Phylogeography and Genetic Diversity of a Widespread Old World Butterfly, Lampides Boeticus (Lepidoptera: Lycaenidae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeography and Genetic Diversity of a Widespread Old World Butterfly, Lampides Boeticus (Lepidoptera: Lycaenidae) Phylogeography and genetic diversity of a widespread Old World butterfly, Lampides boeticus (Lepidoptera: Lycaenidae) The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lohman, David J., Djunijanti Peggie, Naomi E. Pierce, and Rudolf Meier. 2008. Phylogeography and genetic diversity of a widespread Old World butterfly, (Lepidoptera: Lycaenidae). BMC Evolutionary Biology 8:301. Published Version doi:10.1186/1471-2148-8-301 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4459987 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP BMC Evolutionary Biology BioMed Central Research article Open Access Phylogeography and genetic diversity of a widespread Old World butterfly, Lampides boeticus (Lepidoptera: Lycaenidae) David J Lohman*1, Djunijanti Peggie2, Naomi E Pierce3 and Rudolf Meier1 Address: 1Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore, 2Division of Zoology, Research Centre for Biology-LIPI, Jl. Raya Jakarta-Bogor Km. 46, Cibinong-Bogor 16911, Indonesia and 3Museum of Comparative Zoology, Harvard University, 26 Oxford St., Cambridge, Massachusetts 02138, USA Email: David J Lohman* - [email protected]; Djunijanti Peggie - [email protected]; Naomi E Pierce - [email protected]; Rudolf Meier - [email protected] * Corresponding author Published: 30 October 2008 Received: 21 April 2008 Accepted: 30 October 2008 BMC Evolutionary Biology 2008, 8:301 doi:10.1186/1471-2148-8-301 This article is available from: http://www.biomedcentral.com/1471-2148/8/301 © 2008 Lohman et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Evolutionary genetics provides a rich theoretical framework for empirical studies of phylogeography. Investigations of intraspecific genetic variation can uncover new putative species while allowing inference into the evolutionary origin and history of extant populations. With a distribution on four continents ranging throughout most of the Old World, Lampides boeticus (Lepidoptera: Lycaenidae) is one of the most widely distributed species of butterfly. It is placed in a monotypic genus with no commonly accepted subspecies. Here, we investigate the demographic history and taxonomic status of this widespread species, and screen for the presence or absence of the bacterial endosymbiont Wolbachia. Results: We performed phylogenetic, population genetic, and phylogeographic analyses using 1799 bp of mitochondrial sequence data from 57 specimens collected throughout the species' range. Most of the samples (>90%) were nearly genetically identical, with uncorrected pairwise sequence differences of 0 – 0.5% across geographic distances > 9,000 km. However, five samples from central Thailand, Madagascar, northern Australia and the Moluccas formed two divergent clades differing from the majority of samples by uncorrected pairwise distances ranging from 1.79 – 2.21%. Phylogenetic analyses suggest that L. boeticus is almost certainly monophyletic, with all sampled genes coalescing well after the divergence from three closely related taxa included for outgroup comparisons. Analyses of molecular diversity indicate that most L. boeticus individuals in extant populations are descended from one or two relatively recent population bottlenecks. Conclusion: The combined analyses suggest a scenario in which the most recent common ancestor of L. boeticus and its sister taxon lived in the African region approximately 7 Mya; extant lineages of L. boeticus began spreading throughout the Old World at least 1.5 Mya. More recently, expansion after population bottlenecks approximately 1.4 Mya seem to have displaced most of the ancestral polymorphism throughout its range, though at least two early-branching lineages still persist. One of these lineages, in northern Australia and the Moluccas, may have experienced accelerated differentiation due to infection with the bacterial endosymbiont Wolbachia, which affects reproduction. Examination of a haplotype network suggests that Australia has been colonized by the species several times. While there is little evidence for the existence of morphologically cryptic species, these results suggest a complex history affected by repeated dispersal events. Page 1 of 14 (page number not for citation purposes) BMC Evolutionary Biology 2008, 8:301 http://www.biomedcentral.com/1471-2148/8/301 Background and garden peas (Pisum sativum) are among its preferred The study of speciation lies at the nexus of micro- and host plants, and the butterfly is a crop pest in many parts macroevolution, i.e., phylogenetics and population genet- of its range [4]. Lampides boeticus is among the