arXiv:2109.00463v1 [astro-ph.EP] 1 Sep 2021 Perig Medeiros Context. lo ti tl nla hte intrso ifrn su different of signatures whether unclear still selecti is observation of it because Also, available studyi is of model importance shape the and revealing rotators, slow of number a eert olre hra kndph Dlo ta.20 al. et (Delbo’ irradiat depths solar skin from thermal sa wave larger the heat to of diurnal penetrate irradiation can this the of in and periods interesting parts, surface long especially experience are pe they hours, with a spect; 12 asteroids, et (Murdoch rotating than Slowly layers longer 2012). ods these (which, al. of et Sun Keihm properties 2015; the material r spin by reveal and inclination i heating axis can spin way to the on the depends react others, plan Studying among surfaces of 2009). as phases asteroid al. large early et which of for (Morbidelli remnants interest formation considered par etary great are In these of studies. as are System oids Solar size parameters t of shape, these number form ticular, significant spin, inertia, a thermal as for and basis such roughness, asteroids, macroscopic albedo, of parameters Physical Introduction 1. Conclusions. period. the with correlation e words. Key previou a display not do depth. sample skin our of values inertia thermal fortresrnefo 1t 9hus n h hra inert thermal the and hours, 59 to le 11 precision from 5% range the targets at our accurate of average on are sizes obtained Aims. fitting. flux thermal hswr efrhrvldt h ehditself. method the Results. validate T further (CITPM). we Model work spa this Thermophysical infrared Inversion from Convex data thermal the use using also we range, visible the mltds u oli opoietersae pnadshap Methods. and spin scaled their provide statistics. to is goal Our amplitudes. Jehin etme ,2021 2, Astrophysics September & Astronomy .J Kim M.-J. .Strajnic J. Fauvaud 31 .J Sanabria J. J. .Marciniak A. 26 ecniu u apini iiiigslcinefcsam effects selection minimising in campaign our continue We .Monteiro F. Brunetto .Pilcher F. , .Julien P. , epeettemdl f1 lwrttr,icuigtoupda two including rotators, slow 16 of models the present We eetrslsfratri oainprosfo h ESm TESS the from periods rotation asteroid for results Recent ihmliaprto aaeso es ih uvsaesu are curves light dense of datasets multi-apparition Rich 9 , 22 19 io lnt:atris–tcnqe:pooerc–radia – photometric techniques: – asteroids : minor 29 16 ihti okw nraetesml fso oaoswt re with rotators slow of sample the increase we work this With , .Michimani-Garcia J. , rmteCne neso hrohsclModel Thermophysical Inversion Convex the from 20 .Konstanciak I. , .Trela P. , .Fauvaud M. , 15 14 9 .Btiwc ˛ak B - Butkiewicz M. , 34 22 .Arcoverde P. , 1 s Kalup Cs. , J. , .Pinel P. , .Santana-Ros T. , 1 Durech rpriso lwyrttn asteroids rotating slowly of Properties ˇ .Tychoniec Ł. , aucitn.40991corr no. manuscript 19 † 1 18 .Krajewski J. , , 5 2 20 .Kami K. , .Alí-Lagoa V. , .Podlewska-Gaca E. , 9 .Ferrais M. , .Behrend R. , 9 .Morales N. , 37 41 , 38 1 eevd0 p 01/Acpe 0Jn 2021 June 20 Accepted / 2021 Apr 02 Received .Urakawa S. , Afiitoscnb on fe h references) the after found be can (Affiliations .DlFreo Del F. , nski .Skiff B. , ´ 1 21 .Kudak V. , 1 3 10 .K Kami K. M. , .Geier S. , .Ogłoza W. , fc aeilpoete a ese ntemlietadet inertia thermal in seen be can properties material rface 17 .Benkhaldoun Z. , nefcs hshmesdtriaino hi hra par thermal their of determination hampers This effects. on gtoetres o otsol oaigatris(those asteroids rotating slowly most For targets. those ng eosraois(anyIA,AaiadWS)i combined a in WISE) and Akari IRAS, (mainly ce oestgte ihtemlieta leo n surface and albedo, inertia, thermal with together models e l ugse nraigtedwt oainpro,which period, rotation with trend increasing suggested sly e,wt imtr on ob nternefo 5t 4 m T km. 145 to 25 from range the in be to found diameters with vel, .Nadolny J. , 39 acvr ierneo aus rm2t 40Jm J <400 to 2 from values, of range wide a covers ia 1 .Skrzypek J. , 42 i oe ehdhss a enapidt nyafwtargets, few a only to applied been far so has method novel his 16 .Polakis T. , ABSTRACT ate), ter- .Verebelyi E. , .Duffard R. , 15; ion me peetdwt aafo elradTS pccat.I ad In spacecrafts. TESS and Kepler from data with pplemented re- 30 he ri- 22 l. n n anbl seod.Ortresaeso oaoswt l with rotators slow are targets Our asteroids. belt main ong - - , , , 31 23 4 inmcaim:thermal mechanisms: tion .Szakáts R. , nska ´ e oes l rvd odfist ohtemladvsbed visible and thermal both to fits good provide All models. ted .Kulczak P. , sinsoe o togypeiu tde aeunderesti have studies previous strongly how showed ission .Golonka J. , ouain uha o xml h oeo h OPeffect YORP the of sp ast of distribution role spatial the the the on of 2015) example al. properties for et (Vokrouhlický as statistical such the implication population, have of might interpretation This 2015). our reconstruction al. spi fast et towards available shape (Marciniak biased tators of and strongly statistics are spin asteroids the shape-modelled for inversion, needed light-curve via are which curves campaigns targeted of number 2011). small telescop Harris & omit of the (Warner largely because and in mainly been limitations studies have 7 time ground-based they fig. however, most far, (see by So ted asteroids act 2020). rotators main-belt Survey al. slow et of Pál that population reveal (Transiting the 2015) mission dominate al. et TESS Ricker Satellite; the re recent from most the sults Furthermore, 2010). Vokrouhlický & Capek ˇ 22 ibesi n hp oesadkontemlietab 40% by inertia thermal known and models shape and spin liable , sacneuneo h criyo ut-paiinlight multi-apparition of scarcity the of consequence a As 1 35 32 1 11 .Kankiewicz P. , .Sobkowiak K. , .Richard F. , .Oszkiewicz D. , 17 .Bernasconi L. , 5 .Evangelista-Santana M. , .Wagrez K. , 5 1 24 .G Müller G. T. , .Kundera T. , .Grice J. , 20 .Rodrigues T. , 27 16 1 1 12 .Sonbas E. , .Kecskeméthy V. , .Pakštien E. , M. , 25 .Bosch J. , 4 .Hirsch R. , 3 .Lazzaro D. , .Molnár L. , Zejmo ˙ − 9 9 40 2 13 43 .Rondón E. , .Farroni G. , s e ˙ .Stachowski G. , 1 − .Brincat S. , rie rmmid-infrared from ermined ihP>1 or) ospin no hours), 12 > P with mtr n cuaesizes. accurate and ameters n K. and , 33 ih edet hi small their to due be might ogns ocmlt the complete to roughness .Horbowicz J. , 1 / 5 9 .Pawłowski M. , 2 , .Manzini F. , 6 5 K , .H Kim D.-H. , 7 piiainprocess optimisation − .Pál A. , ertto periods rotation he 1 o hwn any showing not , Zukowski ˙ n hrfr in therefore and S 2021 ESO © iint aain data to dition 18 9 wlight-curve ow 14 .Roy R. , S. , L. , 5 ae the mated , 8 4 15 1 t.The ata. naxes in -and n- , , E. , 28 rro- er H. , eroid ually 1 The . on s 1 , V. , 29 36 , 1 e - - , Marciniak et al.: Properties of slowly rotating asteroids from CITPM

