Shrimp Farming and the Environment

Total Page:16

File Type:pdf, Size:1020Kb

Shrimp Farming and the Environment Shrimp Farming and the Environment Can Shrimp Farming Be Undertaken Sustainably? A discussion paper designed to assist in the development of sustainable shrimp aquaculture CONTENTS EXECUTIVE SUMMARY ........................................................................................................................ IV CURRENT STATUS AND POTENTIAL OF SHRIMP FARMING............................................................................ IV SHRIMP FARMING SYSTEMS AND INTENSITY............................................................................................... IV ENVIRONMENTAL IMPACTS ......................................................................................................................... V SOCIAL IMPACTS ........................................................................................................................................ VI FINANCIAL RISK ......................................................................................................................................... VI PLANNING AND MANAGEMENT OF THE SECTOR......................................................................................... VII PLANNING AND MANAGEMENT OF INDIVIDUAL PROJECTS ......................................................................... VII CAN SHRIMP FARMING BE UNDERTAKEN SUSTAINABLY? ......................................................................... VIII FURTHER ACTIONS ................................................................................................................................... VIII ABBREVIATIONS AND ACRONYMS COMMONLY USED IN THE INDUSTRY......................... IX PREFACE .....................................................................................................................................................X ORGANIZATION OF THE REPORT .................................................................................................... XI CHAPTER 1: THE DEVELOPMENT AND CURRENT STATUS OF SHRIMP AQUACULTURE... ........................................................................................................................................................................ 1 IS SUSTAINABLE SHRIMP FARMING POSSIBLE?............................................................................................. 1 DEVELOPMENT OF SHRIMP AQUACULTURE ................................................................................................. 3 THE WORLD BANK AND THE SHRIMP FARMING INDUSTRY.......................................................................... 4 CURRENT STATUS OF THE INDUSTRY........................................................................................................... 6 MARKETS.................................................................................................................................................... 8 FUTURE OUTLOOK....................................................................................................................................... 9 SUMMARY AND CONCLUSION...................................................................................................................... 9 CHAPTER 2: SHRIMP FARMING SYSTEMS ..................................................................................... 10 HATCHERIES ............................................................................................................................................. 10 NURSERIES................................................................................................................................................ 13 GROW-OUT PHASE..................................................................................................................................... 13 MODELS OF SHRIMP FARMS....................................................................................................................... 14 SCALE ....................................................................................................................................................... 18 SUMMARY AND CONCLUSIONS .................................................................................................................. 18 CHAPTER 3: ENVIRONMENTAL IMPACTS OF SHRIMP AQUACULTURE .............................. 20 DESTRUCTION OF NATURAL HABITAT ....................................................................................................... 20 CONTAMINATION AND SALINIZATION OF GROUNDWATER......................................................................... 23 ORGANIC MATTER AND NUTRIENT POLLUTION.......................................................................................... 24 CHEMICALS............................................................................................................................................... 27 DISEASE.................................................................................................................................................... 29 HARVEST OF BROODSTOCK AND WILD POST-LARVAE................................................................................ 33 INTRODUCTION OF EXOTIC SPECIES........................................................................................................... 33 ABANDONMENT OF PONDS ........................................................................................................................ 33 THE USE OF FISHMEAL IN SHRIMP FEEDS ................................................................................................... 34 CONCLUSIONS AND RECOMMENDATIONS .................................................................................................. 