approxi- ics. Phylogeography, which incorporates both approaches mately three-quarters of butterfly species in the family in a geographical context, examines the role of different Lycaenidae that associate with ants as larvae and pupae historical processes in population demography, differen- [5]. The species is facultatively tended by a variety of ants tiation and speciation [1]. The advent of rapid and afford- throughout its range, including Camponotus spp., Irid- able DNA sequencing over the past 15 years has catalyzed omyrmex spp., and 'tramp' ant species including Tapinoma studies on the evolutionary dynamics of populations and melanocephalum and the Argentine ant, Linepithema humile the discovery of previously unrecognized morphologi- [6,7]. cally cryptic species [2]. We sampled 57 L. boeticus from 39 localities on four con- The pea blue butterfly, Lampides boeticus (L.) (Lepidoptera: tinents (Fig. 1) to test the hypothesis that this widespread Lycaenidae), is one of the most widely distributed butter- species, as currently circumscribed, consists of more than flies in the world, and is currently found across the Palae- one genetically distinct taxon. We also used nucleotide arctic region from Britain to Japan, throughout suitable sequence data to further examine the genetic structure of habitat in Africa, Madagascar, South East Asia, and Aus- this species and analyze the demographic history of the tralia, extending eastwards to parts of Oceania including sampled populations. Hawaii. It occurs in temperate, subtropical, and tropical biomes in both lowland and montane localities, typically Results in open and/or disturbed areas. Phylogenetic analyses and node dating Bayesian, maximum likelihood and parsimony phyloge- Taxonomically, L. boeticus is the only species in its genus netic analyses arrived at similar phylogenetic hypotheses and has no commonly recognized subspecies, despite its for the evolutionary history of L. boeticus that agreed on all wide distribution. The larval stages feed on plants in at major groupings (Fig. 2B). Cytochrome c oxidase subunit I least six families, although Leguminosae (particularly (COI) had 48 variable sites and cytochrome b (cytB) had Papilionoideae) is the predominant host plant taxon [3]. 28, of which 35 and 17 were parsimoniously informative, Cultivated legumes, including broad beans (Vicia faba) respectively. Thus, cytB was more variable – 5.35% of 2 3 1 4 5 WESTERN EASTERN 51-52 PALAEARCTIC 6 7 PALAEARCTIC 48-49 50 47 INDO- BURMESE 36-37 34-35 45-46 33 43-44 38-42 PHILIPPINE 32 30-31 AFRICAN 11 17-18 WALLACEAN 10 9 27 8 19-20 21-22 26 SUNDAIC 23 28-29 53 24-25 14-16 12 56 MALAGASY 57 AUSTRALIAN 55 13 54 MapFigure of Lampides1 boeticus collection localities Map of Lampides boeticus collection localities. Numbers refer to sample information in Table 1. Different colors distin- guish labeled biogeographic regions. Page 2 of 14 (page number not for citation purposes) BMC Evolutionary Biology 2008, 8:301 http://www.biomedcentral.com/1471-2148/8/301 nucleotide sites were variable across all samples – than analyses (Fig. 2B). Lampides boeticus was monophyletic COI, in which 4.10% of nucleotide sites varied. The per- with regard to the three chosen outgroup species. In addi- centage of parsimoniously informative nucleotide sites tion to the divergent genotypes in clades C and D (Fig. was also higher in cytB (3.28% vs. 2.87%), as was the 2B), there were two other groups that were supported by number of nucleotide sites with parsimoniously informa- Bayesian, maximum likelihood and parsimony analyses. tive non-synonymous substitutions (3 vs. 0). The parsi- Clade A contained all haplotypes from Africa, Madagas- mony analysis resulted in 1,130 most parsimonious trees car, the eastern and western Palaearctic, Indo-Burma, and with a tree score of 336. The strict consensus of these trees the Philippines not found in the divergent clades C and D. differed with regard to two nodes when compared to the Grade B is a paraphyletic assemblage containing all of the tree obtained in both Bayesian and maximum likelihood haplotypes from the Sundaland, Wallacean, and Austral- 3 4 A 7 1,2,5,6,8,10,12,14,35,36,37 3 4 11 13 9 34 1,2,5,6,8,10,12,14,35,36,37 11 15 80,59 13 65,67 32 49 9 15 44 clade A 45 38 7 39,41,42,43,47,48,51 38 99,57 46 44,45,46,50 68,63 40 52 50 39,41,42,43,47,48,51 40 54 22 55,52 17 34 19 18,21,23 30,31 <50,<50 32 20 52 55 57 70,67 49 53 25,27,28,29 77,79 17,19,20 22 54, 54 18,21,23 <50,<50 30,31 25,27,28,29 grade B III 53 54 B 55 100,100 II 57 100,100 16 100,100 clade C 99,100 33 99,93 I 0.1 substitutions/site 24,26 69,70 89,84 clade D 56 100,100 Cacyreus marshalli Uranothauma falkensteini Phlyaria cyara RelationshipsFigure 2 among COI+cytB mitochondrial haplotypes of Lampides boeticus Relationships among COI+cytB mitochondrial haplotypes of Lampides boeticus.