(Hanuš et al. 2013), or the estimated contribution of tumblers The light-curve inversion method (Kaasalainen et al. 2001) and binaries in various asteroid populations (Durechˇ et al. 2020). can robustly reproduce asteroid spin and shape, provided the vis- Another hidden problem is that most of the well-studied as- ible data cover a wide range of viewing geometries. However, for teroids, especially among slow rotators, are those with large- targets orbiting close to the ecliptic plane (i.e. most of the main- amplitude light curves (Warner & Harris 2011), caused by an belt asteroids), the result usually consists of two mirror pole so- elongated shape, high spin axis inclination, or both. In our sur- lutions (Kaasalainen & Lamberg 2006; Kaasalainen & Durechˇ vey, described in detail in Marciniak et al. (2015), we addressed 2020). These are similar in spin axis ecliptic latitude, but differ ◦ two of these biases at the same time, focusing on slow rota- in ecliptic longitude: both solutions are roughly 180 apart, and tors (P>12 hours) with maximum amplitudes no larger than 0.25 have different associated shape models. One such mirror poleso- mag, at least at the target-selection stage. During our study, we lution sometimes happens to fit thermal data better than the other found that several targets have somewhat larger amplitudes or (see e.g. Delbo’ & Tanga 2009). However,this can stem from the shorter periods, but nevertheless we kept these in the final sam- high sensitivity of thermal flux to small-scale shape details, and ple of this latter work. might not point to a truly better spin solution (Hanuš et al. 2015; ˇ The statistics of asteroids with reliably determined ther- Kaasalainen & Durech 2020). We therefore decided to switch mal inertia is even more biased. Recompiling data from pre- from independent light curve inversion followed by thermophys- vious works, as well as new values from Hanuš et al. (2018), ical modelling of a fixed shape to simultaneous optimisation of Marciniak et al. (2018), and Marciniak et al. (2019), there are both types of data. The method enabling this approach is the currently 36 main-belt slow rotators, compared to 120 fast ro- CITPM introduced in Durechˇ et al. (2017). This method also en- tators studied using detailed thermophysical modelling (TPM). ables the user to weight two types of data relativeto each other to This shows that, in terms of studying slow rotators in the in- avoid the dominanceof one data type overthe other. Müller et al. frared, we have only touched the tip of the iceberg. (2017) applied this method for asteroid Ryugu and the derived size, albedo, and thermal inertia are very close to the in situ prop- Thermal inertia (Γ = √κρc) depends on the density of surface regolith ρ, thermal conductivity κ, and heat capacity erties; however, the spin pole was not well determined by this c. Larger thermal inertia implies coarser regolith composed of method (probably because of the very low light-curve amplitude grain sizes of the order of millimetres to centimetres, typi- and the lack of high-quality measurements). cal for young surfaces of small near-Earth asteroids (NEAs) In Section 2, we describe the visible and infrared data (Gundlach & Blum 2013), while much finer, lunar-like regolith used for modelling. Section 3 presents the main features of the with grain sizes of between 10 and 100 microns is expected at method for combined optical and mid-infrared photometric in- large (D>100 km) main-belt asteroids (see e.g. Delbo’ & Tanga version, which is followed in Section 4 by a description of the 2009, and references therein). This picture might however be method used to scale the models by multi-chord stellar occulta- complicated by various family formation ages, recent catas- tions. The resulting models, with their spin, shape, and thermal trophic events refreshing the surface, or by the presence of sur- parameters with the occultation scaling are presented in Section face cohesion forces (Marchi et al. 2012; Rozitis et al. 2014). 5. In Section 6 we summarise the results and discuss our ideas Also, as more asteroids become thermally characterised we can for future work. All the plots and figures asssociated with the also understand how thermal processes like thermal cracking models can be found in the Appendix. (Delbo’ et al. 2014; Ravaji et al. 2019) have shaped or are still shaping asteroid surfaces. 2. Visible and infrared data However, in light of recent results for two targets studied in situ, Ryugu and Bennu (Okada et al. 2020; Walsh et al. 2019), Data for traditional, dense light curves in the visible range have this standard interpretation of thermal inertia versus surface been gathered in the framework of our long-term photomet- properties fails; there are boulders on the surface with relatively ric campaign conducted since the year 2013, and are described low thermal inertia, while one would expect regolith. Thermal in Marciniak et al. (2015), including target-selection criteria. In conductivity, and thus thermal inertia dependance on tempera- short, the aim of the project is to observe a few tens of slowly ture at various subsurface depths, is another factor to be consid- rotating main-belt asteroids with small brightness variation am- ered (Hayne et al. 2017). It has been shown that submillimetre plitudes. It involves over 20 observing stations with telescopes flux probes deeper layers, carrying information on the conditions of up to 1 m in diameter, including for example TRAPPIST tele- in these layers (Keihm et al. 2012). scopes (Jehin et al. 2011). To compliment these data, we also use data from the Kepler Space Telescope in the extended K2 Harris & Drube (2016) estimated thermal inertias based on mission (Howell et al. 2014) downlinked within our proposals beaming parameters derived from WISE data (Masiero et al. accepted by Kepler and K2 Science Center, as well as pub- 2011, and references therein) and found that thermal inertia in- licly available data from TESS (Pál et al. 2020)1, and Super creases with rotation period. This motivated us to add the ther- WASP sky survey (Grice & et al. 2017)2. From the latter archive, mophysical analysis to our study of slow rotators. At first, our re- we only used the best-quality subsets, choosing from targets sults seemed to confirm this hypothesis (Marciniak et al. 2018), with Super WASP datapoints already folded into light curves. as we found large and medium thermal inertia values for the first Trimming those vast datasets was necessary because of their sample of five targets. Later, with a sample of twice the size, abundance and in order to avoid dominance of one apparition we found a rather wide range of thermal inertia (Marciniak et al. over others, but also because of their intrinsic noise. Noisy light 2019), from very small to medium, similarly to Hanuš et al. curves can sometimes prevent the identification of a unique (2018), generally not showing any trend with the rotation pe- model solution over the whole dataset. The selection criteria for riod. Still, the size of the slow rotators sample with known ther- the best Super WASP light-curvefragments were the lowest pho- mal inertia remains small. In this work we continue our effort to tometric scatter and the widest possible range of observing dates. expand this sample employing a different approach, namely the Convex Inversion Thermophysical Model (CITPM, see Section 1 https://archive.konkoly.hu/pub/tssys/dr1/ 3). 2 http://asteroids.neilparley.com/asteroids/lc.html

2 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

The great majority of the dense light curve data from our (Egan et al. 2003) at 8.28, 12.13, 14.65, and 21.34 µm, where photometric campaign were provided in the form of relative pho- available. All the infrared datapoints were used, except in spe- tometry, and the rest were treated as such to ascertain light-curve cific single cases where clear outliers were detected that were inversion convergence. Separate light-curve fragments obtained unable to be fitted by any of the models. Also, because of the during our observing campaign in the R filter or unfiltered were large size of some targets resulting in large infrared flux, some- combined to create composite light curves (Figs. E.1 - E.66 in times a subset or all WISE dataat 11µm were partially saturated, the Appendix E) using the criterion of minimum scatter between and could not be used in our analysis. data points for initial period determinations. We present the light curves that cover most of the rotation period and show clear brightness variations. For modelling, however, we used all the 3. Convex Inversion Thermophysical Model data described in Table D.1. Determined synodic periods are in To fit optical light curves and thermal infrared data, we agreement in all apparitions, with differences of only a few thou- used a combined inversion of both data types devel- sandths due to changes in relative velocity of the observer and oped by Durechˇ et al. (2017) called the Convex Inversion the source. The synodic period range from various apparitions, Thermophysical Model. The method combines convex inversion extended at least three times, is a range on which the precise, of light curves (Kaasalainen et al. 2001) with a thermophysical sidereal period is later searched for in the light-curve inversion model (Lagerros 1996, 1997, 1998). The shape of an asteroid procedure. is parametrized by coefficients of spherical functions that de- Composite light curves from various apparitions depict the scribe a convex polyhedron of size D with typically hundreds general character of the asteroid shape (if regular and symmet- of surface facets. For each facet, a 1D heat diffusion equation is ric, or quite the opposite). Light-curve differences are due to solved to compute its temperature and infrared flux at the time phase-angle effects caused by shadowing on topographic fea- of observation. The response of the surface to solar radiation is tures, and different viewing geometries (aspect angles). Apart parametrized by the thermal inertia Γ, surface roughness (de- from ensuring a full period coverage, sometimes tens of hours scribed by spherical craters of varying both the fraction of sur- long, we paid special attention to covering the widest possible face coverage f, and the opening angle γc), and light-scattering range of ecliptic longitudes and phase angles (see Table D.1 in properties. For emissivity, a fixed value of 0.9 is used, following the Appendix), which is a necessary prerequisite for shape re- a standard approach (e.g. Lim et al. 2005). Instead of using ab- ˇ construction (Kaasalainen & Durech 2020). The small point-to- solute magnitude, Bond albedo, and geometric albedo —which point scatter of our light curves (see Appendix A), of the order are only unambiguously defined for a sphere— we use Hapke’s of 0.01 mag down to a few millimagnitudes, captures brightness light-scattering model (Hapke 1981, 1984, 1986), from which variations in great detail, even in those cases with very small any albedos can be directly computed. To tie the reflectance of amplitudes. the surface with the size of the asteroid, absolutely calibrated Relative photometric data described above were supple- is needed. Because most of the light curves we col- mented with the calibrated V-band sparse data from the USNO lected are provided as the relative photometry, we also use the 3 (US Naval ) archive . These are necessary for size calibrated V-band photometry from the USNO that covers a suf- and albedo determination in the application of the full CITPM. ficiently wide range of solar phase angles. Parameters of Hapke’s We decided to exclusively use the USNO archive due to its rel- modelcan be optimised to fit the phase curve. The merit function atively high quality among the available options. As has been 2 2 2 that we minimise is a sum χVIS + wχIR of χ values for optical shown by Hanuš et al. (2011) the median accuracy of USNO and thermal data. The relative weight w is iteratively set such data is at the level of 0.15 mag. that (in an ideal case) the fit to light curves is as good as with- Thermal infrared data were downloaded from the SBNAF out thermal data, and the fit to thermal data is good, that is, the Infrared Database4 (Szakáts et al. 2020). This database provides 2 normalised χIR is 1. The advantage here is that the spin and expert-reduced data products from major infrared space mis- shape model optimised∼ against visible light curves only in most sions (Akari, Infrared Astronomical Satellite (IRAS), Wide-field cases would not be optimal in the thermal radiation, as shown by Infrared Survey Explorer (WISE), Herschel, Midcourse Space Hanuš et al. (2015) and Hanuš et al. (2018); here it is optimised Experiment (MSX), and Infrared Space Observatory (ISO)) to fit both types of data. as well as all the necessary auxiliary information, such as The visual part of χ2 is computed as the observing geometry, colour correction, or overall measure- − 2 2 ment uncertainties. SBNAF Infrared Database was developed N 1 Lobs Lmodel Lobs Lmodel within the ‘Small Bodies: Near And Far’ Horizon 2020 project χ2 = i,j i,j +0.2 i,N − i,N , VIS L¯obs − L¯model L¯obs (Müller et al. 2018). This database stores calibrated flux den- j=1 i j j ! i N ! sities obtained via careful consideration of instrument-specific X X X calibration and processing procedures. All the measurement un- where N is the total number of light curves, and Li,j is the certainty values have been reanalysed for the sake of database brightness (in arbitrary intensity units, not magnitudes) of the consistency, and include contributions from in-band flux den- i-th point of the j-th light curve. The normalisation by the mean sity uncertainty, absolute calibration errors, and colour correc- brightness of the j-th light curve L¯j means that we treat all tion uncertainties. The infrared data for our targets came mostly N 1 light curves as relative and that we neglect differences in from three missions: WISE (Wright et al. 2010; Mainzer et al. photometric− accuracy between them. The only exception is cali- 2011a) at 11.1 µm and 22.64 µm, Akari (Usui et al. 2011) at 9 brated photometry in V filter from USNO (the N-th light curve), and 18 µm, and IRAS (Neugebaueret al. 1984) at 12, 25, 60 for which we directly compare the observed flux with that pre- ¯obs ¯model and 100 µm, occasionally supplemented with data from MSX dicted by our model without normalising by Lj and Lj sep- arately. The empirical factor of 0.2 gives less weight to USNO 3 downloaded from AstDys data which is intentional because these have larger errors. https://newton.spacedys.com/astdys2/index.php?pc=3.0 For thermal data, errors of individual measurements are 4 https://ird.konkoly.hu/ known, and so the thermal part of the χ2 is computed classically

