Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Summer 2020 Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon Amanda Stromecki [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Biology Commons Recommended Citation Stromecki, Amanda, "Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon" (2020). WWU Graduate School Collection. 969. https://cedar.wwu.edu/wwuet/969 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon By Amanda Stromecki Accepted in Partial Completion of the Requirements for the Degree Master of Science ADVISORY COMMITTEE Dr. Craig Moyer, Chair Dr. Shawn Arellano Dr. Dietmar Schwarz GRADUATE SCHOOL David L. Patrick, Dean Master’s Thesis In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non- exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permissions from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books. Library users are granted permission for individual, research and non-commercial reproduction of this work for educational purposes only. Any further digital posting of this document requires specific permission from the author. Any copying or publication of this thesis for commercial purposes, or for financial gain, is not allowed without my written permission. Amanda Stromecki August 1, 2020 Community Structure of Benthic Microbial Mats at Hydrothermal Springs in Crater Lake, Oregon A Thesis Presented to The Faculty of Western Washington University In Partial Fulfillment Of the Requirements for the Degree Master of Science by Amanda Stromecki August 2020 Abstract Crater Lake, Oregon is an oligotrophic freshwater caldera lake fed by thermally and chemically- enriched hydrothermal springs. These vents distinguish Crater Lake from other freshwater systems and provide a unique ecosystem for study. This study examines the microbial community structure of hydrothermal mat communities found in the bottom of Crater Lake. Small subunit rRNA gene amplicon sequencing from eight microbial mats was used to assess community structure. These findings revealed a relatively homogeneous, yet diverse bacterial community. High alpha diversity and low beta diversity indicates that these communities that are likely fueled by homogeneous and consistent hydrothermal fluids. An examination of autotrophic taxa abundance revealed the potential importance of reduced iron and sulfur inputs to the primary productivity of these mats. Chemoautotrophic potential within the mats was dominated by iron oxidation from Gallionella and Mariprofundus and by sulfur oxidation from Sulfuricurvum and Thiobacillus with an additional contribution of nitrite oxidation from Nitrospira. These data link the importance of the detected autotrophic metabolisms driven by fluids derived from benthic hydrothermal springs to Crater Lake’s entire lentic ecosystem. iv Acknowledgments I am very grateful for those who have contributed to and supported my graduate education during the past three years. First, I would like to thank my advisor, Dr. Craig Moyer, for the opportunity to conduct research in his lab and for sharing his insight, ideas, and positive attitude. I would like to extend thanks to my graduate committee, Dr. Shawn Arellano and Dr. Dietmar Schwarz, for their contributions and counsel. I would also like to thank Dr. Marion Brodhagen and Dr. Adam Moles for their support and mentorship in both teaching and microbiology research. Dr. Benjamin Miner and Dr. Merrill Peterson have also been incredibly helpful throughout my graduate career at Western, and I am very grateful to them. I would like to express my gratitude to Kendra Bradford and Joe Somera who I worked closely with for several years. I am very thankful for my funding, provided by WWU’s Office of Research and Sponsored Programs, biology department, and the Fraser Family Endowment. It has been a privilege to be a part of the biology department, and I am extremely grateful to all the faculty and staff. I could not have completed my thesis without the friendship and support of my graduate cohort: Nolan Exe, Britta Fast, Holly Flann, Jake Lawlor, Katie Mills-Orcutt, Caitlin O’Brien, Samantha Ness Ernest, and Weston Staubus. I am also extremely grateful to my fellow Moyer lab members: Lindsey Benedict, Jaykish Patel, Lilja Strang, and Christina Turner, among others, who have shared their expertise and entertainment. I would lastly like to thank my friends and family for believing in me and keeping me motivated: you know who you are and I will always be grateful for you. A final thanks to Western Washington University and all of the privileges and opportunities I have had to be able to grow myself in this meaningful way. v Table of Contents Abstract .............................................................................................................................. iv Acknowledgements ..............................................................................................................v List of Tables .................................................................................................................... vii List of Figures ................................................................................................................... vii Introduction ..........................................................................................................................1 Materials and Methods .........................................................................................................5 Results ..................................................................................................................................9 Discussion ..........................................................................................................................13 Tables and Figures .............................................................................................................21 References ..........................................................................................................................30 Supplementary Materials ...................................................................................................34 vi List of Tables Table 1. Description of sample locations. Data from Collier et al., 1991. Table 2. Geochemical profiles of mats and pool fluids. Data from Collier et al., 1991. Table 3. Zetaproteobacteria phylotype and relative abundance for all samples representing the total Crater Lake microbial community. All Zetaproteobacteria sequences used represent greater than 10 reads per the total Crater Lake community. Zetaproteobacteria phylotype determined by ZetaHunter. Table 4. Sequencing information and diversity metrics. Supplementary Table 1. Taxonomy and metabolic potential for abundant OTUs representing > 1% total reads per sample in at least one sample. Supplementary Table 2. Taxonomy and metabolic potential for abundant OTUs representing > 2% total reads per sample in at least one sample. Supplementary Table 3. Diversity metrics of Lō‘ihi Seamount and Mariana Arc and back-arc. Adapted from Duchinski et al., 2019. vii List of Figures Figure 1. Shaded relief of surrounds and bathymetric map of the floor of Crater Lake, Oregon. Surrounding terrain from USGS 10 m digital elevation model (DEM). DEM illuminated from 225° azimuth, 45° elevation. Colored region is the lake floor (±1 m resolution) whereas the gray region is the surrounding land. The distance across the width of the lake is approximately 9 km (5.6 miles). The reds and yellows show the shallower depths of the lake, whereas the greens and blues show the deeper depths. Adapted from Bacon et al., 2002. Figure 2. Representative photos of mat collection sites: (A) “Brain mat” bacterial growth west of Llao’s Bath within the Llao’s Bath/Brain Mat complex. Field of view is approximately three meters across; (B) Elongated bacterial mat in the Palisades Point area; (C) A rill within the Palisades Point area. This channel or rill flow downhill from its origin under the boulder (upper part of the photo). Images courtesy of Collier et al., 1991. Figure 3. Community structure of eight benthic microbial mats from hydrothermal springs in Crater Lake, Oregon, at various taxonomic levels: (A) Community structure of abundant taxa representing > 1% total reads/sample in at least one sample at the phylum level. Phyla < 1% included as separate taxon; (B) Community structure of abundant taxa representing > 2% total reads/sample in
Recommended publications
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Aquabacterium Gen. Nov., with Description of Aquabacterium Citratiphilum Sp
    International Journal of Systematic Bacteriology (1999), 49, 769-777 Printed in Great Britain Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system Sibylle Kalmbach,’ Werner Manz,’ Jorg Wecke2 and Ulrich Szewzyk’ Author for correspondence : Werner Manz. Tel : + 49 30 3 14 25589. Fax : + 49 30 3 14 7346 1. e-mail : [email protected]. tu-berlin.de 1 Tech nisc he U nive rsit ;it Three bacterial strains isolated from biofilms of the Berlin drinking water Berlin, lnstitut fur system were characterized with respect to their morphological and Tec hn ischen Umweltschutz, Fachgebiet physiological properties and their taxonomic position. Phenotypically, the Okologie der bacteria investigated were motile, Gram-negative rods, oxidase-positive and Mikroorganismen,D-l 0587 catalase-negative, and contained polyalkanoates and polyphosphate as Berlin, Germany storage polymers. They displayed a microaerophilic growth behaviour and 2 Robert Koch-lnstitut, used oxygen and nitrate as electron acceptors, but not nitrite, chlorate, sulfate Nordufer 20, D-13353 Berlin, Germany or ferric iron. The substrates metabolized included a broad range of organic acids but no carbohydrates at all. The three species can be distinguished from each other by their substrate utilization, ability to hydrolyse urea and casein, cellular protein patterns and growth on nutrient-rich media as well as their temperature, pH and NaCl tolerances. Phylogenetic analysis, based on 165 rRNA gene sequence comparison, revealed that the isolates are affiliated to the /I1 -subclass of Proteobacteria. The isolates constitute three new species with internal levels of DNA relatedness ranging from 44.9 to 51*3O/0.
    [Show full text]
  • IB HL Biology: Ecology Review Fall 2017 Populations 1. Define the Following Terms Associated with Population Ecology; Population and Carrying Capacity
    IB HL Biology: Ecology Review Fall 2017 Populations 1. Define the following terms associated with population ecology; population and carrying capacity. 2. What processes contribute to changes in population size? 3. What are some factors which can increase the carrying capacity of a population? Decrease? 4. What is quadrat sampling? When would it be used? Communities 5. Define the following terms; community, autotroph, heterotroph, producer, primary consumer, secondary consumer, detritivore and saprotroph. 6. What is the initial energy source for all communities? 7. Be able to read food webs and determine the trophic level of different species. 8. Choose 2 regions below and determine the Simpson’s Diversity Index value for these regions. Which region is more diverse? A. An area of the Black Forest in Germany contains 134 pitch pines, 24 douglas firs, and 53 red pines. B. A meadow contains 1532 chestnut oaks, 342 black cherry trees, 12 white ash trees, and 1022 yellow birches. C. You school science classroom contains 12 beetles, 34 termites, 84 ants, 93 fleas, and 1 butterfly. D. An African park contains 15 lions, 94 giraffes, 1000 wildebeests, 50 elephants, and 5 hyenas. Choose more areas if you need more practice. 9. What is a keystone species? 10. Distinguish between primary and secondary succession. Ecosystems 11. What is an ecosystem? 12. Explain the 10% rule of energy transfer. How is the energy lost between trophic levels? 13. Review the Carbon Cycle. What are the main sources of carbon dioxide on earth? 14. Review the Nitrogen Cycle. 15. Distinguish between Gross Primary Productivity and Net Primary Productivity.
