Downloaded 10/07/21 08:21 PM UTC 482 JOURNAL of HYDROMETEOROLOGY VOLUME 12

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/07/21 08:21 PM UTC 482 JOURNAL of HYDROMETEOROLOGY VOLUME 12 VOLUME 12 JOURNAL OF HYDROMETEOROLOGY AUGUST 2011 Climatology of Winter Orographic Precipitation over the Subtropical Central Andes and Associated Synoptic and Regional Characteristics MAXIMILIANO VIALE Programa Regional de Meteorolog´ıa, Instituto Argentino de Nivolog´ıa, Glaciolog´ıa y Ciencias Ambientales (IANIGLA), CCT–CONICET, Mendoza, Argentina MARIO N. NUN˜ EZ Centro de Investigaciones del Mar y la Atmo´ sfera, CONICET-UBA, and Departamento de Ciencias de la Atmo´ sfera y Oce´anos, Universidad de Buenos Aires, Buenos Aires, Argentina (Manuscript received 25 February 2010, in final form 16 November 2010) ABSTRACT Winter orographic precipitation over the Andes between 308 and 378S is examined using precipitation gauges in the mountains and adjacent lowlands. Because of the limited number of precipitation gauges, this paper focuses on the large-scale variation in cross-barrier precipitation and does not take into account the fine ridge–valley scale. The maximum amount of precipitation was observed on the windward slope of the mountain range below the crest, which was twice that observed on the low-windward side between 32.58 and 348S. Toward the east of the crest, precipitation amounts drop sharply, generating a strong cross-barrier gradient. The rain shadow effect is greater in the north (328–34.58S) than in the south (358–36.58S) of the low-lee side, which is probably due to more baroclinic activity in southernmost latitudes and a southward decrease in the height of the Andes enabling more spillover precipitation. The effect of the Andes on winter precipitation is so marked that it modifies the precipitation regimes in the adjacent windward and leeward lowlands north of 358S. Based on the fact that ;75% of the wintertime precipitation accumulated in the fourth quartile, through four or five heavy events on average, the synoptic-scale patterns of the heavy (into fourth quartile) orographic precipitation events were identified. Heavy events are strongly related to strong water vapor transport from the Pacific Ocean in the pre-cold-front environment of extratropical cyclones, which would have the form of atmospheric rivers as depicted in the reanalysis and rawinsonde data. The composite fields revealed a marked difference between two subgroups of heavy precipitation events. The extreme (100th–95th percentiles) events are associated with deeper cyclones than those for intense (95th–75th percentiles) events. These deeper cy- clones lead to much stronger plumes of water vapor content and cross-barrier moisture flux against the high Andes, resulting in heavier orographic precipitation for extreme events. In addition, regional airflow charac- teristics suggest that the low-level flow is typically blocked and diverted poleward in the form of an along-barrier jet. On the lee side, downslope flow dominates during heavy events, producing prominent rain shadow effects as denoted by the domain of downslope winds extending to low-leeward side (i.e., zonda wind). 1. Introduction (Trenberth 1991; Hoskins and Hodges 2005), when cyclones moving eastward produce strong cross-barrier The role of the Andes in supplying water through flow that results in upslope precipitation on the wind- orographic precipitation is of vital importance for ad- ward slope and rain shadow effect on leeward slopes. jacent lowlands in Chile and western Argentina. In These orographic effects accentuate in mountain ranges winter, the subtropical central Andes (SCA; 308–378S) oriented perpendicular to the prevalent horizontal is mostly affected by the northern flank of storm tracks flow and, hence, have great influence on the climate in adjacent areas, producing strong windward–leeward gradients in vegetation and water availability [e.g., Corresponding author address: Maximiliano Viale, Instituto New Zealand Alps (Griffiths and McSaveney 1983; Argentino de Nivologı´a, Glaciologı´a y Ciencias Ambientales, Av. Adria´n Ruiz Leal s/n, Parque Gral. San Martı´n, CC 330, 5500 Wratt et al. 2000), the Cascades in Oregon (Smith Mendoza, Argentina. et al. 2005), and the southern Andes (Smith and Evans E-mail: [email protected] 2007)]. DOI: 10.1175/2010JHM1284.1 Ó 2011 American Meteorological Society 481 Unauthenticated | Downloaded 10/07/21 08:21 PM UTC 482 JOURNAL OF HYDROMETEOROLOGY VOLUME 12 Orographic effects on the horizontal flow result in vapor transport concentrates over an extensive and nar- a very complex distribution of precipitation across the row region of high water vapor content associated with the mountain range. A dense observation network is nec- low-level jet in the broader warm and pre-frontal zone of essary to depict the spatial precipitation pattern, which the polar front (i.e., the ‘‘warm conveyor belt’’; Browning is a real limitation in the South American Andes. For 1990). This long and narrow corridor of water vapor above example, Falvey and Garreaud (2007, hereafter FG07) the ocean accounts for essentially the total meridional found an orographic precipitation enhancement