Recommended publications
  • Life Cycle of the Lime Blue Butterfly Chilades Lajus
    Journal on New Biological Reports ISSN 2319 – 1104 (Online) JNBR 4(2) 164 - 168 (2015) Published by www.researchtrend.net Life Cycle of the Lime Blue Butterfly Chilades Lajus (Stoll) (Lepidoptera: Rhopalocera: Lycaenidae) from Sri Lankamalleswara Reserve Forest in the Eastern Ghats of Southern Andhra Pradesh P. Harinatha, K. Suryanarayanab, M. Venkata Reddyc, and S. P. Venkata Ramana*d a,b,d Department of Zoology, School of life Sciences, Yogi Vemana University Kadapa – 516 003, Andhra Pradesh, India c Department of Zoology, S. K. University, Anantapur, Andhra Pradesh, India Corresponding author: [email protected] | Received: 06 July 2015 | Accepted: 06 August 2015 | ABSTRACT The Chilades lajus (Stoll) Lime blue was univalent and seasonal. It was on wing almost throughout the year breeds with high frequency during the periods of monsoon and post monsoon seasons. Studies were conducted during January 2014 to December 2014 at Sri Lankamalleswara Reserve forest study area in the Eastern Ghats of Southern Andhra Pradesh. The growth from egg to adult was 19 - 22 days with four larval instar stages. There was no dormancy stage in the life history. Short life cycle and high success development of life stages suggest the production of more number of broods yearly. Besides, the population index of Chilades lajus on same ovipostion host plant leaves was discussed. Key Words: Chilades lajus , Life cycle, Population index, Sri Lankamalleswara Reserve forest, Eastern Ghats. INTRODUCTION The lime blue butterfly (Chilades lajus) was a of The ‘Species biology’ help to define small butterfly found in India belongs to management needs. In India where the exact status Lycaenidaes or blue family.
    [Show full text]
  • Rearing the Long-Tailed Blue - Personal Observations [Online]
    11 April 2014 © Mark Colvin Citation: Colvin, M. (2014). Rearing the Long-tailed Blue - Personal Observations [Online]. Available from http://www.dispar.org/reference.php?id=5 [Accessed April 11, 2014]. Rearing the Long-tailed Blue - Personal Observations Mark Colvin Abstract: Although the Long-tailed Blue (Lampides boeticus) is one of the rarest migrants to the British Isles, it is probably the most-widely distributed Lycaenid in the world. In 2013 they occurred in unprecedented numbers in Sussex. This paper conveys the rearing experiences and thoughts of the author, and makes comparisons with the observations of the late F.W. Frohawk. Figure I - Long-tailed Blue (male on bramble fruit) Photo © Mark Colvin Although the Long-tailed Blue (Lampides boeticus) is one of the rarest migrants to the British Isles, it is one of the most-widely distributed Lycaenids in the world, being found throughout southern Europe, Africa, southern Asia, India and Australia, extending eastwards to parts of Oceania including Hawaii. The vast majority of records occurring in the British Isles are from the south of England and the Channel Islands. On the continent, and throughout many parts of its range, this beautiful little butterfly is considered a pest of members of the Leguminosae (Fabaceae or bean family); hence some of its other vernacular names, the Pea Blue or Bean Butterfly. As a migrant to the British Isles, L. boeticus is rarely seen before the second half of July, with the peak of sightings being recorded during August and into September, though records as early as June have been noted (Asher et al., 2001; Emmet and Heath, 1989; Thomas and Lewington, 2010).