    [Show full text]
  • Chapter 11 – PROKARYOTES: Survey of the Bacteria & Archaea
    Chapter 11 – PROKARYOTES: Survey of the Bacteria & Archaea 1. The Bacteria 2. The Archaea Important Metabolic Terms Oxygen tolerance/usage: aerobic – requires or can use oxygen (O2) anaerobic – does not require or cannot tolerate O2 Energy usage: autotroph – uses CO2 as a carbon source • photoautotroph – uses light as an energy source • chemoautotroph – gets energy from inorganic mol. heterotroph – requires an organic carbon source • chemoheterotroph – gets energy & carbon from organic molecules …more Important Terms Facultative vs Obligate: facultative – “able to, but not requiring” e.g. • facultative anaerobes – can survive w/ or w/o O2 obligate – “absolutely requires” e.g. • obligate anaerobes – cannot tolerate O2 • obligate intracellular parasite – can only survive within a host cell The 2 Prokaryotic Domains Overview of the Bacterial Domain We will look at examples from several bacterial phyla grouped largely based on rRNA (ribotyping): Gram+ bacteria • Firmicutes (low G+C), Actinobacteria (high G+C) Proteobacteria (Gram- heterotrophs mainly) Gram- nonproteobacteria (photoautotrophs) Chlamydiae (no peptidoglycan in cell walls) Spirochaetes (coiled due to axial filaments) Bacteroides (mostly anaerobic) 1. The Gram+ Bacteria Gram+ Bacteria The Gram+ bacteria are found in 2 different phyla: Firmicutes • low G+C content (usually less than 50%) • many common pathogens Actinobacteria • high G+C content (greater than 50%) • characterized by branching filaments Firmicutes Characteristics associated with this phylum: • low G+C Gram+ bacteria
    [Show full text]
  • Leptothrix Cholodnii
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Nano 2020, 14, 5288−5297 www.acsnano.org Polyfunctional Nanofibril Appendages Mediate Attachment, Filamentation, and Filament Adaptability in Leptothrix cholodnii ‡ ⊥ † ⊥ ∇ † ‡ § Tatsuki Kunoh,*, , Kana Morinaga, , Shinya Sugimoto, Shun Miyazaki, Masanori Toyofuku, , ∥ ‡ § ‡ § Kenji Iwasaki, Nobuhiko Nomura,*, , and Andrew S. Utada*, , ‡ † § ∥ Faculty and Graduate School of Life and Environmental Sciences, Microbiology Research Center for Sustainability, and Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan ∇ Department of Bacteriology and Jikei Center for Biofilm Research and Technology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan *S Supporting Information ABSTRACT: Leptothrix is a species of Fe/Mn-oxidizing bacteria known to form long filaments composed of chains of cells that eventually produce a rigid tube surrounding the filament. Prior to the formation of this brittle microtube, Leptothrix cells secrete hair-like structures from the cell surface, called nanofibrils, which develop into a soft sheath that surrounds the filament. To clarify the role of nanofibrils in filament formation in L. cholodnii SP-6, we analyze the behavior of individual cells and multicellular filaments in high-aspect ratio microfluidic chambers using time-lapse and intermittent in situ fluorescent staining of nanofibrils, complemented with atmospheric scanning electron microscopy. We show that in SP-6 nanofibrils are important for attachment and their distribution on young filaments post-attachment is correlated to the directionality of filament elongation.