close transport at middle latitudes, so it has been named to 2–3 in SCA using mostly river discharge estimates. ‘‘atmospheric river’’ (Zhu and Newell 1998). Recent Between 408 and 488S in the southern Andes, Smith and composite studies of atmospheric rivers have demon- Evans (2007) reported the highest drying ratio1 values strated their crucial role in modulating heavy orographic ever found in a mountain range using stable isotope data rainfall, snowpack variability, and flooding in western from stream water. Over other more-sampled mountain North America (Ralph et al. 2004, 2005a, 2006; Neiman ranges, the maximum precipitation was identified on the et al. 2008). Given the significant contribution of at- windward slope of the high Cascade or Sierra Nevada mospheric rivers to the extreme precipitation in the ranges (Colle and Mass 2000; Smith et al. 2005; Leung western United States, the results of the Hydrometeo- and Qian 2003) and/or over the crest of the low Oregon rology Testbed (HMT) project-West field programs, coastal mountains (Colle and Mass 2000) or low New conducted by the National Oceanic and Atmospheric Zealand Alps (Sinclair et al. 1997). Using one of the Administration (NOAA) since 2005 (Ralph et al. 2005b, densest rain gauge networks on a mountain range, Frei 2010), may be applicable to other north–south mountain and Scha¨r (1998) identified finescale spatial variabil- ranges such as the Andes. ity as the most prominent characteristic in precipitation Because of sparse distribution of surface stations in fields over the European Alps, with precipitation en- the Andes of South America, studies of winter oro- hancement on the upslope peaks and shielding in inner graphic precipitation are limited. Recent modeling valleys. At the small ridge–valley scale, strong precip- case studies have documented that local airflow char- itation gradients were also documented over the Olympic acteristics and precipitation patterns result from the Peninsula in Washington; these remained relatively con- interaction between the synoptic-scale flow and the stant on time scales ranging from annual to single event, topography of SCA (Barrett et al. 2009; Viale and thus suggesting the dominant role of the topography in Norte 2009, hereafter VN09). A climatological approach determining the spatial precipitation pattern (Anders of winter precipitation and their associated synoptic et al. 2007; Minder et al. 2008). By contrast, the Andes are conditions have been addressed by FG07, but is limited a data-poor region. Therefore, we focus on variations in to the low-windward side and windward slope of the the cross-mountain direction of precipitation over the subtropical Andes. Our study extends the climatolog- (still poorly understood) broad scale of ;50 km, dis- ical approach of winter orographic precipitation to the tinguishing between robust cross-barrier zones of the low- leeward slope and low-lee side of SCA, making use of windward side, windward slope, immediate leeward slope, the less sparse network of precipitation gauges avail- and low-leeward side. able over the mountains and both adjacent low sides The orographic precipitation pattern depends on syn- between 308 and 378S. We also explore the synoptic optic forcing, including air mass stability, moisture con- and regional air mass features up- and downstream of tent, and direction and strength of wind, which in turn the barrier that accompanied heavy orographic pre- interacts with the topography. Junker et al. (2008) and cipitation events, including the possible linkage with Pandey et al. (1999) showed that deeper cyclones lo- landfalling atmospheric rivers on the western coast of cated off the western U.S. coast lead to stronger winds South America. and moisture fluxes against the Sierra Nevada, result- The remainder of this article is structured as fol- ing in heavier precipitation. Based on data collected lows: the data and topographic features, as well as along and off the California coast during the California the precipitation-event dataset and their composite Landfalling Jets Experiment (CALJET) and the Pacific methodology, are described in the next section. In Landfalling Jets Experiment (PACJET) (Ralph et al. section 3 we examine the spatial, seasonal, and daily 1999), Ralph et al. (2004, 2005a) documented that water distribution of winter precipitation over the mountain range and their surroundings. The synoptic and regional conditions during the heavy precipitation events and 1 Drying ratio is the ratio between the water vapor flux removed their links with atmospheric rivers are analyzed in sec- as precipitation on the mountain and the incoming water vapor flux tion 4. Our main results are discussed and summarized in against the mountain. section 5. Unauthenticated | Downloaded 10/07/21 08:21 PM UTC AUGUST 2011 V I A L E A N D N U N˜ EZ 483 FIG. 1. Orographic region investigated in this study (elevations in m; above 500 m are shaded) and the stations used (filled and empty circles represent stations with daily and monthly precipitation data, respectively). The stations enclosed by the vertical rectangle with dashed white lines correspond to high-mountain locations (i.e., alt .