    [Show full text]
  • Jordan Beans RA RMO Dir
    Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation.
    [Show full text]
  • African Butterfly News Can Be Downloaded Here
    LATE SUMMER EDITION: JANUARY / AFRICAN FEBRUARY 2018 - 1 BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to the first newsletter of 2018! I trust you all have returned safely from your December break (assuming you had one!) and are getting into the swing of 2018? With few exceptions, 2017 was a very poor year butterfly-wise, at least in South Africa. The drought continues to have a very negative impact on our hobby, but here’s hoping that 2018 will be better! Braving the Great Karoo and Noorsveld (Mark Williams) In the first week of November 2017 Jeremy Dobson and I headed off south from Egoli, at the crack of dawn, for the ‘Harde Karoo’. (Is there a ‘Soft Karoo’?) We had a very flexible plan for the six-day trip, not even having booked any overnight accommodation. We figured that finding a place to commune with Uncle Morpheus every night would not be a problem because all the kids were at school. As it turned out we did not have to spend a night trying to kip in the Pajero – my snoring would have driven Jeremy nuts ... Friday 3 November The main purpose of the trip was to survey two quadrants for the Karoo BioGaps Project. One of these was on the farm Lushof, 10 km west of Loxton, and the other was Taaiboschkloof, about 50 km south-east of Loxton. The 1 000 km drive, via Kimberley, to Loxton was accompanied by hot and windy weather. The temperature hit 38 degrees and was 33 when the sun hit the horizon at 6 pm.
    [Show full text]
  • Biology of Blue Butterfly Lampides Boeticus (L.) on Field Pea
    20062--Manisha 31 July-2020 Indian Journal of Entomology Online published (Preview) DoI No.: BIOLOGY OF BLUE BUTTERFLY LAMPIDES BOETICUS (L.) ON FIELD PEA Manisha*, Tarun Verma, Gulshan Kumar and Roshan Lal Department of Entomology, College of Agriculture, Chaudhary Charan Singh Haryana Agriculture University, Hisar 125004 *Email: [email protected] (corresponding author) ABSTRACT Biology of blue butterfly,Lampides boeticus (L.) (Lepidopera: Lycaenidae) was studied on field pea variety HFP 529 under laboratory conditions (26±1ºC; 60-70% RH). It was observed that 14 eggs/ female were laid singly on twigs, flowers and pods. Pre-oviposition, oviposition, postoviposition and incubation periods were from 1 to 2, 2 to 3, 2 to 3 and 2 to 3 days, respectively. Mean larval period was 2.5, 2.6, 3.3 and 3.6 days for 1st, 2nd, 3rd and 4th instars, respectively, with total larval duration of 12 days. Prepupal and pupal period was 2.22 and 8.00 days, respectively. The mean longevity of male and female was 8.0 and 9.5 days, respectively. Total life cycle varied from 29 to 35 days. Key words: Blue butterfly, Lampides boeticus, field pea,Pisum sativum, biology, longevity, oviposition, larval period, instars, pupal period Field pea, Pisum sativum is an important grain 70% RH). Sufficient numbers of larvae of L. boeticus legume crop in India cultivated in rabi season and in were collected from the field pea variety HFP 529 Haryana, it is grown in 15.56 thousand ha and production and reared in petri dishes lined with a blotting paper is 135.15 mt (Anonymous, 2018).
