), and is surrounded by the first 37 acres of Malbec vineyards that the company bought. For the Fabre Montmayou line of wines, the owners decided to buy exclusively old-vine vineyards in the best wine growing areas of Mendoza. With constant care and personal style – essential elements for great quality – Fabre Montmayou combines modern winemaking, Mendoza’s terroir and the Bordeaux “savoir faire” to produce wines of unique personality. MENDOZA, ARGENTINA Mendoza Province is one of Argentina's most important wine regions, accounting for nearly two-thirds of the country's entire wine production. Located in the eastern foothills of the Andes, in the shadow of Mount Aconcagua, vineyards are planted at some of the highest altitudes in the world, with the average site located 600–1,100 metres (2,000–3,600 ft) above sea level. The principal wine producing areas fall into two main departments Maipúand Luján, which includes Argentina's first delineated appellation established in 1993 in Luján de Cuyo.
    [Show full text]
  • Supplementary Data
    Supplementary data Water sources Places Sites Samples Rivers Vacas, Cuevas, Tupungato and Mendoza 7 42 rivers in Punta de Vacas. Cuevas River in Puente del Inca. Horcones Superior and Horcones rivers at Mt. Aconcagua Confluencia Camp. Ice bodies Horcones Inferior Glacier and Mt. Tolosa 2 34 rock glaciers conglomerate. Groundwaters Vertiente del Inca, La Salada Stream, 6 41 Confluencia Nueva Spring, Confluencia Vieja Spring and geothermal waters of "Copa de Champagne" and "Viejo Túnel", both in "Puente del Inca". Precipitations Collectors at Laguna de Horcones and 2 4 Confluencia Camp, both in the Mt. Aconcagua Park Snow basins Valle Azul, Los Puquios and Santa María 3 33 Table S1 Sampling along the melting period 2013-2014 in Cordillera Principal geological province. Ice body type classification corresponds to the official inventory of glaciers (IANIGLA-ING, 2015a). Sites refers to quantity of sampling sites for each water source Station 2 and MDS HI m3/s Soil MDT °C Air MDT °C DMaxT DMinT °C max-min °C HI Glacier °C streamflow Mean 2.09 7.17 4.90 3.55 0.77 2.72 SD 0.95 3.15 3.35 4.35 3.30 3.02 VC% 45.34 43.90 68.31 122.56 430.53 111.07 Max 4.88 11.60 10.68 11.27 6.41 11.27 Min 0.52 1.35 -3.65 -5.95 -7.28 -5.95 Rock glaciers streamflow MDS Tolosa m3/s Mean 0.02 SD 0.01 VC% 70.80 Max 0.05 Min 0.00 Station 1 Atm Press hPa Air MDT °C DMaxT °C DMinT °C RH% Mean 706.44 11.12 17.82 4.74 37.27 SD 1.55 2.88 3.41 2.66 17.39 VC% 0.22 25.89 19.15 56.17 46.67 Max 710.04 16.57 24.84 11.20 97.60 Min 703.11 2.89 6.25 -0.53 13.60 Station 1 Soil DMT °C Wind Dir.° W mean vel.
    [Show full text]
  • Discovery of Two New Species of Phymaturus (Iguania: Liolaemidae) from Patagonia, Argentina, and Occurrence of Melanism in the Patagonicus Group
    Trabajo Cuad. herpetol. 29 (1): 5-25 (2015) Discovery of two new species of Phymaturus (Iguania: Liolaemidae) from Patagonia, Argentina, and occurrence of melanism in the patagonicus group Fernando Lobo¹, Santiago Javier Nenda² ¹ Instituto de Bio y Geociencias del NOA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONI- CET)–Universidad Nacional de Salta, Avenida Bolivia 5150, 4400–Salta, Argentina. ² División Herpetología, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’-CONICET, Avenida Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina Recibido: 03 Abril 2014 ABSTRACT Revisado: 12 Mayo 2014 Comprehensive studies recently published on the evolution and systematics of Phymaturus Aceptado: 25 Junio 2014 (morphological and molecular ones) revealed not only a historical pattern and subclades within Editor Asociado: A. S. Quinteros the traditional P. palluma and P. patagonicus species groups but also a still not fully understood unsuspected diversity. Several populations in northern and southern Argentina may represent independent lineages that deserve formal description. Two of these populations were studied for the present contribution and are easily distinguished from all the other species in the genus. One of these populations is from Río Negro province and belongs to the P. patagonicus group; it exhibits a unique dorsal color pattern and several individuals are melanic, a characteristic never reported before for the genus, with the exception of P. tenebrosus. A careful examination of melanic individuals revealed the same dorsal pattern as that of non-melanic ones, although it is obscured. We also report the discovery of melanic individuals of two other species that are probably closely related: P. ceii and P. sitesi. The melanism found in the P.