3 Marciniak et al.: Properties of slowly rotating asteroids from CITPM as but here we opted for the most widely used value to facil- 2 F obs F model itate comparison with previous works (see the discussion in χ2 = i − i , IR σ Alí-Lagoa et al. 2020; Szakáts et al. 2020). i  i  2 X In Appendix A we present the plots of χred versus thermal where Fi is observed or modelled flux and σi is the error of inertia for various combinations of surface roughness and opti- 2 the measurement. By dividing χIR by the number of degrees of mised size (Figs. A.1 - A.16). To transform variouscombinations 2 freedom, we get reduced χred, which we use in Sect. 5 when of crater coverage and opening angle to rms of surface rough- presenting our results. ness, we used the formula no. 20 from Lagerros (1998). In these figures, f is the fraction of crater coverage, and the plots show 2 2 4. Occultation fitting the χred of the crater opening angle that minimised the χred for that value of f. The horizontal line is the acceptance threshold 2 For three targets of our current sample there were good qual- for χred values, depending classically on the number of IR mea- 5 2 ity, multi-chord stellar occultations available in the PDS archive surements and best χred value: we accept all the solutions with (Herald et al. 2019, 2020). More recent occultation results were 2 χred < (1 + σ), where σ = √2ν/ν, with ν being the number downloaded from the archive of the Occult programme6. We of degrees of freedom. For a few targets with a value of best used them to independently scale the shape models obtained 2 χred much below 1, probably due to unresolvable mutual param- here, using the method described in Durechˇ et al. (2011), in or- eter correlations, we used an empirical approach by Hanuš et al. 2 2 der to: compare obtained sizes with those from thermal fitting; (2015) to define that threshold: χred < (χmin + σ). confirm the shape silhouette; and if possible, identify the pre- For each target we also present the fit to WISE W3 and W4 ferred pole solution (see Figures C.1 - C.3 in the Appendix C). thermal light curves, whenever available (Figures B.1 - B.25). When scaling the models with occultations, we computed Due to the scarce character of Akari and IRAS data (only 1 – the orientation of the model for the time of occultation and pro- 3 points per band on average), the model fits to them are not jected the model on the fundamental plane (sky-plane projec- shown. The plots present the results for only one of two mirror tion). Because all models are convex, their silhouettes are also pole solutions (the other pole gave very similar results, as indi- 2 convex. We then iteratively searched for a scale of the silhou- cated by χred values from Table 2). ette that would provide the best match with chords. The mutual shift between the silhouette and the chords was described by two free parameters that were also optimised. We used the χ2 min- imisation, where the difference between the silhouette and the chords was measured as a distance in the fundamental plane be- tween the ends of the chords and the silhouette (measured along the direction of the chord). We rejected the solutions in which a negative chord (no occultation was observed) intersected the silhouette.

5. Results Table 1 provides the ancillary information on the visible and thermal datasets: number of apparitions and separate light curves, numbers of thermal measurements from separate missions, and WISE diameters from Mainzer et al. (2011b); Masiero et al. (2011) to be compared with diameters obtained in this work (see Table2). We also cite taxonomic type follow- ing Bus & Binzel (2002a,b) and Tholen (1989), fora consistency check with our values for albedo (consistent in all cases). Table 2 summarises all the rotational and thermophysical properties of the targets studied here. First the spin solution is presented, usually with its mirror counterpart. The quality of the fit to light curves in the visible range is given in column 5. The second part of the table presents the radiometric solution based on combined data from three infrared missions, the radiomet- ric diameter, geometric albedo, thermal inertia, and the reduced χ2 of modelled versus observed fluxes. Lastly, the table contains the average heliocentric distance at which thermal measurements were taken, and thermal inertia reduced to one astronomical unit, using the formula (Rozitis et al. 2018):

α Γ1AU = Γ(r)r , (1) where the α exponent is equal to 0.75, which takes into account a radiative conduction term in thermal conductiv- ity. Different exponents are also possible (Rozitis et al. 2018), 5 http://sbn.psi.edu/pds/resource/occ.html 6 http://www.lunar-occultations.com/iota/occult4.htm

4 Marciniak et al.: Properties of slowly rotating asteroids from CITPM Table 1: Ancillary information on the data and physical properties of our targets. The first two columns contain asteroid name and the number of apparitions Napp during which the Nlc of visible light curves were obtained. The next part of the table details the infrared dataset: the number of points provided by space observatories IRAS NI , Akari NA, and WISE in W3 and W4 bands: NW 3, and NW 4 respectively. For comparison of the diameters and albedos obtained in this work (see Table 2), the diameters DWISE from WISE spacecraft (Mainzer et al. 2011b; Masiero et al. 2011) and taxonomic types are added (Bus & Binzel 2002a,b), and (Tholen 1989). Diameter in parentheses, due to a lack of size determination from WISE, comes from IRAS survey results (Tedesco et al. 2004).

Asteroid Napp Nlc NI NA NW 3 NW 4 DWISE Taxonomic [km] type (108) Hecuba 8 59 15 7 13 13 75.498 S (202) Chryseis 7 70 7 8 12 97.948 S (219) Thusnelda 6 116 18 6 19 38.078 S (223) Rosa 7 58 20 5 12 83.394 X (362) Havnia 7 38 9 13 89.202 XC (478) Tergeste 6 48 27 8 9 9 84.975 S (483) Seppina 8 56 34 12 12 12 84.975 S (501) Urhixidur 7 61 11 8 11 11 85.404 C (537) Pauly 7 50 8 9 6 6 52.330 DU (552) Sigelinde 6 65 8 6 4 (77.56) C (618) Elfriede 9 68 17 5 12 131.165 C (666) Desdemona 7 60 21 5 13 13 31.485 S (667) Denise 5 40 21 5 15 13 88.630 C (780) Armenia 8 95 24 7 12 102.257 C (923) Herluga 7 51 12 8 16 16 37.638 C (995) Sternberga 7 81 22 6 11 11 22.350 S

5 Table 2: Spin parameters and thermophysical characteristics of asteroid models obtained in this work. The columns contain asteroid name, J2000 ecliptic coordinates λp, βp of the spin solution, with mirror pole solution in the second row, sidereal rotation period P , and the deviation of model fit to those light curves (including fit to sparse data). The next part of the table details the radiometric −2 −1/2 −1 solution for combined data: surface-equivalent size D, geometric albedo pV , thermal inertia Γ in Jm s K (SI) units, and 2 the reduced chi-square of the best-fit (χred). The last two columns give average heliocentric distance of thermal infrared observations rhel with the standard deviation, and thermal inertia normalised to 1 AU ΓAU calculated according to equation 1. Numbers in italics mark the pole solution of (667) Denise clearly rejected by occultation fitting. 2 Asteroid Pole P vis. dev D pV Γ χred rhel Γ1AU ◦ ◦ λp[ ] βp[ ] [hours] [mag] [km] [SI units] IR [AU] [SI units] ± ± ± +3 +0.04 +25 ± (108) Hecuba 181 2 +42 5 14.25662 0.00003 0.013 69−1 0.24−0.01 35−30 1.08 3.18 0.10 85 ± ± ± ± +0.04 ± ± 352 1 +39 6 14.25662 0.00003 0.012 70 2 0.24−0.01 40 30 1.10 3.18 0.10 95 ± − ± ± +4 +0.03 ± (202) Chryseis 94 1 49 4 23.67025 0.00006 0.012 90−3 0.22−0.01 < 180 0.35 2.96 0.15 < 405 ± − ± ± +3 +0.01 ± 261 1 34 4 23.67028 0.00004 0.012 90−3 0.22−0.01 < 180 0.36 2.96 0.15 < 405 ± − ± ± +2 +0.04 ± (219) Thusnelda 300 10 66 10 59.7105 0.0001 0.014 44−4 0.19−0.01 < 120 0.80 2.24 0.42 < 220 ± ± ± +9 +0.006 ± (223) Rosa 22 3 +18 18 20.2772 0.0003 0.012 69−3 0.033−0.004 < 300 0.72 2.99 0.12 < 680 ± ± ± +6 +0.007 ± 203 2 +26 15 20.2769 0.0003 0.012 70−2 0.032−0.003 < 300 0.78 2.99 0.12 < 680 ± ± ± +6 +0.006 ± (362) Havnia 14 2 +33 2 16.92665 0.00003 0.017 92−5 0.044−0.004 < 180 0.80 2.64 0.04 < 370 ± ± ± +8 +0.004 ± 208 8 +35 4 16.92668 0.00003 0.017 91−3 0.046−0.008 < 200 0.67 2.64 0.04 < 410 ± − ± ± ± +0.05 +45 ± (478) Tergeste 2 5 38 8 16.10308 0.00004 0.019 83 4 0.16−0.01 2−1 0.94 3.05 0.10 5 ± − ± ± +5 +0.03 ± ± 216 7 62 4 16.10312 0.00004 0.016 81−4 0.18−0.02 26 25 0.88 3.05 0.10 60 ± ± ± +5 +0.04 +23 ± (483) Seppina 127 3 +47 3 12.720968 0.000004 0.019 73−2 0.16−0.01 17−12 0.80 3.45 0.14 45 ± ± ± +4 +0.04 +17 ± 356 4 +60 3 12.720977 0.000002 0.019 74−2 0.16−0.01 23−18 0.83 3.45 0.14 60 ± ± ± +5 +0.003 +35 ± (501) Urhixidur 49 40 +84 12 13.17203 0.00002 0.019 77−2 0.051−0.008 4−2 0.53 3.20 0.32 10 ± ± ± +2 +0.002 +30 ± 262 24 +66 11 13.17203 0.00001 0.018 82−4 0.050−0.007 13−11 0.53 3.20 0.32 31 ± ± ± +1 +0.03 +30 ± (537) Pauly 32 3 +43 6 16.29601 0.00002 0.018 47−2 0.26−0.02 11−10 0.70 2.96 0.45 25 ± ± ± ± +0.05 +50 ± 214 4 +60 9 16.29597 0.00001 0.018 46 2 0.25−0.02 13−12 0.74 2.96 0.45 29 ± ± ± +10 +0.011 +55 ± (552) Sigelinde 8 24 +73 9 17.14963 0.00001 0.017 88−5 0.030−0.007 3−2 0.97 3.26 0.09 7 ± ± ± +7 +0.005 +55 ± 189 18 +60 17 17.14962 0.00003 0.017 91−13 0.029−0.007 2−1 1.13 3.26 0.09 5 ± ± ± +15 +0.010 ± (618) Elfriede 102 20 +64 7 14.79565 0.00002 0.015 145−13 0.047−0.003 < 350 0.28 3.32 0.10 < 860 ± ± ± +15 +0.002 ± 341 13 +49 6 14.79564 0.00002 0.015 146−16 0.053−0.009 < 400 0.32 3.32 0.10 < 980 ± ± ± +0.9 +0.007 ± (666) Desdemona 10 4 +39 5 14.60795 0.00008 0.022 28.4−0.8 0.111−0.009 < 70 0.83 2.79 0.34 < 150 ± ± ± +0.9 +0.002 ± 174 3 +36 11 14.60796 0.00003 0.022 28.3−1.0 0.116−0.014 < 100 0.77 2.79 0.34 < 215 ± − ± ± +4 ± +17 ± (667) Denise 15 25 83 6 12.68499 0.00003 0.024 83−2 0.051 3 13−8 1.19 3.36 0.38 32 ± − ± ± +5 +0.002 +24 ± 237 3 23 6 12.68497 0.00003 0.025 82−2 0.051−0.004 6−1 1.16 3.36 0.38 15 ± − ± ± +2 +0.005 ± (780) Armenia 144 7 44 11 19.88453 0.00007 0.014 98−3 0.042−0.003 < 300 0.47 3.00 0.10 < 680 ± − ± ± +3 ± ± 293 3 23 6 19.88462 0.00009 0.015 102−2 0.038 0.003 < 250 0.63 3.00 0.10 < 570 ± − ± ± +0.4 +0.004 +15 ± (923) Herluga 218 9 68 5 29.72820 0.00002 0.022 36.2−1.5 0.047−0.003 37−36 0.92 2.73 0.40 80 ± − ± ± +0.8 +0.002 +35 ± 334 7 52 3 29.72826 0.00001 0.023 34.1−1.0 0.050−0.003 14−13 0.95 2.73 0.40 30 ± − ± ± +1.1 +0.03 ± (995) Sternberga 27 3 20 6 11.19511 0.00012 0.019 25.5−1.4 0.22−0.04 < 100 0.85 2.73 0.30 < 210 ± − ± ± +1.1 +0.005 ± 222 4 26 5 11.19512 0.00008 0.019 25.2−0.9 0.226−0.032 < 120 0.84 2.73 0.30 < 250 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