    [Show full text]
  • Research Article
    South Asian Journal of Life Sciences Research Article Eco Biology and Life Cycle of the Pea Blue Butterfly, Lampides boeticus (Linnaeus) (Lepidoptera: Rhopalocera: Lycaenidae) from Southern Andhra Pradesh, India HARINATH PALEM, SURYANARAYANA KANIKE, VENKATA RAMANA SRI PURUSHOTTAM* Department of Zoology, Yogi Vemana University, Y. S. R Kadapa District- 51600, Andhra Pradesh, India. Abstract | Life history of the long tailed blue butterfly also called pea blue, Lampides boeticus (Linnaeus) with respect to larval stages, diet consumption, exploitation and the length of lifae phase was designed to perform. The study was conducted between January to December 2014 at Yogi Vemana University Campus (78°42’46.429’ E, 14°28’10.542’ N) and Campus Botanical garden (78°42’44.539’ E, 14°28’25.59’ N), Kadapa, India. Lampides boeticus completes its life cycle in 15-22 days (Eggs 2-3 days, Larvae: 8-12days, Pre-Pupa:2-3days, Pupa: 3-4 days). The standards of food indices across the instars include Approximate Digestibility (AD): 90 – 96.07%; Growth Rate (GR): 0.51 - 0.64, Con- sumption index (CI): 11.54 - 5.95, Efficiency of Conversion of Digested food (FCD): 03.98 – 11.25%; Efficiency of Conversion of Ingested food (ECD): 03.85 – 10.80% as measured in the research laboratory. The relatively high values of ECD and ECI partially explain the ecological success of this butterfly in the present study enviroment. Keywords | Life history, Lampides boeticus, Vigna trilobata (L.), Food indices, Yogi Vemana University Campus, Soth- ern Andhra Pradesh Editor | Muhammad Nauman Zahid, Quality Operations Laboratory, University of Veterinary and Animal Sciences, Lahore, Pakistan.
    [Show full text]
  • Check-List of the Butterflies of the Kakamega Forest Nature Reserve in Western Kenya (Lepidoptera: Hesperioidea, Papilionoidea)
    Nachr. entomol. Ver. Apollo, N. F. 25 (4): 161–174 (2004) 161 Check-list of the butterflies of the Kakamega Forest Nature Reserve in western Kenya (Lepidoptera: Hesperioidea, Papilionoidea) Lars Kühne, Steve C. Collins and Wanja Kinuthia1 Lars Kühne, Museum für Naturkunde der Humboldt-Universität zu Berlin, Invalidenstraße 43, D-10115 Berlin, Germany; email: [email protected] Steve C. Collins, African Butterfly Research Institute, P.O. Box 14308, Nairobi, Kenya Dr. Wanja Kinuthia, Department of Invertebrate Zoology, National Museums of Kenya, P.O. Box 40658, Nairobi, Kenya Abstract: All species of butterflies recorded from the Kaka- list it was clear that thorough investigation of scientific mega Forest N.R. in western Kenya are listed for the first collections can produce a very sound list of the occur- time. The check-list is based mainly on the collection of ring species in a relatively short time. The information A.B.R.I. (African Butterfly Research Institute, Nairobi). Furthermore records from the collection of the National density is frequently underestimated and collection data Museum of Kenya (Nairobi), the BIOTA-project and from offers a description of species diversity within a local literature were included in this list. In total 491 species or area, in particular with reference to rapid measurement 55 % of approximately 900 Kenyan species could be veri- of biodiversity (Trueman & Cranston 1997, Danks 1998, fied for the area. 31 species were not recorded before from Trojan 2000). Kenyan territory, 9 of them were described as new since the appearance of the book by Larsen (1996). The kind of list being produced here represents an information source for the total species diversity of the Checkliste der Tagfalter des Kakamega-Waldschutzge- Kakamega forest.