Recommended publications
  • 2021 Sample (PDF)
    ® field guides BIRDING TOURS WORLDWIDE [email protected] • 800•728•4953 ITINERARY BIRDS & WINES OF CHILE AND ARGENTINA February 6-20, 2021 One of the special birds found in Chile and Argentina is the Diademed Sandpiper-Plover. These unusual shorebirds live in high-elevation wetlands such as the Yeso Valley in Chile. Photograph by guide Marcelo Padua. We include here information for those interested in the 2021 Field Guides Birds & Wines of Chile and Argentina tour: ¾ a general introduction to the tour ¾ a description of the birding areas to be visited on the tour ¾ an abbreviated daily itinerary with some indication of the nature of each day’s birding outings These additional materials will be made available to those who register for the tour: ¾ an annotated list of the birds recorded on a previous year’s Field Guides trip to the area, with comments by guide(s) on notable species or sightings (may be downloaded from our web site) ¾ a detailed information bulletin with important logistical information and answers to questions regarding accommodations, air arrangements, clothing, currency, customs and immigration, documents, health precautions, and personal items ¾ a reference list ¾ a Field Guides checklist for preparing for and keeping track of the birds we see on the tour ¾ after the conclusion of the tour, a list of birds seen on the tour Argentina and Chile, two countries divided by the longest mountain range on Earth, are joined by a passion for making and drinking excellent wine! This new tour aims to take you to the wine-producing regions of these two countries while showing you the exuberant natural world that surrounds them.
    [Show full text]
  • Supplementary Data
    Supplementary data Water sources Places Sites Samples Rivers Vacas, Cuevas, Tupungato and Mendoza 7 42 rivers in Punta de Vacas. Cuevas River in Puente del Inca. Horcones Superior and Horcones rivers at Mt. Aconcagua Confluencia Camp. Ice bodies Horcones Inferior Glacier and Mt. Tolosa 2 34 rock glaciers conglomerate. Groundwaters Vertiente del Inca, La Salada Stream, 6 41 Confluencia Nueva Spring, Confluencia Vieja Spring and geothermal waters of "Copa de Champagne" and "Viejo Túnel", both in "Puente del Inca". Precipitations Collectors at Laguna de Horcones and 2 4 Confluencia Camp, both in the Mt. Aconcagua Park Snow basins Valle Azul, Los Puquios and Santa María 3 33 Table S1 Sampling along the melting period 2013-2014 in Cordillera Principal geological province. Ice body type classification corresponds to the official inventory of glaciers (IANIGLA-ING, 2015a). Sites refers to quantity of sampling sites for each water source Station 2 and MDS HI m3/s Soil MDT °C Air MDT °C DMaxT DMinT °C max-min °C HI Glacier °C streamflow Mean 2.09 7.17 4.90 3.55 0.77 2.72 SD 0.95 3.15 3.35 4.35 3.30 3.02 VC% 45.34 43.90 68.31 122.56 430.53 111.07 Max 4.88 11.60 10.68 11.27 6.41 11.27 Min 0.52 1.35 -3.65 -5.95 -7.28 -5.95 Rock glaciers streamflow MDS Tolosa m3/s Mean 0.02 SD 0.01 VC% 70.80 Max 0.05 Min 0.00 Station 1 Atm Press hPa Air MDT °C DMaxT °C DMinT °C RH% Mean 706.44 11.12 17.82 4.74 37.27 SD 1.55 2.88 3.41 2.66 17.39 VC% 0.22 25.89 19.15 56.17 46.67 Max 710.04 16.57 24.84 11.20 97.60 Min 703.11 2.89 6.25 -0.53 13.60 Station 1 Soil DMT °C Wind Dir.° W mean vel.
