Siderocapsa Major-- Fact Or Artifact? Ray W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co. -
CUED Phd and Mphil Thesis Classes
High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice. -
Aquabacterium Gen. Nov., with Description of Aquabacterium Citratiphilum Sp
International Journal of Systematic Bacteriology (1999), 49, 769-777 Printed in Great Britain Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system Sibylle Kalmbach,’ Werner Manz,’ Jorg Wecke2 and Ulrich Szewzyk’ Author for correspondence : Werner Manz. Tel : + 49 30 3 14 25589. Fax : + 49 30 3 14 7346 1. e-mail : [email protected]. tu-berlin.de 1 Tech nisc he U nive rsit ;it Three bacterial strains isolated from biofilms of the Berlin drinking water Berlin, lnstitut fur system were characterized with respect to their morphological and Tec hn ischen Umweltschutz, Fachgebiet physiological properties and their taxonomic position. Phenotypically, the Okologie der bacteria investigated were motile, Gram-negative rods, oxidase-positive and Mikroorganismen,D-l 0587 catalase-negative, and contained polyalkanoates and polyphosphate as Berlin, Germany storage polymers. They displayed a microaerophilic growth behaviour and 2 Robert Koch-lnstitut, used oxygen and nitrate as electron acceptors, but not nitrite, chlorate, sulfate Nordufer 20, D-13353 Berlin, Germany or ferric iron. The substrates metabolized included a broad range of organic acids but no carbohydrates at all. The three species can be distinguished from each other by their substrate utilization, ability to hydrolyse urea and casein, cellular protein patterns and growth on nutrient-rich media as well as their temperature, pH and NaCl tolerances. Phylogenetic analysis, based on 165 rRNA gene sequence comparison, revealed that the isolates are affiliated to the /I1 -subclass of Proteobacteria. The isolates constitute three new species with internal levels of DNA relatedness ranging from 44.9 to 51*3O/0. -
Contamination in Daphnia Culture
Contamination in Daphnia Culture Samples: A5, B5, C6, F2, F6, G4 Fig. 1 Phylogenetic analysis (PhyML v.3.0.1) of the 6 samples. MSA: 10 20 30 40 50 60 70 80 90 100 ----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----| Con AGAGTTTGATCCTGGCTCAGATTGAACGCTGGCGGTATGCCTTACACATGCAAGTCGAACGGTAGAGGgGCAACCCTtGAG--n-AGTGGCGAACGGGTG A5 .................................................................................----............... F6 .................................................................................----...............Primer fD1 C6 .................................................................................----............... G4 ....................................................................A....T...C...----............... F2 .....................AC............C.G..T.A..................------------...CGC.AGGGG......AG....... B5 ....................GG.............CG...T.A.G................--------...GT.T.C.GACTGT.......C....... 110 120 130 140 150 160 170 180 190 200 ----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----|----:----| Con AGTAATACATCGnGAACGTGCCCAGTCGTGGGGGATAACGTAGCGAAAGCTACGCTAATACCGCATACGAnnnnnnnnCCTGAGGGTGAAAGCGGGGGAt A5 ............-.........................................................--------...................... F6 ............-.........................................................--------...................... C6 ............-.........................................................--------..................... -
Leptothrix Cholodnii
This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Nano 2020, 14, 5288−5297 www.acsnano.org Polyfunctional Nanofibril Appendages Mediate Attachment, Filamentation, and Filament Adaptability in Leptothrix cholodnii ‡ ⊥ † ⊥ ∇ † ‡ § Tatsuki Kunoh,*, , Kana Morinaga, , Shinya Sugimoto, Shun Miyazaki, Masanori Toyofuku, , ∥ ‡ § ‡ § Kenji Iwasaki, Nobuhiko Nomura,*, , and Andrew S. Utada*, , ‡ † § ∥ Faculty and Graduate School of Life and Environmental Sciences, Microbiology Research Center for Sustainability, and Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan ∇ Department of Bacteriology and Jikei Center for Biofilm Research and Technology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan *S Supporting Information ABSTRACT: Leptothrix is a species of Fe/Mn-oxidizing bacteria known to form long filaments composed of chains of cells that eventually produce a rigid tube surrounding the filament. Prior to the formation of this brittle microtube, Leptothrix cells secrete hair-like structures from the cell surface, called nanofibrils, which develop into a soft sheath that surrounds the filament. To clarify the role of nanofibrils in filament formation in L. cholodnii SP-6, we analyze the behavior of individual cells and multicellular filaments in high-aspect ratio microfluidic chambers using time-lapse and intermittent in situ fluorescent staining of nanofibrils, complemented with atmospheric scanning electron microscopy. We show that in SP-6 nanofibrils are important for attachment and their distribution on young filaments post-attachment is correlated to the directionality of filament elongation. -
Mississippi River Sphaerotilus Natans Total Maximum Daily Load