35 CHAPTER 4: SOCIAL AND ECONOMIC IMPACTS OF SHRIMP FARMING.............................. 39 IMPACTS ON FISHERIES.............................................................................................................................. 40 COMPETITION FOR RESOURCE RIGHTS AND EQUITY ISSUES ....................................................................... 41 IMPACT ON AGRICULTURAL PRODUCTION ................................................................................................. 42 EMPLOYMENT ........................................................................................................................................... 42 REDISTRIBUTION OF WEALTH.................................................................................................................... 44 ii DISPLACEMENT OF LOCAL POPULATIONS .................................................................................................. 45 HUMAN RIGHTS VIOLATIONS..................................................................................................................... 45 SOCIAL DISTURBANCES............................................................................................................................. 45 CORRUPTION............................................................................................................................................. 46 PUBLIC INCOME AND PUBLIC SPENDING .................................................................................................... 46 CONCLUSIONS........................................................................................................................................... 46 CHAPTER 5: FINANCIAL RISKS ASSOCIATED WITH SHRIMP FARMING ............................. 49 INPUT FACTORS......................................................................................................................................... 50 OUTPUT FACTORS ..................................................................................................................................... 51 DESIGN FACTORS ...................................................................................................................................... 52 NATURAL FACTORS................................................................................................................................... 53 DISCUSSION AND CONCLUSIONS................................................................................................................ 54 CHAPTER 6: PLANNING AND MANAGEMENT FOR SUSTAINABLE SHRIMP AQUACULTURE....................................................................................................................................... 55 LEGAL FRAMEWORKS ............................................................................................................................... 55 PLANNING AND RESOURCE MANAGEMENT ................................................................................................ 57 ECONOMIC AND MARKET INCENTIVES AND DISINCENTIVES ...................................................................... 57 NGO INITIATIVES ..................................................................................................................................... 59 FARMER AND INDUSTRY INITIATIVES ........................................................................................................ 60 SCIENTIFIC RESEARCH............................................................................................................................... 60 CONCLUSIONS AND RECOMMENDATIONS .................................................................................................. 61 CHAPTER 7: PROJECT PLANNING AND ASSESSMENT................................................................ 65 THE INVESTMENT PROJECT CYCLE ...........................................................................................................
Recommended publications
  • An Economic Analysis of Shrimp Farming in the Coastal Districts of Maharashtra
    AN ECONOMIC ANALYSIS OF SHRIMP FARMING IN THE COASTAL DISTRICTS OF MAHARASHTRA Nakul A. Sadafule'*, Shyam S. Salim^* and S.K. Pandey^ ABSTRACT Among the different shrimp species cultured in India, Tiger shrimp, Peneaus monodon is the most popular and commands considerable demand all over India, including Maharashtra. In India, there exists about 1.2 million hectare of potential area suitable for shrimp farming. It has been estimated that about 1.45 lakh tonnes of shrimp were produced during the year 2006. Shrimp farming has helped to generate employment opportunities due to increase production, better transport facilities, improved processing, marketing techniques and export trade. However, the industry suffered various shocks including white spot disease, price fluctuation at international level and threat of antidumping by USA, which resulted in greater risk in production and marketing. All these issues have direct bearing on the profitability and economics of shrimp farming operations. The present study is based on economic analysis of shrimp farming in the coastal Maharashtra viz.. Thane, Raigad, Ratnagiri and Sindhudurg. The data on shrimp farming was collected from a total sample size of 110 farmers, using a pretested questionnaire. The technical efficiency was estimated using ’Cobb Douglas Production Function'. The results revealed that the water spread area, stocking density per hectare, and fertilizer used were the most important factors for determining the production of shrimp in the Slate of f^aharashtra. The cost of seed, quantity of feed, and culture period were the most pertinent factors for determining the production of shrimp in Thane District. The culture period and quantity of feed were the most important factors for determining the production of shrimp in Raigad District.