    [Show full text]
  • Discovery of Two New Species of Phymaturus (Iguania: Liolaemidae) from Patagonia, Argentina, and Occurrence of Melanism in the Patagonicus Group
    Trabajo Cuad. herpetol. 29 (1): 5-25 (2015) Discovery of two new species of Phymaturus (Iguania: Liolaemidae) from Patagonia, Argentina, and occurrence of melanism in the patagonicus group Fernando Lobo¹, Santiago Javier Nenda² ¹ Instituto de Bio y Geociencias del NOA, Consejo Nacional de Investigaciones Científicas y Técnicas (CONI- CET)–Universidad Nacional de Salta, Avenida Bolivia 5150, 4400–Salta, Argentina. ² División Herpetología, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’-CONICET, Avenida Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina Recibido: 03 Abril 2014 ABSTRACT Revisado: 12 Mayo 2014 Comprehensive studies recently published on the evolution and systematics of Phymaturus Aceptado: 25 Junio 2014 (morphological and molecular ones) revealed not only a historical pattern and subclades within Editor Asociado: A. S. Quinteros the traditional P. palluma and P. patagonicus species groups but also a still not fully understood unsuspected diversity. Several populations in northern and southern Argentina may represent independent lineages that deserve formal description. Two of these populations were studied for the present contribution and are easily distinguished from all the other species in the genus. One of these populations is from Río Negro province and belongs to the P. patagonicus group; it exhibits a unique dorsal color pattern and several individuals are melanic, a characteristic never reported before for the genus, with the exception of P. tenebrosus. A careful examination of melanic individuals revealed the same dorsal pattern as that of non-melanic ones, although it is obscured. We also report the discovery of melanic individuals of two other species that are probably closely related: P. ceii and P. sitesi. The melanism found in the P.
    [Show full text]
  • Ucla Archaeology Field School
    THE USPALLATA ARCHAEOLOGICAL PROJECT, ARGENTINA Course ID: ARCH XL159 June 1–July 1, 2017 DIRECTOR: Dr. Erik J. Marsh, CONICET. Laboratorio de Paleo-Ecología Humana & Universidad Nacional de Cuyo, Mendoza, Argentina ([email protected]) INTRODUCTION The Uspallata Valley in Mendoza, Argentina lies below the snow-peaked Andes. The valley has been occupied since the Late Pleistocene. It includes 1) the site Agua de la Cueva, which dates to over 13,000 years ago and is earliest human occupation of this part of the Andes, 2) Mendoza’s densest concentration of prehispanic rock art at Cerro Tunduqueral, and 3) the southernmost extension of the vast Inca Empire and its road system, including a high-altitude child sacrifice on Mount Aconcagua, the highest peak in the Americas. The project’s research focuses on the translation from foraging to pastoralism and agriculture. Both practices were present in the valley in the first millennium AD, but the timing and nature of the transition are unclear. This is most likely when the rock art at Cerro Tunduqueral was engraved, but this connection has not yet been demonstrated. We will investigate to what extend people remained people as they added novel subsistence strategies. These issues will be addressed with 1) survey data from a large area called Uspallata Norte (~8 km2) that includes dense and extensive surface dispersals of ceramics, ground stone, and expedient lithic tools and 2) excavations of a high altitude rock shelter, Paramillos. Both sets of data will complement the data from the 2016 field school, which excavated a surveyed and excavated rock shelter around Cerro Tunduqueral.
    [Show full text]
  • Geo-Climatic Hazards in the Eastern Subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M
    https://doi.org/10.5194/nhess-2019-381 Preprint. Discussion started: 21 January 2020 c Author(s) 2020. CC BY 4.0 License. Geo-climatic hazards in the eastern subtropical Andes: Distribution, Climate Drivers and Trends Iván Vergara1, Stella M. Moreiras2, 3, Diego Araneo2, 3 and René Garreaud4, 5 1 CONICET-IPATEC, Bariloche, 8400, Argentina 5 2 CONICET-IANIGLA, Mendoza, 5500, Argentina 3 National University of Cuyo, Mendoza, 5502, Argentina 4 University of Chile, Santiago, 8330015, Chile 5 Center for Climate and Resilience Research, Santiago, 8320198, Chile 10 Correspondence to: Iván Vergara ([email protected]) Abstract. Detection and understanding of historical changes in the frequency of geo-climatic hazards (G-CHs) is crucial for the quantification of current hazard and their future projection. Here we focus in the eastern subtropical Andes (32-33° S), using meteorological data and a century-long inventory on 553 G-CHs triggered by rainfall or snowfall. First we analysed their spatio-temporal distributions and the role of climate variability on the year-to-year changes in the number of days with 15 G-CHs. Precipitation is positively correlated with the number of G-CHs across the region and year-round; mean temperature is negatively correlated with snowfall-driven hazards in the western (higher) half of the study region during winter, and with rainfall-driven hazards in the eastern zone during summer. The trends of the G-CHs frequency since the mid-20th century were calculated taking cautions for their non-systematic monitoring. The G-CHs series for the different triggers, zones and seasons were generally stationary.