As a consistency check, we re-ran one of our previous tar- 5.1. (362) Havnia gets, (478) Tergeste, now using the CITPM. In one of our ear- lier works (Marciniaket al. 2018), this target was spin- and There were problems with some photometric data for this target. shape-modelled, and then the resulting models that best fitted Firstly, data obtained by Harris & Young (1980) were published the light curves in the visible were applied in TPM procedures. in the APC archive as a composite light curve, with an incor- In that work we obtained thermal inertia in the range of 30 - rect period of 18 hours. As a consequence, only one out of three −2 −1 2 −1 2 light curves could be used, the one with original timings. This 120 Jm s / K (SI units), and reduced χ of models fit to infrared data of 2.18 and 1.53 for poles 1 and 2, respec- is a general problem with some early asteroid light curves in the tively, revealing a strong preference for one of the spin and shape archives, and special attention must be paid when using them. solutions, but also problems with fitting all the thermal data. Other problems were caused by Super WASP data. Although in New simultaneous optimisation on the same visible and infrared many cases these serendipitously gathered data provided good datasets performedhere led to a somewhat differentmodel. Most light curves from desired geometries, in this case their intrin- 2 sic noise made it impossible to find a unique spin and shape notably, the reduced χ decreased substantially to 0.94 for pole 1, and 0.88 for pole 2, and so some preference for one spin solu- solution. After removing most of the Super WASP light curves tion remained, and thermal inertia shifted to smaller values:1 - for Havnia and keeping only the five best ones (Fig. E.18), the 50 SI units. To further check, we modelled the IR data using the uniqueness of the solution greatly improved. This demonstrates new shape models with the classical TPM approach (Lagerros that the light curve inversion method is quite sensitive to noise 1996, 1997, 1998) and found a consistent solution. in the data. A spin and shape model of Havnia previously published by Wang et al. (2015) was based on a light-curveinversionusing the The fit to visible light curves remained similarly good with Monte Carlo method on data from four apparitions (see Table both approaches, and the spin axis coordinates, size, and albedo 3), while our model was based on (visible) light curves from agreed with the original ones within the error bars. In summary, seven apparitions. The model by Wang et al. (2015) agrees with the CITPM method enabled us to find a much better combina- the model obtained here only in spin axis latitude (see Table 2), tion of spin, shape, and thermal parameters than the two-step whereas the longitudes are substantially different. Sidereal peri- approach used originally. ods might appear similar at first sight, but they would lead to a large divergence of extrema timings over just two apparitions. The CITPM method provides models for several targets for Our model is characterised by a rather wide range of ther- which previous analyses with the classical TPM method failed; mal inertia values due to a poor infrared dataset (only data from for example a unique and stable solution was found for (487) Akari and WISE W4 were available; see N values in Table 1), Seppina. For (666) Desdemona, we constrained the size and but Figure A.5 shows a clear minimum around Γ=100 SI units. albedo to a narrow range, while thermal inertia still remains un- Unfortunately, all WISE W3 data had to be removed because certain. Furthermore, for two targets (667, 995), additional cal- of partial saturation. Even keeping only their best subset led to ibrated data used in the CITPM improved the solution of iner- divergence. tia tensors, which were previously erroneous (i.e. excessively There is a four-chord stellar occultation from the year 2017 stretched along the spin axis). Also, we were able to find more available in the PDS archive. Both of our spin and shape solu- precisely constrained dimensions along the spin axis for the tions fit this event very well, with all chords crossing close to the shape models for all the other targets, which is an area of fre- centre of the body (see Fig. C.1), resulting in volume-equivalent quent weakness in shape models based exclusively on relative sizes a few percentsmaller than the sizes providedby the CITPM photometry. method (compare D values in Table 4, and 2). The small 1 km error in the occultation diameter is only a formal uncertainty± Independent confirmation of the robustness of our models determined via bootstrapping separate chords and repeating the also comes from fitting the models to stellar occultation chords. fitting procedure multiple times. However, the real uncertainty The results of occultation fitting are presented in Table 4, and must be larger because of the uncertainty on the shape model in Figs. C.1 - C.3 in Appendix C, which show the instantaneous itself. silhouette of the shape model on the η, ξ sky plane scaled in kilometres. Table D.2 in the Appendix D lists the occultation observers and sites. 5.2. (537) Pauly Spin and shape solutions for (537) Pauly have already been pub- Spin and shape solutions had already been determined and lished by Blanco et al. (2000) and Hanuš et al. (2016). The re- published in the literature for some of our targets, while in some sults from the latter work are consistent with ours (see Tables 2 cases only some of the parameters were available. In Table 3 we and 3), although our model of Pauly is made using many more cite their spin axis coordinates and sidereal periods, if available, dense light curvesand also a richer set of thermal data (+ 9 Akari together with their reference. Comparison with our results in points), and via simultaneous optimisation of both data types. Table 2 shows a general agreement, with the exception of (108) Later, (537) Pauly was also analysed with the TPM via the data Hecuba modelled by Blanco & Riccioli (1998), (362) Havnia bootstrapping method (Hanuš et al. 2018). Our size determina- modelled by Wang et al. (2015), and (537) Pauly modelled by tions (46 2 km, and 47 4 km) are somewhat larger than Blanco et al. (2000) based on different shape approximations. 40.7 0.8± km by Hanuš et al.± (2018), but the thermal inertia and ± 2 Parameters strongly differing from the solutions obtained in this albedo values agree. Our χred IR residuals are smaller than in the work are marked in italics in Table 3. Within consistent solu- previous model (0.7 vs. 1.1). The difference in size might stem tions, the differences in sidereal periods are sometimes of the from the elongated shape of this target, and the smaller set of in- order of a few 10−4 h, which may appear small, but might be frared measurements in Hanuš et al. (2018), capturing the target noticeable after a few apparitions. In the sections below, we fo- within a limited range of rotation phases, which might have led cus on a few specific targets in more detail. to underestimation of the size in previous study.

7 Marciniak et al.: Properties of slowly rotating asteroids from CITPM Table 3: Previously published spin parameters for targets studied here. The columns contain asteroid name, J2000 ecliptic coor- dinates λp, βp of the spin solution, sidereal rotation period P , and the reference. Values in italics denote solutions substantially differing from the ones obtained in the current paper. Asteroid Pole P Reference ◦ ◦ λp[ ] βp[ ] [hours] (108) Hecuba 79 ±1 +13 ±11 – Blanco & Riccioli (1998) 259 ±7 −6 ±7 – Blanco & Riccioli (1998) (219) Thusnelda 253 ±4 −69 ± 4 59.712 ± 0.002 Durechˇ et al. (2020) +3 +7 +0.00003 (362) Havnia 96−2 +39−2 16.9187730.000006 Wang et al. (2015) +1 +1 +0.00001 273−6 +40−10 16.9189350.00004 Wang et al. (2015) (478) Tergeste 2 ± 2 −42 ± 3 16.10308 ± 0.00003 Marciniak et al. (2018) 216 ± 6 −56 ± 4 16.10308 ± 0.00003 Marciniak et al. (2018) (483) Seppina – +42 ± 20 12.72081 ± 0.00006 Durechˇ et al. (2020) (537) Pauly 290 ±31 +40 ± 31 - Blanco et al. (2000) 31 ± 12 +32 ± 10 16.2961 ± 0.0005 Hanuš et al. (2016) 211 ± 16 +51 ± 10 16.2961 ± 0.0005 Hanuš et al. (2016) (552) Sigelinde – +48 ± 19 17.1494 ± 0.0002 Durechˇ et al. (2020) (618) Elfriede 113 ± 3 +54 ± 3 14.7952 ± 0.0001 Durechˇ et al. (2020) 323 ± 1 +25 ±3 14.7952 ± 0.0001 Durechˇ et al. (2020) (666) Desdemona – +12 ± 22 14.6080 ± 0.0002 Durechˇ et al. (2020) (667) Denise 40 ± 6 −86 ± 3 12.6848 ± 0.0002 Durechˇ et al. (2020) (923) Herluga 188 ± 5 −60 ± 5 29.7282 ± 0.0007 Durechˇ et al. (2020)

the size determined here (145 - 155 km) can probably be consid- Target Pole 1 Pole 2 ered the most reliable.

362 Havnia 84 ± 1 km 88 ± 1 km 5.4. (667) Denise For asteroid (667) Denise there were three good stellar occul- 618 Elfriede 145 ± 7 km 155 ± 2 km tations —with one containing as many as ten positive chords— thanks to a very successful European campaign (observers are acknowledged in Table D.2). Although both pole solutions are 667 Denise 83 ± 2 km rejected formally acceptable from the thermophysical point of view (both present in Table 2), the occultation fitting clearly enabled us to Table 4: Diameters of equivalent volume spheres for CITPM reject the solution for pole 2 (see Fig. C.3 in the Appendix C), shape models fitted to stellar occultations. which is marked with italics in Table 2. The size determined from occultations (83 2 km) is the same as the radiometric +4 ± size (83−2 km). The CITPM method proved to be robust and ac- curate, and provided the most accurate parameters in the case of dense stellar occultation chords. 5.3. (618) Elfriede There were as many as four different stellar occultations by this target, each containing from two to four chords (Fig. C.2 in the 6. Conclusions and future work Appendix C). However, these data did not help us reject any of ◦ ◦ We fully characterised spin, shape, and thermal properties of 16 our two models and we take pole 2 (λp = 341 ,βp = +49 ) as main-belt asteroids from the group that until recently has been the preferred solution based simply on its slightly lower χ2. neglected because of observing selection effects. The multi- In this case, the occultation size agrees exactly for pole 1 apparition targeted observing campaign together with good- with the radiometric size, while for pole 2 it is a few percent quality infrared data, especially from the WISE spacecraft, led larger (see Tables 4 and 2), but still within the radiometric er- to consistent spin and shape models accompanied by precise size ror bars. Our results, though self-consistent, are in disagree- and albedo determinations, and thermal inertia being determined ment with most previous size determinations for 618 Elfriede. for most of the targets for the first time. Thanks to simultaneous The occultation-determined size for pole 2 (155 2 km) is use of both visible and infrared data, our shape models are op- almost 30% larger than Akari (121.54 km) and IRAS± (120.29 timal in terms of reproducing both types of data well. Also, the km) determinations (Usui et al. 2011; Tedesco et al. 2004), and CITPM gained additional evidence for its robustness, providing 18% larger than the diameter given by WISE (131.165 km an optimal solution in one of the cases, as confirmed by an in- Mainzer et al. 2011b). For pole 1, the size disagreement is less dependent method. The set contains two updated models (478 pronounced (20% and 11% respectively) and is even compatible Tergeste, and 537 Pauly), and a few targets with partial solutions with the WISE diameter within the error bars. due to the scarcity of infrared data. In summary, as the present study is the first to take a com- With this work we increase the number of slow rotators with prehensive and multi-technique approach to analysing this tar- thermal inertia determined from detailed thermophysical mod- get (rich photometric set simultaneously combined with infrared elling by 40%. It is necessary to enlarge the pool of such well- data from three missions, plus independent occultation fitting), studied targets so that we can gain more insight into different as-