    [Show full text]
  • Improving Shrimp Practices in Latin America
    IMPROVING SHRIMP MARICULTURE in LATIN AMERICA GOOD MANAGEMENT PRACTICES (GMPS) to R EDUCE ENVIRONMENTAL IMPACTS and IMPROVE EFFICIENCY of S HRIMP AQUACULTURE in LATIN AMERICA and an ASSESSMENT of P RACTICES in the HONDURAN SHRIMP INDUSTRY Claude E. Boyd P.O. Box 3074 Auburn,Alabama 36831 U.S.A. Maria C. Haws Coastal Resources Center University of Rhode Island Narragansett, Rhode Island 02882 U.S.A. Bartholomew W. Green Department of Fisheries and Allied Aquaculture Auburn University,Alabama 36849-5419 U.S.A. TABLE of C ONTENTS Preface___________________________________________________________________ 1 1.0 Rationale for Developing GMPs ____________________________________________ 3 2.0 Characteristics of Good Management Practices__________________________________ 5 3.0 Who Can Benefit from Good Management Practices _____________________________ 7 4.0 Methodology Used in Developing Good Management Practices ______________________ 8 5.0 The Scope and Intent of Good Management Practices _____________________________ 10 6.0 Characteristics of the Honduras Shrimp Industry ________________________________ 12 7.0 Site Selection _________________________________________________________ 16 7.1 Topography ______________________________________________________ 17 7.2 Hydrology and Hydrography__________________________________________ 18 7.3 Soil Characteristics ________________________________________________ 18 7.4 Infrastructure and Operational Considerations _____________________________ 19 8.0 Farm Design and Construction _____________________________________________
    [Show full text]
  • Integrated Multi-Trophic Aquaculture Systems: a Solution for Sustainability
    Integrated multi-trophic aquaculture systems: A solution for sustainability Kapil S. Sukhdhane1, V. Kripa2, Divu, D.1, Vinay Kumar Vase1 and Suresh Kumar Mojjada1 1. Veraval Regional Center of ICAR - Central Marine Fisheries Research Institute, Bhidia plot, Veraval, Gujarat 362269, India; 2. ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.O., Cochin 682018, India. Marine aquaculture is increasingly seen as an alternative organic and inorganic) when cultivated alongside fed fi sh to fi shing to provide a growing human population with species (Chopin et al. 2001; Neori et al. 2004; Troell et al. high-quality protein. Capture fi sheries output is falling short of 2003). world demand, and annual consumption of seafood has been rising and doubled over the last three decades (FAO, 2000). Fed aquaculture species (e.g. fi nfi sh/shrimps) are combined, Aquaculture production has surpassed supplies from capture in the appropriate proportions, with organic extractive fi sheries and contributed around 51% to global fi sh production aquaculture species (e.g. suspension feeders/deposit in 2014. Over the past three decades aquaculture production feeders/herbivorous fi sh) and inorganic extractive aquaculture increased from 6.2 million tonnes in 1983 to 73.8 million species (e.g. seaweeds), for a balanced ecosystem manage- tonnes in 2014 (FAO, 2016). This achievement was possible ment approach that takes into consideration site specifi city, mainly because of the commercialisation of farm produced operational limits, and food safety guidelines and regulations. aquatic animals such as shrimp, salmon, bivalves, tilapia The integrated in IMTA refers to the more intensive cultivation and catfi sh.
    [Show full text]
  • LOW-INPUT SHRIMP FARMING in KENTUCKY, Macrobrachium Rosenbergii World Aquaculture, 38(4): 44-49
    LOW-INPUT SHRIMP FARMING IN KENTUCKY, Macrobrachium rosenbergii World Aquaculture, 38(4): 44-49. Click here for Slide Show William A. Wurts, Kentucky State University CEP Senior State Specialist for Aquaculture http://www.ca.uky.edu/wkrec/Wurtspage.htm Over the past several years, freshwater shrimp farming has become very popular in Kentucky. Aerators, pond-side electricity, substrate, and high stocking densities are used to raise shrimp intensively. Most of the people contacting extension specialists for information about shrimp production do not have or can not afford the resources needed for intensive culture practices. Pond aeration was not a standard practice for freshwater shrimp farming before the early 1980s. Stocking densities and feeding were managed to prevent water quality problems, especially, low dissolved oxygen. However stocking densities, feeding rates, and technical inputs have increased significantly for prawn farming with the development of efficient electric aerators. Water quality management becomes the limiting factor because of higher feeding rates and greater stocking densities. The objective has been to maximize the number of pounds harvested per surface acre. This intensive approach to production requires large initial investments associated with high stocking densities, high feeding rates, addition of artificial substrate, installation of electrical power on pond banks, and the purchase of water quality monitoring and aeration equipment. Initial start-up and production costs, including pond construction but excluding land purchase, can be more than $12,500 per acre. Because these costs are so high, the majority of small-scale and limited resource farmers are priced out of intensive freshwater shrimp production. Furthermore, the risk of financial loss can be significant.