    [Show full text]
  • Darwin at Puente Del Inca: Observations on the Formation of the Inca's Bridge and Mountain Building
    170 Revista de la Asociación Geológica Argentina 64 (1): 170- 179 (2009) DARWIN AT PUENTE DEL INCA: OBSERVATIONS ON THE FORMATION OF THE INCA'S BRIDGE AND MOUNTAIN BUILDING Victor A. RAMOS Laboratorio de Tectónica Andina, FCEN, Universidad de Buenos Aires - CONICET. Email: [email protected] ABSTRACT The analyses of the observations of Charles Darwin at Puente del Inca, during his second journey across the High Andes drew attention on two different aspects of the geological characteristics of this classic area. Most of his descriptions on the characteristics and the origin of the natural bridge were not published, mainly due to his poor impression of Puente del Inca. However, the application of the uniformitarian principles shows that it was formed as an ice bridge associated with snow and debris avalanches later on cemented by the minerals precipitated by the adjacent hot-water springs. Darwin's observations on the complex structural section at Puente del Inca, together with his findings of shallow water marine fossil mollusks in the thick stratigraphic column of the area interfingered with volcanic rocks, led him to speculate on several geological processes. Based on his geological observations, Darwin argued on the mountain uplift, the subsidence of the marine bottom, the epi- sodic lateral growth of the cordillera, and their association with earthquakes and volcanic activity, which was an important advance in the uniformitarian hypothesis of mountain uplift proposed by Charles Lyell. Darwin was able to recognize the epi- sodic nature of mountain uplift, and based on these premises he concluded that the Andes were still undergoing uplift.
    [Show full text]
  • Debris Flows Occurrence in the Semiarid Central Andes Under Climate Change Scenario
    geosciences Review Debris Flows Occurrence in the Semiarid Central Andes under Climate Change Scenario Stella M. Moreiras 1,2,* , Sergio A. Sepúlveda 3,4 , Mariana Correas-González 1 , Carolina Lauro 1 , Iván Vergara 5, Pilar Jeanneret 1, Sebastián Junquera-Torrado 1 , Jaime G. Cuevas 6, Antonio Maldonado 6,7, José L. Antinao 8 and Marisol Lara 3 1 Instituto Argentino de Nivología, Glaciología & Ciencias Ambientales, CONICET, Mendoza M5500, Argentina; [email protected] (M.C.-G.); [email protected] (C.L.); [email protected] (P.J.); [email protected] (S.J.-T.) 2 Catedra de Edafología, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza M5528AHB, Argentina 3 Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8320000, Chile; [email protected] (S.A.S.); [email protected] (M.L.) 4 Instituto de Ciencias de la Ingeniería, Universidad de O0Higgins, Rancagua 2820000, Chile 5 Grupo de Estudios Ambientales–IPATEC, San Carlos de Bariloche 8400, Argentina; [email protected] 6 Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad de La Serena, Coquimbo 1780000, Chile; [email protected] (J.G.C.); [email protected] (A.M.) 7 Departamento de Biología Marina, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1780000, Chile 8 Indiana Geological and Water Survey, Indiana University, Bloomington, IN 47404, USA; [email protected] * Correspondence: [email protected]; Tel.: +54-26-1524-4256 Citation: Moreiras, S.M.; Sepúlveda, Abstract: This review paper compiles research related to debris flows and hyperconcentrated flows S.A.; Correas-González, M.; Lauro, C.; in the central Andes (30◦–33◦ S), updating the knowledge of these phenomena in this semiarid region.