8 Marciniak et al.: Properties of slowly rotating asteroids from CITPM teroid groups and families separately and explore links between 2010)7, and data tables with photometry in the visible are thermal properties, surface material properties, and family for- available via the CDS (Centre de Données astronomiques de mation ages (Harris & Drube 2020). Most targets presented here Strasbourg) archive. do not belong to any collisional family (with the exception of 923 Herluga and 995 Sternberga, both from the Eunomia family, Acknowledgements. This work was was initiated with the support from the and also 618 Elfriede and 780 Armenia, each having their own National Science Centre, Poland, through grant no. 2014/13/D/ST9/01818; and from the European Union’s Horizon 2020 Research and Innovation Programme, small, compact family), and so their low thermal inertia was ex- under Grant Agreement no 687378 (SBNAF). The work of J.D. was supported pected. by the grant 20-08218S of the Czech Science Foundation. A.P. and R.S. have Our target sizes span the range from a few tens of kilometres been supported by the K-125015 grant of the National Research, Development and Innovation Office (NKFIH), Hungary. This project has been supported by to over 100 km, with most of the determinations being within the Lendület grant LP2012-31 of the Hungarian Academy of Sciences. This 10% of previous determinations based on WISE data only, and project has been supported by the GINOP-2.3.2-15-2016-00003 grant of the the NEATM thermal model (Harris 1998). Sizes determined for Hungarian National Research, Development and Innovation Office (NKFIH). L. a few targets (223, 552, 618) differ by more, although our ap- M. was supported by the Premium Postdoctoral Research Program of the proach (including infrared data combined with spin and shape Hungarian Academy of Sciences. The research leading to these results has received funding from the LP2018-7/2020 Lendület grant of the Hungarian models) has been shown to be robust. We therefore consider our Academy of Sciences. The work of T.S.-R. was carried out through grant results to be most reliable. Furthermore, obtained albedo values APOSTD/2019/046 by Generalitat Valenciana (). This work was agree with previously published taxonomic classifications. supported by the MINECO (Spanish Ministry of Economy) through grant RTI2018-095076-B-C21 (MINECO/FEDER, UE). The thermal inertia values determined here are < 100 SI units This article is based on observations obtained at the Observatório Astronômico for most targets, indicating the presence of a thick layer of insu- do Sertão de Itaparica (OASI, Itacuruba) of the Observatório Nacional, Brazil. lating regolith on most of these bodies. These values of thermal F.M. would like to thank the financial support given by FAPERJ (Process inertia reduced to 1 AU display no trend with size, because our E-26/201.877/2020). E.R., P.A., H.M., M.E. and J.M. would like to thank CNPq and CAPES (Brazilian agencies) for their support through diverse fellowships. current targets are well within the size range where largely dif- Support by CNPq (Process 305409/2016-6) and FAPERJ (Process ferent thermal inertias have been found in previous works (see E-26/202.841/2017) is acknowledged by D.L. fig. 7 in Hanuš et al. 2018). The correlation between thermal in- The Joan Oró Telescope (TJO) of the Montsec Astronomical Observatory ertia and size found by Delbo’ et al. (2007) could only be evi- (OAdM) is owned by the Catalan Government and operated by the Institute for dent if our sample also contained asteroids smaller than 10 km, Space Studies of Catalonia (IEEC). This article is based on observations made in the Observatorios de Canarias del IAC with the 0.82m IAC80 telescope these being too faint for our photometriccampaign on small tele- operated on the island of by the Instituto de Astrofísica de Canarias scopes. (IAC) in the Observatorio del Teide. This article is based on observations made We also found no evidence to support the hypothe- with the SARA telescopes (Southeastern Association for Research in Astronomy), whose nodes are located at the Observatorios de Canarias del IAC sis that thermal inertia increases with rotation period (e.g. on the island of in the Observatorio del ; Kitt Harris & Drube 2016). Our results are in agreement with those Peak, AZ under the auspices of the National Optical Astronomy Observatory of (Marciniak et al. 2019) and Hanuš et al. (2018). Biele et al. (NOAO); and Cerro Tololo Inter-American Observatory (CTIO) in La Serena, (2019) showed that a fine-grained, highly porous surface layer Chile. This project uses data from the SuperWASP archive. The WASP project of just a few millimetres thick can hide thermal signatures of is currently funded and operated by Warwick University and Keele University, and was originally set up by Queen’s University Belfast, the Universities of denser, more thermally conductive layers due to its relatively Keele, St. Andrews, and Leicester, the Open University, the Isaac Newton small thermal skin depth (ds) of a few millimetres, while to see Group, the Instituto de Astrofisica de Canarias, the South African Astronomical signatures of the denser layers would require probing a centime- Observatory, and by STFC. TRAPPIST-South is a project funded by the tre range. However, despite their longer rotation periods (11 to Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University 59 hours) compared to the typical light-curve inversion and TPM of Liège, in collaboration with the Cadi Ayyad University of Marrakech targets found in the literature, the thermal skin depths of our tar- (Morocco). E. Jehin is FNRS Senior Research Associate. gets calculated according to the formula given by Spencer et al. Funding for the Kepler and K2 missions are provided by the NASA Science (1989) still lie in the range of a few millimetres. The cases with Mission Directorate. The data presented in this paper were obtained from the large thermal inertia error bars could still be compatible with d Mikulski Archive for Space Telescopes (MAST). STScI is operated by the s Association of Universities for Research in Astronomy, Inc., under NASA up to 3.5 cm, however all the values below it are equally possi- contract NAS5- 26555. Support for MAST for non-HST data is provided by the ble, and so this cannot be used for drawing firm conclusions. NASA Office of Space Science via grant NNX09AF08G and by other grants Furthermore, we did not find any correlation between ther- and contracts. Data from Pic du Midi Observatory have been obtained with the 0.6-m mal inertia and spin axis inclination, or any specific problems telescope, a facility operated by Observatoíre Midi Pyrénées and Association with fitting more inclined targets, which must experience sea- T60, an amateur association. sonal cycles of heating and cooling. However, our thermal iner- We acknowledge the contributions of the occultation observers who have tia determinations, as is often the case, are burdened with large provided the observations in the dataset. Most of those observers are affiliated uncertainties. It is possible that the trend linking thermal iner- with one or more of: European Asteroidal Occultation Network (EAON), International Occultation Timing Association (IOTA), International Occultation tia and rotation period simply eludes us in our investigations, Timing Association European Section (IOTA/ES), Japanese Occultation as precise thermal inertia determinations might be hampered by Information Network (JOIN), and Trans Tasman Occultation Alliance (TTOA). slow rotation, decreasing the thermal lag. For future studies, it will be beneficial to focus on targets with thermal measurements from WISE spacecraft obtained at epochs separated in time by References as much as possible (longer than 100 days). This should help ∼ Alí-Lagoa, V., Müller, T. G., Kiss, C., et al. 2020, A&A, 638, A84 to constrain thermal inertia better thanks to more varied viewing Barucci, M. A., di Martino, M., & Fulchignoni, M. 1992, AJ, 103, 1679 geometries, enabling comparison of thermal flux from for exam- Benishek, V. & Pilcher, F. 2009, Minor Bulletin, 36, 167 ple pre- and post-opposition geometries. Biele, J., Kührt, E., Senshu, H., et al. 2019, Progress in Earth and Planetary Science, 6, 48 Our scaled spin and shape models and their thermal pa- Blanco, C., Cigna, M., & Riccioli, D. 2000, Planet. Space Sci., 48, 973 rameters are available in the new version of DAMIT (Database for Asteroid Models from Inversion Techniques) (Durechˇ et al. 7 https://astro.troja.mff.cuni.cz/projects/damit/