    [Show full text]
  • Principles of Ecology Section ●2 Flow of Energy in an Ecosystem
    chapter 2 Principles of Ecology section ●2 Flow of Energy in an Ecosystem -!). )DEA Before You Read Autotrophs capture energy, making it available for all If a pet had to survive without your care, how would its diet members of a food web. change? Write your ideas on the lines below. Read about how What You’ll Learn organisms get food and energy in their environment. ■ the fl ow of energy through an ecosystem ■ food chains, food webs, and pyramid models 3TUDY#OACH Read to Learn Make Flash Cards Make a fl ash card for each question Energy in an Ecosystem heading in this section. On the One way to study the interactions within an ecosystem is to back of the fl ash card, write the trace how energy fl ows through the system. All organisms are answer to the question. Use the classifi ed by the way they obtain energy. fl ash cards to review what you have learned. How do autotrophs obtain energy? All green plants and other organisms that produce their own food are the primary producers of food in an ecosystem. They are called autotrophs. An autotroph (AW tuh trohf) is an organism that captures energy from sunlight or inorganic substances to produce food. Autotrophs make energy available for all other organisms in the ecosystem. How do heterotrophs differ from autotrophs? A heterotroph (HE tuh roh trohf), also called a consumer, is an organism that obtains energy by consuming other organisms. A heterotroph that consumes only plants is an herbivore (HUR buh vor). Cows, rabbits, and grasshoppers are herbivores.
    [Show full text]
  • Determining the Contribution of Aquatic Autotrophs to the Carbon Budgets of Restored Wetlands in the Sacramento-San Joaquin River Delta
    Determining the Contribution of Aquatic Autotrophs to the Carbon Budgets of Restored Wetlands in the Sacramento-San Joaquin River Delta A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Environmental Sciences Ian J. UTZ College of Natural Resources, University of California, Berkeley August 6, 2016 Contents 1 Introduction 8 2 Background 11 2.1 Ecological Engineering . 12 2.2 Successional Community Ecology . 13 2.3 Food Web Interactions . 14 2.4 Plant Physiology . 15 2.5 Physical Habitat . 16 3 Methods 18 3.1 Locations . 18 3.2 Measurements . 22 3.2.1 Remotely sensing changes in aquatic primary produc- tivity using high resolution satellite imagery. 22 3.2.2 Remotely sensing changes in aquatic primary produc- tivity using continuous recording of changes in dis- solved oxygen and carbon dioxide. 23 3.2.3 Measuring physical habitat covariates to characterize environmental baselines. 24 3.2.4 Conducting field experiments and biomass estimation to attribute changes in dissolved oxygen to differences in the presence and intensity of aquatic primary pro- duction. 26 3.3 Treatments . 28 4 Results 32 4.1 Physical covariate measurements . 32 1 4.2 Remotely sensing changes in aquatic primary productivity us- ing high resolution satellite imagery. 34 4.3 Remotely sensing changes in aquatic primary productivity us- ing continuous recording of changes in dissolved oxygen, dis- solved carbon dioxide, and phenocam greenness data. 37 4.4 Conducting field experiments and biomass sampling to at- tribute changes in dissolved oxygen to differences in the pres- ence and intensity of aquatic primary production.
    [Show full text]
  • Bioenergetics Module a Anchor 3
    Bioenergetics Module A Anchor 3 Key Concepts: - ATP can easily release and store energy by breaking and re-forming the bonds between its phosphate groups. This characteristic of ATP makes it exceptionally useful as a basic energy source for all cells. - In the process of photosynthesis, plants convert the energy of sunlight into chemical energy stored in the bonds of carbohydrates. - Photosynthetic organisms capture energy from sunlight with pigments. - An electron carrier is a compound that can accept a pair of high-energy electrons and transfer them, along with most of their energy, to another molecule. - Photosynthesis uses the energy of sunlight to convert water and carbon dioxide into high- energy sugars and oxygen. - Among the most important factors that affect photosynthesis are temperature, light intensity, and the availability of water. - Organisms get the energy they need from food. - Cellular respiration is the process that releases energy from food in the presence of oxygen. - Photosynthesis removes carbon dioxide from the atmosphere and cellular respiration puts it back. Photosynthesis releases oxygen into the atmosphere, and cellular respiration uses that oxygen to release energy from food. - In the absence of oxygen, fermentation releases energy from food molecules by producing ATP. - For short, quick bursts of energy, the body uses ATP already in muscles as well as ATP made by lactic acid fermentation. - For exercise longer than about 90 seconds, cellular respiration is the only way to continue generating a supply of ATP. Vocabulary: ATP ADP autotroph heterotroph Photosynthesis pigment chlorophyll chloroplast Thylakoid stroma NADP+/NADPH calorie Cellular respiration aerobic anaerobic fermentation Glucose ATP and Energy Molecules: 1.