    [Show full text]
  • Uspallata, Mendoza, Argentina) Revista De La Sociedad Entomológica Argentina, Vol
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 [email protected] Sociedad Entomológica Argentina Argentina SCHEIBLER, Erica E.; POZO, Viviana; PAGGI, Analia C. Distribución espacio-temporal de larvas de Chironomidae (Diptera) en un arroyo andino (Uspallata, Mendoza, Argentina) Revista de la Sociedad Entomológica Argentina, vol. 67, núm. 3-4, 2008, pp. 45-58 Sociedad Entomológica Argentina Buenos Aires, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=322028483005 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0373-5680 Rev. Soc. Entomol. Argent. 67 (3-4): 45-58, 2008 45 Distribución espacio-temporal de larvas de Chironomidae (Diptera) en un arroyo andino (Uspallata, Mendoza, Argentina) SCHEIBLER, Erica E.*, Viviana POZO* y Analia C. PAGGI** * Laboratorio de Entomología, Instituto Argentino de las Zonas Áridas (IADIZA, CCT CONICET- Mendoza), C.C. 507, Mendoza, Argentina; e-mail: [email protected]; [email protected] ** Instituto de Limnología “Dr. R.A.Ringuelet” (ILPLA, CCT La Plata, CONICET), C.C. 712, 1900 La Plata, Buenos Aires, Argentina; e-mail: [email protected] Spatial and temporal distribution of larvae of Chironomidae (Diptera) in an Andean stream (Uspallata, Mendoza, Argentina) ABSTRACT. A study was conducted on the larval composition of the family Chironomidae in an Andean stream in Uspallata locality (Mendoza, Argentina). Seasonal samplings were performed over a full annual cycle (2001/2002) at three sites, along an altitudinal gradient.
    [Show full text]
  • DESCRIPTION of PIKELINIA USPALLATA SP. N., from MENDOZA, ARGENTINA (ARANEAE, FILISTATIDAE) Cristian J. Grismado
    ARTÍCULO: DESCRIPTION OF PIKELINIA USPALLATA SP. N., FROM MENDOZA, ARGENTINA (ARANEAE, FILISTATIDAE) Cristian J. Grismado Abstract: Pikelinia uspallata sp. n. (Araneae: Filistatidae: Prithinae), is described from Mendoza Province, Argentina. Genitalic features suggest a close relationship with the other high Andean species of western and northwestern Argentina. New records of P. colloncura Ramírez & Grismado and P. ticucho Ramírez & Grismado are provided. Variability on the male clasping structures on second legs is reported for P. ticucho. Key words: Araneae, Filistatidae, Pikelinia, new species, Argentina. Taxonomy: Pikelinia uspallata sp. n. Descripción de Pikelinia uspallata sp. n., de Mendoza, Argentina (Araneae, ARTÍCULO: Filistatidae) Description of Pikelinia uspallata Resumen: sp. n., from Mendoza, Argentina Pikelinia uspallata sp. n. (Araneae: Filistatidae: Prithinae) es descripta de la provincia (Araneae, Filistatidae) de Mendoza, Argentina. Sus características genitales sugieren un cercano parentesco con las otras especies altoandinas del oeste y noroeste de Argentina. Se proporcionan Cristian J. Grismado nuevos registros para P. colloncura Ramírez & Grismado y para P. ticucho Ramírez & División Aracnología, Museo Grismado. Se reporta variabilidad en las estructuras de traba de las segundas patas Argentino de Ciencias Naturales para P. ticucho. “Bernardino Rivadavia” Palabras clave: Araneae, Filistatidae, Pikelinia, nueva especie, Argentina. Av. Angel Gallardo 470 Taxonomía: Pikelinia uspallata sp. n. C1405DJR – Buenos Aires, Argentina Tel: 54-11-4982-8370, Fax: 54-11-4982-4494 [email protected] Introduction Revista Ibérica de Aracnología The filistatids are sedentary cribellate spiders, worlwide distributed and with a ISSN: 1576 - 9518. rather uniform somatic morphology. This family represents one of the most basal Dep. Legal: Z-2656-2000. branches of the Haplogynae (Platnick et al., 1991).