This page is blank to facilitate double-sided printing. Mississippi River Sphaerotilus natans Total Maximum Daily Load TABLE OF CONTENTS 1 Summary..................................................................................................................................1 2 Mississippi River, Description and History ......................................................................5 2.1 Mississippi River (IA 01-NEM-0010_4)........................................................................ 6 2.2 The Watershed (IA 01-NEM-0010_4)............................................................................ 8 3 TMDL for Sphaerotilus natans ............................................................................................11 3.1 Problem Identification.................................................................................................. 11 3.1.1 Impaired Beneficial Uses and Applicable Water Quality Standards.................... 11 3.1.1.1 Interpreting Mississippi River Impaired Segment Water Quality Data............ 12 3.1.2 Key Sources of Data ............................................................................................. 12 3.2 TMDL Target................................................................................................................ 13 3.3 Pollution Source Assessment........................................................................................ 13 3.3.1 Identification of Pollution Sources ....................................................................... 13 3.3.1.1 -
Sparus Aurata) and Sea Bass (Dicentrarchus Labrax)
Gut bacterial communities in geographically distant populations of farmed sea bream (Sparus aurata) and sea bass (Dicentrarchus labrax) Eleni Nikouli1, Alexandra Meziti1, Efthimia Antonopoulou2, Eleni Mente1, Konstantinos Ar. Kormas1* 1 Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece 2 Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece * Corresponding author; Tel.: +30-242-109-3082, Fax: +30-242109-3157, E-mail: [email protected], [email protected] Supplementary material 1 Table S1. Body weight of the Sparus aurata and Dicentrarchus labrax individuals used in this study. Chania Chios Igoumenitsa Yaltra Atalanti Sample Body weight S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax S. aurata D. labrax (g) 1 359 378 558 420 433 448 481 346 260 785 2 355 294 579 442 493 556 516 397 240 340 3 376 275 468 554 450 464 540 415 440 500 4 392 395 530 460 440 483 492 493 365 860 5 420 362 483 479 542 492 406 995 6 521 505 506 461 Mean 380.40 340.80 523.17 476.67 471.60 487.75 504.50 419.67 326.25 696.00 SEs 11.89 23.76 17.36 19.56 20.46 23.85 8.68 21.00 46.79 120.29 2 Table S2. Ingredients of the diets used at the time of sampling. Ingredient Sparus aurata Dicentrarchus labrax (6 mm; 350-450 g)** (6 mm; 450-800 g)** Crude proteins (%) 42 – 44 37 – 39 Crude lipids (%) 19 – 21 20 – 22 Nitrogen free extract (NFE) (%) 20 – 26 19 – 25 Crude cellulose (%) 1 – 3 2 – 4 Ash (%) 5.8 – 7.8 6.2 – 8.2 Total P (%) 0.7 – 0.9 0.8 – 1.0 Gross energy (MJ/Kg) 21.5 – 23.5 20.6 – 22.6 Classical digestible energy* (MJ/Kg) 19.5 18.9 Added vitamin D3 (I.U./Kg) 500 500 Added vitamin E (I.U./Kg) 180 100 Added vitamin C (I.U./Kg) 250 100 Feeding rate (%), i.e. -
Understanding the Molecular Mechanism of Manganese
UNDERSTANDING THE MOLECULAR MECHANISM OF MANGANESE OXIDATION IN LEPTOTHRIX DISCOPHORA SS-1 A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Daniela Bocioaga August, 2013 © Daniela Bocioaga Understanding the molecular mechanism of Mn oxidation in Leptothrix discophora SS-1 Daniela Bocioaga, Ph.D. Cornell University 2013 The purpose of this research is to understand the molecular mechanism of manganese oxidation in Leptothrix discophora SS1 which until now has been hampered by the lack of a genetic system. Leptothrix discophora SS1 is an important model organism that has been used to study the mechanism and consequences of biological manganese oxidation. In this study we report on the development of a genetic system for L. discophora. First, the antibiotic sensitivity of L. discophora was characterized and a procedure for transformation with exogenous DNA via conjugation was developed and optimized, resulting in a maximum transfer frequency of 5.2*10-1 (transconjugant/donor). Genetic manipulation of Leptothrix was demonstrated by disrupting pyrF via chromosomal integration of a plasmid with an R6Kɣ ori through homologous recombination. This resulted in resistance to fluoroorotidine which was abolished by complementation with an ectopically expressed copy of pyrF cloned into pBBR1MCS-5. This genetic system was further used to disrupt five genes in Leptothrix discophora SS1, which were considered to be the best candidates for the enzyme encoding the manganese oxidizing activity in this bacterium. All of the disrupted mutants continued to oxidize manganese, suggesting that these genes may not play a role in manganese oxidation, as hypothesized. -
Fluctuation Analysis of Oxidation-Reduction Potential in Circumneutral Ph Iron-Oxidizing Microbial Systems