    [Show full text]
  • Aquaponics Division of Agriculture RESOURCES April 2015
    Alaska Department of Fact Sheet NATURAL Aquaponics Division of Agriculture RESOURCES April 2015 What is Aquaponics? a manner that allows it to be certified, check with the organic Aquaponics is a food production system that links hydroponic certification agency prior to constructing the system. crop production with aquaculture (fish farming). Unlike open- water aquaculture, aquaponics generally operates on land, BE AWARE – Aquaponics is regulated in Alaska and results in production of a food crop. Aquaponics is not a To ensure that your aquaponics system is legal, check with new concept; crops and fish have been grown together for the Alaska Department of Fish & Game. Growing fish for many centuries. However, aquaponics systems are becoming human consumption (including by aquaponic methods) is very popular due to their efficiency, high productivity, and NOT legal in the State of Alaska, and the importation and minimal impact to the environment. transport of most live fish in the state is prohibited without a permit. Fish that are strictly ornamental (such as goldfish) and How Does Aquaponics Work? not raised for human consumption or sport fishing purposes Aquaponics takes advantage of the fact that plants can thrive in the nutrient-rich water from fish ponds. Plants and may be imported into the state and used in a closed system, associated microbes convert byproducts such as ammonia but they may not be reared in or released into the waters of and CO2 to beneficial products such as nitrate and oxygen, the state. Fish wastes and wastewater from ornamental fish in a semi-closed system. may also not be released to the waters of the state.
    [Show full text]
  • Study on the Potential of Fish Farming in the Caribbean
    CRFM Technical & Advisory Document Series Number 2014 / 2 STUDY ON THE POTENTIAL OF FISH FARMING IN THE CARIBBEAN CRFM Technical & Advisory Document - Number 2014 / 2 Study on the Potential of Fish Farming in the Caribbean Prepared by: George Myvett, Milton Haughton and Peter A. Murray CRFM Secretariat Belize 2014 2 CRFM Technical & Advisory Document - Number 2014 / 2 Study on the Potential of Fish Farming in the Caribbean © CRFM 2014 All rights reserved. Reproduction, dissemination and use of material in this publication for educational or non-commercial purposes are authorised without prior written permission of the CRFM, provided the source is fully acknowledged. No part of this publication may be reproduced, disseminated on used for any commercial purposes or resold without the prior written permission of the CRFM. Correct Citation: CRFM, 2014. Study on the Potential of Fish Farming in the Caribbean. CRFM Technical & Advisory Document No 2014 / 2. P78 ISSN : 1995-1132 Published by the Caribbean Regional Fisheries Mechanism Secretariat Belize This document has been produced with financial assistance of the Technical Centre for Agricultural and Rural Coordination (CTA) which funded the Consultancy. However, the views expressed herein are those of the author and CRFM Secretariat, and can therefore in no way be taken to reflect the official opinions of CTA. 3 Contents Contents ........................................................................................................................................................ 1 Glossary
    [Show full text]
  • India's Farmed Shrimp Sector in 2020
    India’s Farmed Shrimp Sector in 2020: A White Paper By The Society of Aquaculture Professionals www.aquaprofessional.org February 22, 2021 Summary Society of Aquaculture Professionals (SAP) recently concluded a review of shrimp farming in India in 2020. In a series of virtual meetings held among industry stakeholders on January 29-30, 2021, the unanimous opinion was that farmed shrimp production declined from a record production of nearly 800,000 tonnes in 2019 to about 650,000 tonnes in 2020, a 19% drop. Earlier forecasts in meetings organized by SAP in 2020 were nearly 30%, so the actual decline was less than what was predicted. The present review also highlighted that while the coronavirus pandemic and related lockdown contributed to the decline, continuing production challenges due to a host of disease problems impacted the production quite significantly. Action by the stakeholders and the government is needed to address the challenges for the sustainable growth of the sector in the future. Following are needed if India needs to grow to the targeted production of 1.4 million tonnes by 2024: ❖ Resolve shrimp health issues on a priority basis: ➢ Continue to fund, strengthen and make relevant and accountable the national aquatic animal disease surveillance with an exclusive focus on shrimp ➢ Undertake epidemiological and other studies to understand the extent and underlying cause of white fecal disease, running mortality syndrome and other emerging diseases in shrimp farming and development treatments for the diseases ❖ Increase carrying
    [Show full text]
  • Asc Shrimp Standard Revision