    [Show full text]
  • Aconcagua Expedition Trip Notes 2021/22
    ACONCAGUA 6,962M / 22,841FT 2021/22 EXPEDITION TRIP NOTES ACONCAGUA EXPEDITION NOTES 2021/22 EXPEDITION DETAILS Dates: November 29 to December 18, 2021 January 3–22, 2022 Duration: 20 days Departure: ex Mendoza, Argentina Price: US$6,350 per person A successful team prepares to descend the mountain. Photo: Suze Kelly Aconcagua, the “Sentinel of Stone”, is the highest peak outside of the Himalayas. Located in western Argentina, the heart of the Central Andes, it is South America’s highest peak and one of the much sought after Seven Summits. An ascent of this eminent Andean Peak is ideal for on the only available summit day. Our climbing those wishing to experience high altitude expedition route traverses over the mountain making best use mountaineering and is often undertaken as a preparation of the time available and allowing for a faster exit climb for the big mountains of the Himalayas. via the shorter Horcones Valley, whilst giving us the opportunity to appreciate the relative remoteness of The Adventure Consultants Aconcagua expedition the Vacas Valley on the approach. provides the very best opportunity for you to climb this lofty mountain in an environment that Unlike most of the operators on Aconcagua, we provide is properly managed to give you the best chance a client focused expedition that is geared towards to succeed in safety and relative comfort. You will giving you the maximum opportunity of succeeding benefit from our many years of experience on this on this peak. Our success rate is an indication of the and other high mountains across the globe and our emphasis we place on your well-being and a successful highly qualified guides will offer you an experience outcome for you.
    [Show full text]
  • Observations of Large Stratospheric Ozone Variations Over Mendoza, Argentina C
    Observations of large stratospheric ozone variations over Mendoza, Argentina C. Puliafito, S. Enrique Puliafito, G. K. Hartmann To cite this version: C. Puliafito, S. Enrique Puliafito, G. K. Hartmann. Observations of large stratospheric ozonevari- ations over Mendoza, Argentina. Atmospheric Chemistry and Physics Discussions, European Geo- sciences Union, 2002, 2 (3), pp.507-523. hal-00300833 HAL Id: hal-00300833 https://hal.archives-ouvertes.fr/hal-00300833 Submitted on 2 May 2002 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Atmos. Chem. Phys. Discuss., 2, 507–523, 2002 Atmospheric ACPD www.atmos-chem-phys.org/acpd/2/507/ Chemistry c European Geophysical Society 2002 and Physics 2, 507–523, 2002 Discussions Stratospheric ozone variations over Mendoza, Argentina C. Puliafito et al. Observations of large stratospheric ozone Title Page variations over Mendoza, Argentina Abstract Introduction Conclusions References C. Puliafito1,2, S. Enrique Puliafito1,2, and G. K. Hartmann3 Tables Figures 1Universidad de Mendoza – Instituto para el Estudio del Medio Ambiente, Mendoza, Argentina 2CONICET, Perito Moreno 2397, (5500) Godoy Cruz, Mendoza, Argentina J I 3Max Planck Institut fur¨ Aeronomie, Max Planck Str. 2, D-37191 Katlenburg-Lindau, Germany J I Received: 6 February 2002 – Accepted: 17 April 2002 – Published: 3 May 2002 Back Close Correspondence to: C.
    [Show full text]
  • Introduction
    Altitude 6,959m (22,830ft) / 23 Days / Grade 1C INTRODUCTION Aconcagua is the highest mountain in both the western and southern hemispheres – the If you wish to discuss any sole remaining quadrant being given over to the Himalaya. It's also the second highest aspect of the expedition, of the illustrious Seven Summits. Of the highest points on each of the world’s continents, please contact us by only Everest gives a higher vantage point. However, despite all the impressive statistics, telephone: you can summit Aconcagua without any previous roped-climbing experience – but you will need previous experience of high altitude trekking or mountaineering and will need +44 (0) 114 276 3322 to add lots of hill-walking/hiking closer to home too before you head off to Argentina. Alternatively, please email Aconcagua lies entirely within Argentina, although close to the border with Chile, the us via our website: spine of the Andes dividing the continent between these nations. The usual approach to www.jagged-globe.co.uk Aconcagua is from the south following the valley of the Rio Horcones. This circles the western flank of the mountain and arrives at the Plaza de Mulas base camp at 4,365m. We visit the South Face on the way. Our route to the summit starts from Plaza de Mulas, where we spend several nights and days as we acclimatise. To improve 1 acclimatisation, and for the fun of it, we climb a satellite of Aconcagua, Bonete Peak (5,004m). The “normal route” from the Horcones Valley gives the most trusted means of reaching the top.
    [Show full text]