    [Show full text]
  • Catalogue No. 121 – Sale, Special Offers and Recent Acquisitions
    C. Arden, Bookseller Darren Bloodworth The Nursery, Forest Road, Hay-on-Wye, HR3 5DT, U.K. Tel: +44 (0) 1497-820471 Email: [email protected] Web: www.ardenbooks.co.uk Catalogue No. 121 – Sale, Special Offers and Recent Acquisitions Sale items : Botany 1 - 112 Entomology 113 - 140 Fine, Illustrated & Antiquarian 141 - 151 Gardening 152 - 207 General 208 - 254 Natural History & Zoology 255 - 266 New Naturalist s 267 - 302 Ornithology 303 - 346 Special offers : Botany 347 - 404 and recent Entomology 405 - 440 acquisitions Fine, Illustrated & Antiquarian 441 - 458 Gardening 459 - 512 Natural History & Zoology 513 - 562 New Naturalists 563 - 611 Ornithology 612 - 688 The stock in the Sale part of this catalogue (items 1 to 346) is an attempt to clear the remains of stock from the year’s previous catalogues. Book prices have already been reduced in many cases and further reductions are available to those who wish to take a risk that their chosen books will be available 10 or even 20 days after receiving this catalogue. Books will be dispatched once orders are complete – this may take up to three weeks if you order books at 50% off. How the Sale works First 10 days of sale…….All books available at prices shown in the catalogue After 10 days……………..If books are still available, we reduce their prices by 25% After 20 days……………..If books are still available, we reduce their prices by 50% We have also included over three hundred Special offers and recent acquisitions at the end of the catalogue (items 347 to 688). These Special offers and recent acquisitions are available at the prices indicated and are not part of the Sale terms.
    [Show full text]
  • Redalyc.On the Recent Invasion of the Canary Islands by Two Butterfly
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Wiemers, M.; Acosta-Fernández, B.; Larsen, T. B. On the recent invasion of the Canary Islands by two butterfly species, with the first record of Leptotes pirithous (Linnaeus, 1767) from Gran Canaria, Spain (Lepidoptera: Lycaenidae) SHILAP Revista de Lepidopterología, vol. 41, núm. 161, marzo, 2013, pp. 95-104 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45528755006 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 95-104 On the recent invasion o 10/3/13 18:45 Página 95 SHILAP Revta. lepid., 41 (161), marzo 2013: 95-104 CODEN: SRLPEF ISSN: 0300-5267 On the recent invasion of the Canary Islands by two butterfly species, with the first record of Leptotes pirithous (Linnaeus, 1767) from Gran Canaria, Spain (Lepidoptera: Lycaenidae) M. Wiemers, B. Acosta-Fernández & T. B. Larsen Summary Leptotes pirithous is reported from Gran Canaria for the first time, the recent spreading of this species and of Cacyreus marshalli in the Macaronesian Islands is discussed, and distribution maps of both species are presented for the Canary Islands. KEY WORDS: Lepidoptera, Lycaenidae, Leptotes pirithous, Gran Canaria, Spain. Sobre la reciente invasion de dos mariposas en las Islas Canarias con el primer registro de Leptotes pirithous (Linnaeus, 1767) de Gran Canaria, España (Lepidoptera: Lycaenidae) Resumen Se registra por primera vez para Gran Canaria a Leptotes pirithous, se discute la reciente expansión de esta especie y de Cacyreus marshalli en Macaronesia y se dan mapas de distribución de ambas especies presentes en las Islas Canarias.
    [Show full text]
  • Terrestrial Biodiversity Compliance Report for The
    TERRESTRIAL BIODIVERSITY COMPLIANCE REPORT FOR THE PROPOSED DE AAR 2 SOUTH WEF ON-SITE SUBSTATION, BATTERY ENERGY STORAGE SYSTEM (BESS) AND ANCILLARY INFRASTRUCTURE, NEAR DE AAR IN THE NORTHERN CAPE PROVINCE. For Mulilo De Aar 2 South (Pty) Ltd July 2020 Prepared By: Arcus Consultancy Services South Africa (Pty) Limited Office 607 Cube Workspace Icon Building Cnr Long Street and Hans Strijdom Avenue Cape Town 8001 T +27 (0) 21 412 1529 l E [email protected] W www.arcusconsulting.co.za Registered in South Africa No. 2015/416206/07 Terrestrial Biodiversity Compliance Report De Aar 2 South WEF Substation TABLE OF CONTENTS 1 INTRODUCTION ........................................................................................................ 3 1.1 Background .................................................................................................... 3 1.2 Scope of Study ................................................................................................ 3 1.3 Assumptions and Limitations ......................................................................... 4 2 METHODOLOGY ......................................................................................................... 4 2.1 Desk-top Study ............................................................................................... 4 2.2 Site Visit ......................................................................................................... 5 3 RESULTS AND DESCRIPTION OF THE AFFECTED ENVIRONMENT ............................ 5 3.1 Vegetation