    [Show full text]
  • Ucla Archaeology Field School
    THE USPALLATA ARCHAEOLOGICAL PROJECT, ARGENTINA Course ID: ARCH XL159 June 1–July 1, 2017 DIRECTOR: Dr. Erik J. Marsh, CONICET. Laboratorio de Paleo-Ecología Humana & Universidad Nacional de Cuyo, Mendoza, Argentina ([email protected]) INTRODUCTION The Uspallata Valley in Mendoza, Argentina lies below the snow-peaked Andes. The valley has been occupied since the Late Pleistocene. It includes 1) the site Agua de la Cueva, which dates to over 13,000 years ago and is earliest human occupation of this part of the Andes, 2) Mendoza’s densest concentration of prehispanic rock art at Cerro Tunduqueral, and 3) the southernmost extension of the vast Inca Empire and its road system, including a high-altitude child sacrifice on Mount Aconcagua, the highest peak in the Americas. The project’s research focuses on the translation from foraging to pastoralism and agriculture. Both practices were present in the valley in the first millennium AD, but the timing and nature of the transition are unclear. This is most likely when the rock art at Cerro Tunduqueral was engraved, but this connection has not yet been demonstrated. We will investigate to what extend people remained people as they added novel subsistence strategies. These issues will be addressed with 1) survey data from a large area called Uspallata Norte (~8 km2) that includes dense and extensive surface dispersals of ceramics, ground stone, and expedient lithic tools and 2) excavations of a high altitude rock shelter, Paramillos. Both sets of data will complement the data from the 2016 field school, which excavated a surveyed and excavated rock shelter around Cerro Tunduqueral.
    [Show full text]
  • Geo-Climatic Hazards in the Eastern Subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M
    https://doi.org/10.5194/nhess-2019-381 Preprint. Discussion started: 21 January 2020 c Author(s) 2020. CC BY 4.0 License. Geo-climatic hazards in the eastern subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M. Moreiras2, 3, Diego Araneo2, 3 and René Garreaud4, 5 1 CONICET-IPATEC, Bariloche, 8400, Argentina 5 2 CONICET-IANIGLA, Mendoza, 5500, Argentina 3 National University of Cuyo, Mendoza, 5502, Argentina 4 University of Chile, Santiago, 8330015, Chile 5 Center for Climate and Resilience Research, Santiago, 8320198, Chile 10 Correspondence to: Iván Vergara ([email protected]) Abstract. Detection and understanding of historical changes in the frequency of geo-climatic hazards (G-CHs) is crucial for the quantification of current hazard and their future projection. Here we focus in the eastern subtropical Andes (32-33° S), using meteorological data and a century-long inventory on 553 G-CHs triggered by rainfall or snowfall. First we analysed their spatio-temporal distributions and the role of climate variability on the year-to-year changes in the number of days with 15 G-CHs. Precipitation is positively correlated with the number of G-CHs across the region and year-round; mean temperature is negatively correlated with snowfall-driven hazards in the western (higher) half of the study region during winter, and with rainfall-driven hazards in the eastern zone during summer. The trends of the G-CHs frequency since the mid-20th century were calculated taking cautions for their non-systematic monitoring. The G-CHs series for the different triggers, zones and seasons were generally stationary.