9 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Blanco, C. & Riccioli, D. 1998, A&AS, 131, 385 Ravaji, B., Alí-Lagoa, V., Delbo’, M., & Wilkerson, J. W. 2019, Journal of Brinsfield, J. W. 2009, Minor Planet Bulletin, 36, 64 Geophysical Research (Planets), 124, 3304 Bus, S. J. & Binzel, R. P. 2002a, Icarus, 158, 146 Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Bus, S. J. & Binzel, R. P. 2002b, Icarus, 158, 106 Telescopes, Instruments, and Systems, 1, 014003 Capek,ˇ D. & Vokrouhlický, D. 2010, A&A, 519, A75 Rozitis, B., Green, S. F., MacLennan, E., & Emery, J. P. 2018, MNRAS, 477, Delbo’, M., dell’Oro, A., Harris, A. W., Mottola, S., & Mueller, M. 2007, 1782 Icarus, 190, 236 Rozitis, B., Maclennan, E., & Emery, J. P. 2014, , 512, 174 Delbo’, M., Libourel, G., Wilkerson, J., et al. 2014, Nature, 508, 233 Spencer, J. R., Lebofsky, L. A., & Sykes, M. V. 1989, Icarus, 78, 337 Delbo’, M., Mueller, M., Emery, J. P., Rozitis, B., & Capria, M. T. 2015, Stephens, R. D. 2009, Minor Planet Bulletin, 36, 157 Asteroid Thermophysical Modeling, 107–128 Stephens, R. D. 2013, Minor Planet Bulletin, 40, 34 Delbo’, M. & Tanga, P. 2009, Planet. Space Sci., 57, 259 Stephens, R. D., Pilcher, F., Hamanowa, H., Hamanowa, H., & Ferrero, A. Durech,ˇ J., Delbo’, M., Carry, B., Hanuš, J., & Alí-Lagoa, V. 2017, A&A, 604, 2011, Minor Planet Bulletin, 38, 208 A27 Szakáts, R., Müller, T., Alí-Lagoa, V., et al. 2020, A&A, 635, A54 Durech,ˇ J., Kaasalainen, M., Herald, D., et al. 2011, Icarus, 214, 652 Tedesco, E. F., Noah, P. V., Noah, M., & Price, S. D. 2004, NASA Planetary Durech,ˇ J., Sidorin, V., & Kaasalainen, M. 2010, A&A, 513, A46 Data System, IRAS Durech,ˇ J., Tonry, J., Erasmus, N., et al. 2020, A&A, 643, A59 Tholen, D. J. 1989, in Asteroids II, ed. R. P. Binzel, T. Gehrels, & M. S. Egan, M. P., Price, S. D., & Kraemer, K. E. 2003, in American Astronomical Matthews, 1139–1150 Society Meeting Abstracts, Vol. 203, American Astronomical Society Usui, F., Kuroda, D., Müller, T. G., et al. 2011, PASJ, 63, 1117 Meeting Abstracts, 57.08 Vokrouhlický, D., Bottke, W. F., Chesley, S. R., Scheeres, D. J., & Statler, T. S. Grice, J., Snodgrass C., Green S., Parley N., & Carry, B. 2017, in Asteroids, 2015, Asteroids IV, ed. P. Michel, F. E. DeMeo, & W. F. Bottke, 509–531 , meteors: ACM 2017 Walsh, K. J., Jawin, E. R., Ballouz, R. L., et al. 2019, Nature Geoscience, 12, Gundlach, B. & Blum, J. 2013, Icarus, 223, 479 242 Hanuš, J., Delbo’, M., Durech,ˇ J., & Alí-Lagoa, V. 2015, Icarus, 256, 101 Wang, X., Muinonen, K., & Wang, Y. 2015, Planet. Space Sci., 118, 242 Hanuš, J., Delbo’, M., Durech,ˇ J., & Alí-Lagoa, V. 2018, Icarus, 309, 297 Warner, B. D. 2006, Minor Planet Bulletin, 33, 85 Hanuš, J., Durech,ˇ J., Brož, M., et al. 2013, A&A, 551, A67 Warner, B. D. 2007a, Minor Planet Bulletin, 34, 72 Hanuš, J., Durech,ˇ J., Brož, M., et al. 2011, A&A, 530, A134 Warner, B. D. 2007b, Minor Planet Bulletin, 34, 104 Hanuš, J., Durech,ˇ J., Oszkiewicz, D. A., et al. 2016, A&A, 586, A108 Warner, B. D. & Harris, A. W. 2011, Icarus, 216, 610 Hapke, B. 1981, J. Geophys. Res., 86, 3039 Waszczak, A., Chang, C.-K., Ofek, E. O., et al. 2015, AJ, 150, 75 Hapke, B. 1984, Icarus, 59, 41 Weidenschilling, S. J., Chapman, C. R., Davis, D. R., et al. 1990, Icarus, 86, 402 Hapke, B. 1986, Icarus, 67, 264 Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 Harris, A. W. 1998, Icarus, 131, 291 Zappalà, V., Di Martino, M., Cellino, A., et al. 1989, Icarus, 82, 354 Harris, A. W. & Drube, L. 2016, ApJ, 832, 127 Harris, A. W. & Drube, L. 2020, ApJ, 901, 140 Harris, A. W. & Young, J. W. 1980, Icarus, 43, 20 Harris, A. W., Young, J. W., Dockweiler, T., et al. 1992, Icarus, 95, 115 Hayne, P. O., Bandfield, J. L., Siegler, M. A., et al. 2017, Journal of Geophysical Research (Planets), 122, 2371 Herald, D., Frappa, E., Gault, D., et al. 2019, Asteroid Occultations V3.0, NASA Planetary Data System Herald, D., Gault, D., Anderson, R., et al. 2020, MNRAS, 499, 4570 Howell, S. B., Sobeck, C., Haas, M., et al. 2014, Publications of the Astronomical Society of the Pacific, 126, 398 Jehin, E., Gillon, M., Queloz, D., et al. 2011, The Messenger, 145, 2 Kaasalainen, M. & Lamberg, L. 2006, Inverse Problems, 22, 749 Kaasalainen, M., Torppa, J., & Muinonen, K. 2001, Icarus, 153, 37 Kaasalainen, M. & Durech,ˇ J. 2020, arXiv e-prints, arXiv:2005.09947 Keihm, S., Tosi, F., Kamp, L., et al. 2012, Icarus, 221, 395 Klinglesmith, Daniel A., I., Hendrickx, S., Kimber, C., & Madden, K. 2017, Minor Planet Bulletin, 44, 244 Lagerkvist, C. I. & Kamel, L. 1982, Moon and Planets, 27, 463 Lagerkvist, C. I., Magnusson, P., Debehogne, H., et al. 1992, A&AS, 95, 461 Lagerros, J. S. V. 1996, A&A, 310, 1011 Lagerros, J. S. V. 1997, A&A, 325, 1226 Lagerros, J. S. V. 1998, A&A, 332, 1123 Lim, L. F., McConnochie, T. H., Bell, J. F., & Hayward, T. L. 2005, Icarus, 173, 385 Mainzer, A., Bauer, J., Grav, T., et al. 2011a, ApJ, 731, 53 Mainzer, A., Grav, T., Masiero, J., et al. 2011b, ApJ, 741, 90 Marchi, S., Paolicchi, P., & Richardson, D. C. 2012, MNRAS, 421, 2 Marciniak, A., Alí-Lagoa, V., Müller, T. G., et al. 2019, A&A, 625, A139 Marciniak, A., Bartczak, P., Müller, T., et al. 2018, A&A, 610, A7 Marciniak, A., Pilcher, F., Oszkiewicz, D., et al. 2015, Planet. Space Sci., 118, 256 Masiero, J. R., Mainzer, A. K., Grav, T., et al. 2011, ApJ, 741, 68 Morbidelli, A., Bottke, W. F., Nesvorný, D., & Levison, H. F. 2009, Icarus, 204, 558 Müller, T. G., Marciniak, A., Kiss, C., et al. 2018, Advances in Space Research, 62, 2326 Müller, T. G., Durech,ˇ J., Ishiguro, M., et al. 2017, A&A, 599, A103 Murdoch, N., Sánchez, P., Schwartz, S. R., & Miyamoto, H. 2015, Asteroid Surface Geophysics, 767–792 Neugebauer, G., Habing, H. J., van Duinen, R., et al. 1984, ApJ, 278, L1 Oey, J. 2009, Minor Planet Bulletin, 36, 4 Okada, T., Fukuhara, T., Tanaka, S., et al. 2020, Nature, 579, 518 Pál, A., Szakáts, R., Kiss, C., et al. 2020, ApJS, 247, 26 Pilcher, F. 2012, Minor Planet Bulletin, 39, 171 Pilcher, F. 2013, Minor Planet Bulletin, 40, 158 Pilcher, F. 2014, Minor Planet Bulletin, 41, 250

10 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Appendix A: Chi-squared plots vs. thermal inertia 2 This section contains plots of χred versus thermal inertia for various combinations of surface roughness and optimised size (Figures A.1 - A.16).

11 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

10 80 10 115 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f=0.9 f=0.6 f=0.3 f=0.0 f=0.9 f=0.6 f=0.3 f=0.0 f=0.8 f=0.5 f=0.2 f=0.8 f=0.5 f=0.2 78 110

76 105 2 2 χ 74 χ 100 72

Reduced Reduced 1 95 70 Optimised diameter (km) Optimised diameter (km) 1 68 90

66 85 1 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.1: Reduced χ2 values vs. thermal inertia for various Fig.A.2: Reduced χ2 values vs. thermal inertia for (202) combinations of surface roughness (symbol coded) and opti- Chryseis mised diameters (colour coded) for asteroid (108) Hecuba.

10 49 10 78 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f=0.9 f=0.6 f=0.3 f=0.0 f=0.9 f=0.6 f=0.3 f=0.0 f=0.8 f=0.5 f=0.2 48 f=0.8 f=0.5 f=0.2 76 47

46 74

2 45 2 χ χ 72 44 70 Reduced 43 Reduced

42 68 1 Optimised diameter (km) 1 Optimised diameter (km) 41 66 40

39 64 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.3: Reduced χ2 values vs. thermal inertia for (219) Fig.A.4: Reduced χ2 values vs. thermal inertia for (223) Rosa Thusnelda

10 115 10 110 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f=0.9 f=0.6 f=0.3 f=0.0 f=0.9 f=0.6 f=0.3 f=0.0 f=0.8 f=0.5 f=0.2 f=0.8 f=0.5 f=0.2 110 105

100 105 2 2 χ χ 95 100 90 Reduced Reduced 95 1 1 85 Optimised diameter (km) Optimised diameter (km)

90 80

85 75 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.5: Reduced χ2 values vs. thermal inertia for (362) Fig.A.6: Reduced χ2 values vs. thermal inertia for (478) Havnia Tergeste

10 100 10 105 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f=0.9 f=0.6 f=0.3 f=0.0 f=0.9 f=0.6 f=0.3 f=0.0 f=0.8 f=0.5 f=0.2 f=0.8 f=0.5 f=0.2 95 100

90 95 2 2

χ χ 85 90 Reduced Reduced 80 1 85

1 Optimised diameter (km) Optimised diameter (km) 75 80

70 75 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.7: Reduced χ2 values vs. thermal inertia for (483) Fig.A.8: Reduced χ2 values vs. thermal inertia for (501) Seppina Urhixidur

12 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

10 56 10 115 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f f f f f f f f =0.9 =0.6 =0.3 =0.0 55 =0.9 =0.6 =0.3 =0.0 f=0.8 f=0.5 f=0.2 f=0.8 f=0.5 f=0.2 110 54 53 105

52 100 2 2

χ χ 51 95 50 Reduced Reduced 49 90 1 1 48 Optimised diameter (km) 85 Optimised diameter (km) 47 80 46 45 75 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.9: Reduced χ2 values vs. thermal inertia for (537) Pauly Fig.A.10: Reduced χ2 values vs. thermal inertia for (552) Sigelinde

10 190 10 33 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f=0.9 f=0.6 f=0.3 f=0.0 f=0.9 f=0.6 f=0.3 f=0.0 f=0.8 f=0.5 f=0.2 f=0.8 f=0.5 f=0.2 32.5 180 32 31.5 170 31 2 2

χ χ 30.5 160 30 1 Reduced Reduced 29.5 150

Optimised diameter (km) 29 Optimised diameter (km) 1 140 28.5 28 130 27.5 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.11: Reduced χ2 values vs. thermal inertia for (618) Fig.A.12: Reduced χ2 values vs. thermal inertia for (666) Elfriede Desdemona

10 105 10 112 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f=0.9 f=0.6 f=0.3 f=0.0 f=0.9 f=0.6 f=0.3 f=0.0 f=0.8 f=0.5 f=0.2 f=0.8 f=0.5 f=0.2 110

100 108

106

2 95 2 χ χ 104

102

Reduced 90 Reduced 1 100 Optimised diameter (km) Optimised diameter (km) 85 98 1 96

80 94 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.13: Reduced χ2 values vs. thermal inertia for (667) Fig.A.14: Reduced χ2 values vs. thermal inertia for (780) Denise Armenia

10 41 10 31 f=1.0 f=0.7 f=0.4 f=0.1 f=1.0 f=0.7 f=0.4 f=0.1 f=0.9 f=0.6 f=0.3 f=0.0 f=0.9 f=0.6 f=0.3 f=0.0 f=0.8 f=0.5 f=0.2 f=0.8 f=0.5 f=0.2 40 30

39 29 2 2 χ 38 χ 28

37 27 Reduced Reduced

36 1 26 Optimised diameter (km) Optimised diameter (km) 1 35 25

34 24 10 100 10 100 Thermal Inertia (SIu) Thermal Inertia (SIu) Fig.A.15: Reduced χ2 values vs. thermal inertia for (923) Fig.A.16: Reduced χ2 values vs. thermal inertia for (995) Herluga Sternberga 13 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Appendix B: Thermal light curves Model fits to WISE thermal light curves (Figures B.1 - B.25).