    ASC SHRIMP STANDARD REVISION Revision of Current Metrics Background Analysis Document March 2020 Revision of current metrics – Background analysis document Shrimp Standard Revision Purpose The purpose of this document is to present the acquired data for the revision of the ASC Shrimp Standard v.1.1 and propose changes to the metric requirements where relevant. This document will be used for the decision-making process within the revision. Background The ASC Shrimp Standard v.1.1 is based on the anterior work of the Shrimp Aquaculture Dialogue (ShAD) and sets requirements that define what has been deemed ‘acceptable’ levels as regards the major social and environmental impacts of saltwater shrimp farming. The purpose of the ASC Shrimp Standard was and is to provide means to measurably improve the environmental and social performance of shrimp aquaculture operations worldwide. The Standard currently covers species under the genus Penaeus (previously Litopenaeus)1 and is oriented towards the production of P. vannamei2 and P. monodon. A Rationale document3 was produced as part of the ASC Shrimp Standard revision to evaluate the necessity to specifically include Penaeus stylirostris (Blue Shrimp), Penaeus merguiensis (Banana Prawn), Penaeus japonicus (Kuruma Prawn) and Penaeus ensis (Greasyback Shrimp) within the ASC Shrimp Standard. It was concluded that specific metrics for these species are not necessary and certification can remain on the basis of the metrics already contained therein for P. vannamei and P. monodon. Corresponding Metrics The ASC Shrimp Standard covers seven principles regarding legal regulations, environmentally suitable sighting and operation, community interactions, responsible operation practices, shrimp health management, stock management and resources use.
    [Show full text]
  • Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation
    Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation Recommended Citation J. Honculada Primavera, "Shrimp Farming in the Asia-Pacific: Environmental and Trade Issues and Regional Cooperation", trade and environment, September 25, 1994, https://nautilus.org/trade-an- -environment/shrimp-farming-in-the-asia-pacific-environmental-and-trade-issues-- nd-regional-cooperation-4/ J. Honculada Primavera Aquaculture Department Southeast Asian Fisheries Development Center Tigbauan, Iloilo, Philippines 5021 Tel 63-33-271009 Fax 63-33-271008 Presented at the Nautilus Institute Workshop on Trade and Environment in Asia-Pacific: Prospects for Regional Cooperation 23-25 September 1994 East-West Center, Honolulu Abstract Production of farmed shrimp has grown at the phenomenal rate of 20-30% per year in the last two decades. The leading shrimp producers are in the Asia-Pacific region while the major markets are in Japan, the U.S.A. and Europe. The dramatic failures of shrimp farms in Taiwan, Thailand, Indonesia and China within the last five years have raised concerns about the sustainability of shrimp aquaculture, in particular intensive farming. After a brief background on shrimp farming, this paper reviews its environmental impacts and recommends measures that can be undertaken on the farm, 1 country and regional levels to promote long-term sustainability of the industry. Among the environmental effects of shrimp culture are the loss of mangrove goods and services as a result of conversion, salinization of soil and water, discharge of effluents resulting in pollution of the pond system itself and receiving waters, and overuse or misuse of chemicals. Recommendations include the protection and restoration of mangrove habitats and wild shrimp stocks, management of pond effluents, regulation of chemical use and species introductions, and an integrated coastal area management approach.
    [Show full text]
  • Shrimp Farming in Madagascar « Global Aquaculture Advocate
    6/19/2020 Shrimp farming in Madagascar « Global Aquaculture Advocate (https://www.aquaculturealliance.org) Intelligence Shrimp farming in Madagascar Friday, 1 February 2002 By Dr. Michel Autrand and Bertrand Coûteaux Present status, future outlook Above: Aqualma was Madagascar’s rst commercial farm. Right: Aquamen’s processing facility prepares some of the country’s signature black tiger shrimp. https://www.aquaculturealliance.org/advocate/shrimp-farming-in-madagascar/?headlessPrint=AAAAAPIA9c8r7gs82oWZBA 1/4 6/19/2020 Shrimp farming in Madagascar « Global Aquaculture Advocate Sometimes called a continent-island because of its unique fauna and ora, Madagascar is the fourth-largest island in the world. With an area of 587,000 square km and 4,800 km of coastline, it is located in the southwestern Indian Ocean about 400 km off eastern Africa. Several penaeid shrimp species are commercially caught in Madagascar waters, with P. indicus and P. monodon the most abundant. In addition, black tiger shrimp (P. monodon) are currently farmed in Madagascar. Since 1987, several large areas – mostly in the northern part of the country – have been selected for shrimp farm development by experts from the Food and Agriculture Organization (FAO) of the United Nations. The local government, FAO, and PNB (a private company) started a pilot farm on the island of Nosy Be to evaluate the technical and economical feasibility of shrimp farming. Excellent results obtained there led to the construction of Aqualma, a commercial farm, in 1993. There are now four fully operational shrimp farms in Madagascar, and two new ones will begin operations in 2002, bringing the total pond area to 1,660 ha.