    [Show full text]
  • 392 Genus Actizera Chapman
    AFROTROPICAL BUTTERFLIES 17th edition (2018). MARK C. WILLIAMS. http://www.lepsocafrica.org/?p=publications&s=atb Genus Actizera Chapman, 1910 Transactions of the Entomological Society of London 1910: 483 (479-497). Type-species: Lycaena atrigemmata Butler, by monotypy. The genus Actizera belongs to the Family Lycaenidae Leach, 1815; Subfamily Polyommatinae Swainson, 1827; Tribe Polyommatini Swainson, 1827; Subtribe incertae sedis. The other genera in the Subtribe incertae sedis in the Afrotropical Region are Cupidopsis, Pseudonacaduba, Catochrysops, Lampides, Uranothauma, Cacyreus, Harpendyreus, Leptotes, Cyclyrius, Tuxentius, Tarucus, Zintha, Zizeeria, Zizina, Zizula, Brephidium, Oraidium, Azanus, Eicochrysops, Euchrysops, Orachrysops, Lepidochrysops, Thermoniphas and Oboronia. Actizera (Blues) is a purely Afrotropical genus containing four species. *Actizera atrigemmata (Butler, 1878) Lycaena atrigemmata Butler, 1878. Annals and Magazine of Natural History (5) 2: 290 (283-297). Actizera atrigemmata Butler, 1878. d’Abrera, 2009: 816. Type locality: Madagascar: “Fianarantsoa”. Distribution: Madagascar. Specific localities: Madagascar – Fianarantsoa (TL). Habitat: Transformed grassland (Lees et al., 2003). Early stages: Nothing published. Larval food: Nothing published. Note: Larsen (2005a) suggests that this taxon may be a subspecies of Actizera lucida. *Actizera drucei (Bethune-Baker, 1906) Zizera [sic] drucei Bethune-Baker, 1906. Annals and Magazine of Natural History (7) 17: 109 (104-110). Actizera lucida drucei (Bethune-Baker, 1906). Stempffer, 1967: 262-63. Synonym of Actizera lucida (Trimen, 1883). Ackery et al., 1995. Actizera drucei (Bethune-Baker, 1906). Lees et al., 2003. stat. rev. Type locality: Madagascar: “Madagascar”. Distribution: Madagascar. Specific localities: Madagascar – Sirabe (probably Antsirabe) (Lees et al., 2003). Habitat: Transformed grassland (Lees et al., 2003). Early stages: Nothing published. Larval food: Nothing published. Note: Not listed by d’Abrera, 2009: 816.
    [Show full text]
  • Some Endemic Butterflies of Eastern Africa and Malawi
    SOME ENDEMIC BUTTERFLIES OF EASTERN AFRICA AND MALAWI T C E Congdon, Ivan Bampton* *ABRI, P O Box 14308, Nairobi Kenya Abstract: The ‘Eastern Arc’ of Kenya and Tanzania is defined in terms of its butterfly fauna. Butterflies endemic to it and neighbouring ecological zones are listed. The ‘Tanzania-Malawi Highlands’ are identified as an ecological zone. Distributions of the endemic butterflies within the Eastern Arc and other zones are examined. Some possible causes of endemism are suggested. Conservation issues are discussed. An updated list of the endemic Butterflies of Tanzania is given. Key words and phrases: Endemism, biodiversity, conservation, ecological zones, East African Coastal Belt, Eastern Arc Mountains, Tanzania-Malawi Highlands. Introduction The Study Area includes the whole of Tanzania, with extensions to include coastal Kenya and the highlands of Malawi. Ecological zones within the study area are identified. Butterflies endemic within the study area are listed by zone, and distributions within two of the zones are examined in detail. The conservation status of important forests is discussed and the most vulnerable areas are identified. In the Appendix (I) we provide an updated checklist of Tanzania’s endemic species. Methods and Materials Ecological zones are defined. The species endemic to each zone are listed, together with their distribution within the zone and altitude range within which they are known to occur (Table 1): totals are given. In the discussion section zonal endemism is examined. Species endemic to individual mountain blocks are scheduled in Table 2 and totals are given. Conservation priorities are discussed. The number of species each block shares with each other block is tabulated (Table 3) together with the total of species so shared present on each block.
    [Show full text]