    [Show full text]
  • Darwin at Puente Del Inca: Observations on the Formation of the Inca's Bridge and Mountain Building
    170 Revista de la Asociación Geológica Argentina 64 (1): 170- 179 (2009) DARWIN AT PUENTE DEL INCA: OBSERVATIONS ON THE FORMATION OF THE INCA'S BRIDGE AND MOUNTAIN BUILDING Victor A. RAMOS Laboratorio de Tectónica Andina, FCEN, Universidad de Buenos Aires - CONICET. Email: [email protected] ABSTRACT The analyses of the observations of Charles Darwin at Puente del Inca, during his second journey across the High Andes drew attention on two different aspects of the geological characteristics of this classic area. Most of his descriptions on the characteristics and the origin of the natural bridge were not published, mainly due to his poor impression of Puente del Inca. However, the application of the uniformitarian principles shows that it was formed as an ice bridge associated with snow and debris avalanches later on cemented by the minerals precipitated by the adjacent hot-water springs. Darwin's observations on the complex structural section at Puente del Inca, together with his findings of shallow water marine fossil mollusks in the thick stratigraphic column of the area interfingered with volcanic rocks, led him to speculate on several geological processes. Based on his geological observations, Darwin argued on the mountain uplift, the subsidence of the marine bottom, the epi- sodic lateral growth of the cordillera, and their association with earthquakes and volcanic activity, which was an important advance in the uniformitarian hypothesis of mountain uplift proposed by Charles Lyell. Darwin was able to recognize the epi- sodic nature of mountain uplift, and based on these premises he concluded that the Andes were still undergoing uplift.
    [Show full text]
  • Debris Flows Occurrence in the Semiarid Central Andes Under Climate Change Scenario
    geosciences Review Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario Stella M. Moreiras 1,2,* , Sergio A. Sepúlveda 3,4 , Mariana Correas-González 1 , Carolina Lauro 1 , Iván Vergara 5, Pilar Jeanneret 1, Sebastián Junquera-Torrado 1 , Jaime G. Cuevas 6, Antonio Maldonado 6,7, José L. Antinao 8 and Marisol Lara 3 1 Instituto Argentino de Nivología, Glaciología & Ciencias Ambientales, CONICET, Mendoza M5500, Argentina; [email protected] (M.C.-G.); [email protected] (C.L.); [email protected] (P.J.); [email protected] (S.J.-T.) 2 Catedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza M5528AHB, Argentina 3 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile; [email protected] (S.A.S.); [email protected] (M.L.) 4 Instituto de Ciencias de la Ingeniería, Universidad de O0Higgins, Rancagua 2820000, Chile 5 Grupo de Estudios Ambientales–IPATEC, San Carlos de Bariloche 8400, Argentina; [email protected] 6 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, Coquimbo 1780000, Chile; [email protected] (J.G.C.); [email protected] (A.M.) 7 Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile 8 Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47404, USA; [email protected] * Correspondence: [email protected]; Tel.: +54-26-1524-4256 Citation: Moreiras, S.M.; Sepúlveda, Abstract: This review paper compiles research related to debris flows and hyperconcentrated flows S.A.; Correas-González, M.; Lauro, C.; in the central Andes (30◦–33◦ S), updating the knowledge of these phenomena in this semiarid region.
    [Show full text]
  • Where Does the Chilean Aconcagua River Come From? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments
    water Article Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments Sebastián Andrés Crespo 1,* ,Céline Lavergne 2,3 , Francisco Fernandoy 4 , Ariel A. Muñoz 1, Leandro Cara 5 and Simón Olfos-Vargas 1 1 Instituto de Geografía, Facultad de Ciencias del Mar y Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile; [email protected] (A.A.M.); [email protected] (S.O.-V.) 2 Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2581782, Chile; [email protected] 3 HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 234000, Chile 4 Laboratorio de Análisis Isotópico (LAI), Facultad de Ingeniería, Universidad Andrés Bello, Viña del Mar 2531015, Chile; [email protected] 5 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET), Mendoza 5500, Argentina; [email protected] * Correspondence: [email protected] Received: 1 August 2020; Accepted: 12 September 2020; Published: 21 September 2020 Abstract: The Aconcagua river basin (Chile, 32 ◦S) has suffered the effects of the megadrought over the last decade. The severe snowfall deficiency drastically modified the water supply to the catchment headwaters. Despite the recognized snowmelt contribution to the basin, an unknown streamflow buffering effect is produced by glacial, periglacial and groundwater inputs, especially in dry periods. Hence, each type of water source was characterized and quantified for each season, through the combination of stable isotope and ionic analyses as natural water tracers. The δ18O and electric conductivity were identified as the key parameters for the differentiation of each water source.
    [Show full text]