    [Show full text]
  • (IMTA) with Seaweed and Salmon
    Seafood sustainability: Optimization of Integrated Multi-Trophic Aquaculture (IMTA) NUTRITIOUS, SAFE AND SUSTAINABLE SEAFOOD with seaweed and salmon FOR CONSUMERS OF TOMORROW © Grethe Adoff SUMMARY Integrated Multi-Trophic Aquaculture (IMTA) is an environmentally sustainable farming method whereby seafood species at different trophic levels are co-cultured in such a way that waste from one species can be recycled as nutrients for species at a lower trophic level. This study demonstrated a successful IMTA system for seaweed and salmon in commercial scale trials. The systems were tested at three different sites on the west coast of Norway, with varying environmental conditions, exposure levels, and technical setup. Results show improved growth of seaweed near salmon farms, although large variations in seaweed growth were observed between sites. The trials clearly demonstrated the benefits of IMTA, namely better utilisation of aquaculture sites, higher diversity of production with higher yields, and potential reduction of the environmental impact of fish farming. KNOWLEDGE NEED IMTA is acknowledged as a promising solution for the sustainable development of aquaculture, however IMTA with salmon and seaweed at a commercial scale is still in the early development phase. There is a need for improved knowledge, production protocols and technical solutions to validate IMTA as an economically viable method for producers. This requires extensive Research and Development on the commercial production of seaweed alongside fish species. This will include ensuring mutual benefit, assessing ecological and socio-economic issues, including knowledge of the entire value chain, growth fluctuations, and measure to balance upscaled salmon production with seaweed production. This study focused on the natural growth season of seaweed in Norway from October to May when the © Grethe Adoff impact of the salmon is at its lowest.
    [Show full text]
  • Shrimp Farming in China: Lessons from Its Developmental History « Global Aquaculture Advocate
    11/28/2018 Shrimp farming in China: Lessons from its developmental history « Global Aquaculture Advocate LEADERSHIP & INNOVATION (/ADVOCATE/CATEGORY/LEADERSHIP-INNOVATION) Shrimp farming in China: Lessons from its developmental history Friday, 11 September 2015 By Dr. Xianhong Meng , Dr. Qingyin Wang , Dr. Jie Kon , Dr. Jian Li and Dr. Jie Huang Disease diagnosis, prevention and control techniques should be enhanced Marine shrimp farming has been one of the most important industries in the eld of marine economy development in China. The main species cultured are Chinese shrimp (Fenneropenaeus chinensis); Pacic white shrimp (Litopenaeus vannamei); black tiger shrimp (Penaeus monodon); and Kuruma shrimp (Marsupenaeus japonicus). Before 1995, F. chinensis was the most important farmed shrimp species in China, especially in the provinces comprising its natural distribution along the coast of the Bohai and Yellow Seas. Its highest ocean catch was over 40,000 metric tons (MT) in 1979. Production increases since 1995 came basically from L. vannamei (Figure 1). In 2013, China harvested more than 1 mmt of shrimp from marine farm ponds, with L. vannamei accounting for 812,545 MT or 75.14 percent of the total. The production of F. chinensis (41,931 MT, 3.88 percent), P. monodon (72,008 MT, 6.65 percent) and M. japonicus (45,949 MT, 4.25 percent) also contributed relatively small shares. https://www.aquaculturealliance.org/advocate/shrimp-farming-in-china-what-should-we-learn-from-its-developmental-history/?headlessPrint=AAAA 11/28/2018 Shrimp farming in China: Lessons from its developmental history « Global Aquaculture Advocate Especially with the outbreak of white spot syndrome in 1993, China made the large-scale development of new shrimp varieties selected for faster growth and greater disease resistance a priority.
    [Show full text]