Fig.B.1: Infrared model fluxes (red cir- Fig.B.2: (108) Hecuba, thermal light Fig. B.3: (202) Chryseis cles) compared to measured fluxes in W3 curve in W4 band. band of WISE spacecraft (black circles) for asteroid (108) Hecuba.

Fig.B.4: (219) Thusnelda Fig.B.5: (223) Rosa Fig. B.6: (362) Havnia

Fig. B.7: (478) Tergeste Fig. B.8: (478) Tergeste Fig.B.9: (483) Seppina

Fig.B.10: (483) Seppina Fig.B.11: (501) Urhixidur Fig.B.12: (501) Urhixidur

14 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Fig.B.13: (537) Pauly Fig.B.14: (537) Pauly Fig.B.15: (552) Sigelinde

Fig. B.16: (618) Elfriede Fig.B.17: (666) Desdemona Fig.B.18: (666) Desdemona

Fig.B.19: (667) Denise Fig. B.20: (667) Denise Fig. B.21: (780) Armenia

Fig. B.22: (923) Herluga Fig. B.23: (923) Herluga Fig.B.24: (995) Sternberga

15 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Fig.B.25: (995) Sternberga

16 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Appendix C: Occultation fits Instantaneous silhouettes of shape models from this work fitted to occultation timing chords.

362 Havnia 2017/01/07

40

30

20

10

0 [km] -10

-20

-30

-40 10s -50 -40 -20 0 20 40 60 [km] Fig.C.1: CITPM shape models of asteroid (362) Havnia fitted to a stellar occultation from 7. January 2017.In all the figures, north is up and west is right. The blue solid contour and the magenta dashed contour represent the model for pole 1 and pole 2, respectively. Black lines in those figures mark occultation shadow chords calculated from occultation timings, with timing uncertainties shown at the extremities of each chord. The scale in seconds is given for reference as a red line. Negative (no occultation) chords are marked with dotted lines, while visual observations (as opposed to video or photoelectric) are marked with dashed lines. See Table 4 for diameters of equivalent volume spheres.

17 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

618 Elfriede 2008/05/26 618 Elfriede 2013/04/13 80 60 60 40 40 20 20

0 0 [km] [km] -20 -20

-40 -40

-60 -60

1s 1s -80 -80

-80 -60 -40 -20 0 20 40 60 80 100 -100 -80 -60 -40 -20 0 20 40 60 80 [km] [km] 618 Elfriede 2015/12/30 618 Elfriede 2018/05/10

60 60

40 40 20 20 0 0 -20 -20 [km] -40 [km] -40 -60

-80 -60

-100 -80

1s 1s -120 -100

-100 -50 0 50 100 -100 -80 -60 -40 -20 0 20 40 60 80 100 [km] [km] Fig.C.2: CITPM shape models of (618) Elfriede fitted to stellar occultations from 26 May 2008, 13 April 2013, 30 December 2015, and 10 May 2018. The visual, southernmost chord in the first event probably has an underestimated duration. See Table4 for diameters of equivalent volume spheres. See caption of Fig. C.1 for description of the figure.

667 Denise 2008/04/08 667 Denise 2020/04/11 667 Denise 2020/05/10 60 50 50 40 40 40 30 30

20 20 20 10 10

[km] [km] 0 [km] 0 0 -10 -10 -20 -20 -20 -30 -30 -40 -40 1s 1s 1s -40 -50 -60 -40 -20 0 20 40 60 -60 -40 -20 0 20 40 60 -40 -20 0 20 40 60 [km] [km] [km] Fig. C.3: CITPM shape models of (667) Denise fitted to stellar occultations from 8 April 2008, 11 April 2020, and 10 May 2020. The pole 1 solution (blue contour) is clearly preferred over pole 2 (dashed magenta contour). See Table 4 for equivalent volume sphere diameter for the preferred pole solution. See caption of Fig. C.1 for description of the figure.

18 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Appendix D: Observational details Details of all light curve observations used for the modelling (Table D.1), and the list of stellar occultation observers and sites (TableD.2).

Table D.1: Details of all visible photometric observations: observing dates, number of light curves, ecliptic longitude of the target, sun-target- observer phase angle, observer’s name (or paper citation in case of published data), and the observing site. Some data come from robotic telescopes, and so they have no observer specified. For data from the TESS spacecraft, the number of light curves denotes the number of days of continuous observations. CSSS stands for Center for Solar System Studies, PTF - Palomar Transient Factory, GMARS - Goat Mountain Astronomical Research Station, ESO - European Southern Observatory, SOAO - Sobaeksan Optical Astronomy Observatory, BOAO - Bohyunsan Optical Astronomy Observatory, LOAO - Lemonsan Optical Astronomy Observatory, OASI - Observatório Astronômico do Sertão de Itaparica, CTIO - Cerro Tololo Interamerican Observatory, ORM - Roque de los Muchachos Observatory.

Date Nlc λ Phase angle Observer Site [deg] [deg]

(108) Hecuba

2007 03 04 - 2007 03 09 5 126 11 - 12 Warner (2007a) CSSS - Palmer Divide Station, USA 2011 11 30 1 68 2 T. Kundera Suhora, Poland 2012 01 23 - 2012 03 05 7 61 - 66 15 - 17 Waszczak et al. (2015) PTF, USA 2012 12 27 - 2013 02 26 8 140 - 149 2 - 14 Pilcher (2013) Organ Mesa, USA 2014 04 20 - 2014 04 17 9 225 - 230 2 - 6 Pilcher (2014) Organ Mesa, USA 2015 07 02 1 310 9 A. Marciniak Teide, Spain 2015 08 05 - 2015 08 07 3 304 3 - 5 M. Zejmo˙ Adiyaman, Turkey 2015 08 10 - 2015 09 13 6 299 - 303 5 - 14 - Montsec, Spain 2016 08 28 - 2017 01 08 7 7 - 19 7 - 16 A. Marciniak, R. Hirsch, K. Zukowski,˙ M. Butkiewicz - B ˛ak Borowiec, Poland 2017 11 03 - 2017 11 15 5 85 - 86 9 - 12 - Montsec, Spain 2018 02 28 - 2018 03 02 2 75 - 76 18 J. Horbowicz, K. Zukowski˙ Borowiec, Poland 2019 01 19 - 2019 03 30 3 151 - 162 5 - 13 V. Kudak, V. Perig Derenivka, Ukraine 2019 03 23 1 152 10 M. Zejmo˙ Suhora, Poland 2019 04 01 1 151 12 E. Pakštien˙e Moletai, Lithuania

(202) Chryseis

2011 01 19 - 2011 04 01 15 140 - 151 1 - 16 Stephens et al. (2011) GMARS, USA; Organ Mesa, USA; Hamanowa, Japan; Bigmuskie, Italy 2013 07 31 1 311 1 - Montsec, Spain 2014 09 05 1 24 12 P. Kankiewicz Kielce, Poland 2014 09 16 - 2014 10 05 2 19 - 23 4 - 9 A. Marciniak Borowiec, Poland 2014 10 10 - 2014 10 26 2 15 - 18 3 - 6 G. Stachowski, W. Ogłoza Suhora, Poland 2014 10 31 - 2014 11 20 3 12 - 14 8 - 13 - Montsec, Spain 2014 11 03 1 14 9 S. Urakawa Bisei, Japan 2015 10 27 - 2016 01 28 6 102 - 112 9 - 20 R. Hirsch, I. Konstanciak, A. Marciniak, P. Kulczak Borowiec, Poland 2015 11 08 1 112 19 P. Kankiewicz Kielce, Poland 2016 01 10 - 2016 02 23 3 100 - 106 3 - 17 F. Pilcher Organ Mesa, USA 2017 03 20 - 2017 05 28 6 202 - 213 4 - 14 F. Pilcher Organ Mesa, USA 2017 03 24 - 2017 04 18 3 208 - 212 4 - 10 - Montsec, Spain 2017 03 24 1 212 10 V. Kudak, V. Perig Derenivka, Ukraine 2017 03 27 1 212 9 A. Marciniak Borowiec, Poland 2018 07 19 - 2018 09 13 10 280 - 284 4 - 16 - Montsec, Spain 2019 08 23 - 2019 09 18 5 350 - 355 3 - 7 S. Fauvaud Le Bois de Bardon, France 2019 08 25 - 2019 10 14 3 346 - 355 4 - 10 W. Ogłoza Adiyaman, Turkey 2019 09 18 - 2019 09 20 3 350 3 - Montsec, Spain 2019 10 05 1 347 7 K. Kaminski´ Winer, USA 2019 10 07 1 346 8 V. Kudak, V. Perig Derenivka, Ukraine 2019 10 14 1 346 10 R. Szakáts Piszkésteto,˝ Hungary