Fluctuation Analysis of Oxidation-Reduction Potential in Circumneutral pH Iron-Oxidizing Microbial Systems by Allison Marie Leigh Enright A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Earth Sciences University of Toronto © Copyright by Allison M.L. Enright 2015 Fluctuation Analysis of Oxidation-Reduction Potential in Circumneutral pH Iron-Oxidizing Microbial Systems Allison M.L. Enright Doctor of Philosophy Department of Earth Sciences University of Toronto 2015 Abstract The goal of this thesis was to assess the utility of using small-scale fluctuations in oxidation- reduction (redox) potential to distinguish microbial from chemical iron oxidation. Fluctuations in potential arise from the motion of particles in a fluid; measuring fluctuations is therefore a system- scale observable property of micro-scale chemical behaviour, as such particle motion constitutes diffusion. Fluctuations are described by the strength of their correlation, as measured by scaling exponents. A method for the calculation of scaling-exponents of long-range correlation in redox potential measurements was developed, including new instrumentation and the modification of an existing physiological processing algorithm for use with environmental microbiological data sets. Steady-state biological and chemical systems were compared, and scaling exponents calculated from each system were found to differ significantly. In a final study, a series of microcosms were used to determine the relationship between scaling exponent, measuring correlation strength, and oxidation rate. The biological systems are governed by the rate of reaction, while the chemical systems appear to be diffusion-controlled. Because in these systems, Fe(II) is a metabolite, redox potential can then be interpreted as a physically-constrained proxy for metabolic activity. -
Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Summer 2020 Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon Amanda Stromecki [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Biology Commons Recommended Citation Stromecki, Amanda, "Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon" (2020). WWU Graduate School Collection. 969. https://cedar.wwu.edu/wwuet/969 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon By Amanda Stromecki Accepted in Partial Completion of the Requirements for the Degree Master of Science ADVISORY COMMITTEE Dr. Craig Moyer, Chair Dr. Shawn Arellano Dr. Dietmar Schwarz GRADUATE SCHOOL David L. Patrick, Dean Master’s Thesis In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non- exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files. -
Prevalence of Broad-Host-Range Lytic Bacteriophages of Sphaerotilus Natans, Escherichia Coli, and Pseudomonas Aeruginosa
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Microbiology Papers in the Biological Sciences 2-1-1998 Prevalence of Broad-Host-Range Lytic Bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa Ellen C. Jensen College of Saint Benedict, Saint John’s University, Collegeville, Minnesota, [email protected] Holly S. Schrader University of Nebraska-Lincoln Brenda Rieland College of Saint Benedict, Saint John’s University, Collegeville, Minnesota Thomas L. Thompson University of Nebraska-Lincoln Kit W. Lee University of Nebraska-Lincoln See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/bioscimicro Part of the Microbiology Commons Jensen, Ellen C.; Schrader, Holly S.; Rieland, Brenda; Thompson, Thomas L.; Lee, Kit W.; Nickerson, Kenneth W.; and Kokjohn, Tyler A., "Prevalence of Broad-Host-Range Lytic Bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa" (1998). Papers in Microbiology. 33. https://digitalcommons.unl.edu/bioscimicro/33 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Microbiology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Ellen C. Jensen, Holly S. Schrader, Brenda Rieland, Thomas L. Thompson, Kit W. Lee, Kenneth W. Nickerson, and Tyler A. Kokjohn This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ bioscimicro/33 APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Feb. 1998, p. 575–580 Vol. 64, No. 2 0099-2240/98/$04.0010 Copyright © 1998, American Society for Microbiology Prevalence of Broad-Host-Range Lytic Bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa ELLEN C. -
Isolation and Characterisation of Klebsiella Phages for Phage Therapy
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.05.179689; this version posted November 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Isolation and characterisation of Klebsiella phages for phage therapy Eleanor Townsend1, Lucy Kelly1, Lucy Gannon2, George Muscatt1, Rhys Dunstan3, Slawomir Michniewski1, Hari Sapkota2, Saija J Kiljunen4, Anna Kolsi4, Mikael Skurnik4,5, Trevor Lithgow3, Andrew D. Millard2, Eleanor Jameson1 1School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL 2Department of Genetics, University of Leicester, Leicester, LE1 7RH 3Monash Biomedicine Discovery Institute, Monash University, 3800 Melbourne, Australia 4Department of Bacteriology and Immunology, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014, Finland 5Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00290 Helsinki, Finland Corresponding author: Eleanor Jameson, [email protected], M130, School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL Keywords: Klebsiella, bacteriophage, phage, phage therapy, antimicrobial resistance, antibiotics, nosocomial infection, characterisation, virulence bioRxiv preprint doi: https://doi.org/10.1101/2020.07.05.179689; this version posted November 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Klebsiella is a clinically important pathogen causing a variety of antimicrobial resistant infections in both community and nosocomial settings, particularly pneumonia, urinary tract infection and sepsis.