    [Show full text]
  • 7.014 Lectures 16 &17: the Biosphere & Carbon and Energy Metabolism
    MIT Department of Biology 7.014 Introductory Biology, Spring 2005 7.014 Lectures 16 &17: The Biosphere & Carbon and Energy Metabolism Simplified Summary of Microbial Metabolism The metabolism of different types of organisms drives the biogeochemical cycles of the biosphere. Balanced oxidation and reduction reactions keep the system from “running down”. All living organisms can be ordered into two groups1, autotrophs and heterotrophs, according to what they use as their carbon source. Within these groups the metabolism of organisms can be further classified according to their source of energy and electrons. Autotrophs: Those organisms get their energy from light (photoautotrophs) or reduced inorganic compounds (chemoautotrophs), and their carbon from CO2 through one of the following processes: Photosynthesis (aerobic) — Light energy used to reduce CO2 to organic carbon using H2O as a source of electrons. O2 evolved from splitting H2O. (Plants, algae, cyanobacteria) Bacterial Photosynthesis (anaerobic) — Light energy used to reduce CO2 to organic carbon (same as photosynthesis). H2S is used as the electron donor instead of H2O. (e.g. purple sulfur bacteria) Chemosynthesis (aerobic) — Energy from the oxidation of inorganic molecules is used to reduce CO2 to organic carbon (bacteria only). -2 e.g. sulfur oxidizing bacteria H2S → S → SO4 + - • nitrifying bacteria NH4 → NO2 → NO3 iron oxidizing bacteria Fe+2 → Fe+3 methane oxidizing bacteria (methanotrophs) CH4 → CO2 Heterotrophs: These organisms get their energy and carbon from organic compounds (supplied by autotrophs through the food web) through one or more of the following processes: Aerobic Respiration (aerobic) ⎯ Oxidation of organic compounds to CO2 and H2O, yielding energy for biological work.
    [Show full text]
  • Food Web Invasion
    8 EXPLORE { LESSON } Food Web Invasion Students develop a food web with ten native species and show the impact of two invasive species. OBJECTIVES List at least 10 connections Explain the impacts of Diagram a food web that between Great Lakes coastal changes on a Great Lakes coastal shows the interconnectedness of organisms in a food web habitat food web native species and two invasive species SUBJECT VOCABULARY MATERIALS TIME/DURATION autotroph Great Lakes food chain and Ecology decomposer food web images 90 minutes + food chain paper presentations food web pencils PREREQUISITE heterotroph drawing supplies SETTING #7: The Great Race invasive species Indoors for Survival primary producer Outdoors primary consumer quaternary consumer secondary consumer tertiary consumer This Great Lakes in My World 9-12 activity is aligned to the Common Core State Standards (as available). This alignment is available on your Great Lakes in My World 9-12 USB flash drive in the “Standards” folder and on-line at http://www.greatlakes.org/GLiMWstandards. background plants and animals that inhabit coastal habitats along the Great Lakes. There are many ways to model a food web. It INVASIVE SPECIES IN THE Great LAKES REGION is important that the information on organisms is accurate. Invasive species travel, often accidentally, from their native Students may be creative with this project – it might be a ecosystem to a new ecosystem. Waterborne commerce two-or three-dimensional model. It may take the shape of moves millions of tons of cargo annually through the Great a puzzle, a web, a mural, a graphic computer-design, or Lakes.
    [Show full text]
  • The Term Autotroph Refers to an Organism That
    The Term Autotroph Refers To An Organism That Cob is perfectively cerated after passionate Lucas demount his superhets perspectively. Orlando usually proverb perplexedly or keeks especially when transhuman Hagan predestinates secularly and joylessly. Erik never revaccinates any vampirism floodlighting hand-to-hand, is Vito bearable and investigative enough? An listener other that to form organic matter, these are dependent because autotrophs are often the presence of the adult and! Growth Terminology The two ways that microbial organisms can be classified are as autotrophs supply you own energy or as heterotrophs use the products. Renewal of that the term organism to an autotroph refers to the host. The terms autotroph and hetetotroph refer to C-source What team the. Autotrophic you are an exponential growth. The terms refer, an ecological roles to know the aphid colony, or from these structures except during their. Plants are always prime symbol of autotrophs using photosynthesis All other organisms must obtain use red food that comes from other organisms in the probably of fats. Green algae are another hint of organisms that often produce their own time via photosynthesis. Just beneath the reverse, this layer hence the forest is composed of small trees and shrubs. Inorganic materials as independent and by coupling process in or chemolithotrophs use sunlight into the term refers to refer to the same as energy from the highest tide. Click on autotrophs that an organism that meiosis was a source is termed a broad term refers to refer to talk about given volume, and attempt to. We believe you with reference to refer? Burton's Microbiology for standing Health Sciences.
    [Show full text]