(219) Thusnelda

1981 08 21 - 1981 09 27 7 340 - 347 8 - 14 Harris et al. (1992) Table Mountain, USA 1981 09 02 - 1981 09 06 5 344 - 345 8 - 9 Lagerkvist & Kamel (1982) ESO, Chile 2013 05 25 - 2013 06 30 14 236 - 238 6 - 21 - Montsec, Spain 2013 05 27 - 2013 06 26 4 236 - 238 7 - 19 F. Pilcher Organ Mesa, USA 2014 10 10 - 2014 12 24 26 81 - 95 7 - 26 Marciniak et al. (2015) Suhora, Poland; Borowiec, Poland, Organ Mesa, USA; Winer, USA; Montsec, Spain; Bisei, Japan 2015 01 07 1 81 12 F. Pilcher Organ Mesa, USA 2016 02 04 - 2016 03 06 5 181 - 186 5 - 15 - Montsec, Spain 2016 02 08 - 2016 02 27 4 183 - 186 9 - 14 K. Kaminski´ Winer, USA 2016 02 27 - 2016 03 31 4 175 - 183 2 - 9 F. Pilcher Organ Mesa, USA 2016 04 02 - 2016 04 21 3 174 - 171 7 - 14 P. Kulczak, K. Zukowski,˙ R. Hirsch Borowiec, Poland 2017 05 26 - 2016 05 27 2 311 27 M.-J. Kim SOAO, South Korea 2017 06 23 1 314 22 R. Szakáts Piszkésteto,˝ Hungary 2017 07 03 - 2017 07 04 2 314 18 - 19 R. Duffard La Sagra, Spain 2017 07 13 - 2017 08 16 4 306 - 313 12 - 15 S. Brincat Flarestar, Malta 2017 07 13 - 2017 09 08 10 304 - 313 15 - 23 - Montsec, Spain 2018 11 15 - 2019 02 08 2 125 - 135 8 - 22 V. Kudak, V. Perig Derenivka, Ukraine 2018 12 10 - 2019 02 14 14 124 - 137 7 - 18 - Montsec, Spain 2019 01 04 - 2019 01 31 6 127 - 134 6 - 12 F. Pilcher Organ Mesa, USA 2019 01 30 - 2019 02 06 2 126 - 127 6 - 7 A. Marciniak Borowiec, Poland

19 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Date Nlc λ Phase angle Observer Site [deg] [deg]

(223) Rosa

2007 03 25 - 2007 04 14 4 166 - 169 5 - 12 Warner (2007b) CSSS, USA 2011 12 30 - 2012 02 10 8 121 - 129 2 - 10 Pilcher (2012) Organ Mesa, USA 2015 09 07 - 2015 10 09 3 344 - 350 1 - 10 S. Fauvaud Le Bois de Bardon, France 2015 09 01 - 2015 09 03 2 347 4 S. Fauvaud, M. Fauvaud, F. Richard Pic du Midi, France 2015 11 22 1 344 18 D. Oszkiewicz Lowell, USA 2016 11 01 - 2016 12 18 6 72 - 82 1 - 14 - Montsec, Spain 2016 12 28 1 72 9 J. Horbowicz Borowiec, Poland 2018 02 16 - 2018 02 25 2 184 - 185 9 - 12 R. Hirsch Borowiec, Poland 2018 03 23 1 179 2 V. Kudak Derenivka, Ukraine 2018 04 12 - 2018 04 19 8 174 - 175 9 - 11 - Kepler Space Observatory 2019 05 15 - 2019 06 01 5 257 - 250 2 - 7 - Montsec, Spain 2019 05 23 1 259 5 K. Kaminski´ Winer, USA 2019 07 11 1 250 13 M. Ferrais, E. Jehin TRAPPIST-South, Chile 2020 07 19 - 2020 10 19 9 312 - 322 1 - 16 M. Ferrais, E. Jehin TRAPPIST-North, Morocco 2020 08 23 - 2020 08 25 4 316 4 - 5 F. Monteiro, M. Evangelista-Santana, E. Rondón, P. Arcoverde, OASI, Itacuruba, Brasil J. Michimani-Garcia, D. Lazzaro, T. Rodrigues 2020 10 18 - 2020 10 19 2 313 16 M. Ferrais, E. Jehin TRAPPIST-South, Chile

(362) Havnia

1978 12 04 1 63 5 Harris & Young (1980) Table Mountain, USA 2006 06 05 - 2006 08 26 5 299 - 312 9 - 19 - SuperWASP 2009 04 06 - 2009 04 20 6 180 - 186 5 - 11 Stephens (2009) Rancho Cucamonga, USA 2015 10 28 - 2015 12 10 3 24 - 30 2 - 19 M. Butkiewicz - B ˛ak, A. Marciniak, P. Kulczak Borowiec, Poland 2015 11 29 - 2015 12 01 2 24 16 - Montsec, Spain 2016 12 22 - 2017 03 03 4 152 - 160 6 - 21 J. Horbowicz, A. Marciniak, K. Zukowski,˙ M. Butkiewicz - B ˛ak Borowiec, Poland 2017 01 19 1 161 15 V. Kudak, V. Perig Derenivka, Ukraine 2017 01 25 - 2017 01 31 7 159 - 160 11 - 13 T. Polakis, B. Skiff Command Module, USA 2018 07 26 1 252 17 A. Marciniak CTIO, Chile 2019 08 29 - 2019 09 19 2 17 - 20 8 - 16 S. Fauvaud Le Bois de Bardon, France 2019 09 04 1 19 14 V. Kudak, V. Perig Derenivka, Ukraine 2019 09 21 1 16 7 J. Skrzypek Borowiec, Poland 2019 09 28 - 2019 10 15 2 11 - 15 4 - 5 W. Ogłoza Adiyaman, Turkey 2019 10 17 - 2020 01 10 2 10 - 14 6 - 13 R. Szakáts Piszkésteto,˝ Hungary

(483) Seppina

1986 07 11 - 1986 07 27 6 268 - 270 9 - 12 Zappalà et al. (1989) ESO, La Silla, Chile 2005 06 25 - 2005 07 11 2 264 - 266 8 - 10 F. Manzini Sozzago, Italy 2005 07 04 1 265 9 G. Farroni, P. Pinel Saint-Avertin, France 2005 07 10 - 2005 07 30 4 262 - 264 10 - 13 R. Roy Blauvac, France 2005 07 12 1 264 11 L. Bernasconi Engarouines, France 2006 08 21 1 348 6 L. Brunetto Le Florian, France 2013 10 08 - 2013 12 23 4 25 - 34 5 - 16 K. Sobkowiak, D. Oszkiewicz, A. Marciniak Borowiec, Poland 2013 12 16 - 2013 12 17 4 25 - 33 5 - 15 F. Pilcher Organ Mesa, USA 2015 01 20 - 2015 03 22 3 96 - 97 9 - 16 K. Kaminski´ Winer, USA 2015 02 12 - 2015 03 18 2 94 - 95 13 - 16 A. Marciniak, J. Horbowicz, M. Figas Borowiec, Poland 2016 01 03 - 2016 04 01 5 155 - 167 5 - 14 P. Kulczak, A. Marciniak, R. Hirsch, M. Butkiewicz - B ˛ak Borowiec, Poland 2017 04 01 - 2017 05 29 9 214 - 224 5 - 10 R. Hirsch, K. Zukowski,˙ J. Horbowicz, A. Marciniak, J. Skrzypek Borowiec, Poland 2018 07 19 - 2018 08 15 14 287 - 291 7 - 12 - Montsec, Spain

(501) Urhixidur

1990 08 22 - 1990 08 29 6 327 - 329 6 - 7 Lagerkvist et al. (1992) ESO, La Silla, Chile 2013 09 06 - 2013 12 30 5 18 - 28 6 - 20 R. Hirsch, T. Santana-Ros, D. Oszkiewicz, A. Marciniak Borowiec, Poland 2014 10 29 - 2015 03 17 6 104 - 117 8 - 18 R. Hirsch, A. Marciniak, I. Konstanciak, J. Horbowicz Borowiec, Poland 2015 01 21 - 2015 04 29 2 109 - 111 8 - 16 K. Kaminski´ Winer, USA 2015 03 22 - 2015 03 23 2 105 17 W. Ogłoza, A. Marciniak, V. Kudak Suhora, Poland 2016 02 06 - 2016 04 29 4 163 - 176 2 - 14 A. Marciniak, R. Hirsch Borowiec, Poland 2016 02 13 - 2016 03 01 4 172 - 175 3 - 8 K. Kaminski´ Winer, USA 2017 02 08 - 2017 03 09 2 231 - 233 15 - 16 A. Marciniak CTIO, Chile 2017 05 04 1 227 7 F. Monteiro OASI, Brasil 2018 08 04 - 2018 08 22 18 312 - 315 8 - 9 Pál et al. (2020) TESS Spacecraft 2018 08 14 1 313 8 A. Marciniak CTIO, Chile 2018 09 14 - 2018 09 15 2 309 15 F. Monteiro, E. Rondón, M. Evangelista-Santana, P. Arcoverde, OASI, Brasil D. Lazzaro, T. Rodrigues 2019 08 12 - 2019 08 19 4 58 - 59 21 W. Ogłoza Adiyaman, Turkey 2019 10 11 - 2019 12 15 2 52 - 64 12 - 15 R. Szakáts, V. Kecskeméthy Piszkésteto,˝ Hungary 2019 10 12 - 2019 10 15 2 64 14 - 15 J. Skrzypek, M. Pawłowski Borowiec, Poland

(537) Pauly

1984 05 10 1 211 8 Weidenschilling et al. (1990) Kitt Peak, USA 1985 09 08 - 1985 09 12 4 354 - 355 6 Barucci et al. (1992) ESO, Chile 1989 04 16 1 182 7 Weidenschilling et al. (1990) Kitt Peak, USA 2016 02 24 - 2016 03 10 4 202 - 204 10 - 13 K. Kaminski´ Winer, USA 2016 03 18 - 2016 05 09 4 191 - 201 8 - 12 M. Butkiewicz - B ˛ak, A. Marciniak, P. Kulczak Borowiec, Poland 2017 08 03 - 2017 09 24 9 311 - 316 2 - 19 - Montsec, Spain 2018 10 09 - 2018 11 29 5 65 - 73 4 - 15 K. Zukowski,˙ A. Marciniak, M. K. Kaminska,´ J. Krajewski, M. Pawłowski Borowiec, Poland 2018 11 26 - 2018 12 10 16 62 - 66 4 - 6 Pál et al. (2020) TESS Spacecraft 2019 11 24 - 2019 12 17 3 126 - 128 10 - 14 W. Ogłoza Adiyaman, Turkey 2019 11 27 1 128 14 M.-J. Kim, D.-H. Kim SOAO, South Korea 2019 12 05 1 127 12 A. Marciniak Borowiec, Poland 2020 01 15 1 122 2 V. Kudak, V. Perig Derenivka, Ukraine

20 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Date Nlc λ Phase angle Observer Site [deg] [deg]

(552) Sigelinde

2008 04 11 - 2008 05 03 8 245 - 247 7 - 14 Oey (2009) Leura, Australia 2010 08 13 - 2011 01 26 11 42 - 52 2 - 18 Waszczak et al. (2015) Palomar Transient Factory, USA 2015 08 25 - 2015 10 02 5 6 - 12 3 - 12 A. Marciniak, R. Hirsch, P. Kulczak Borowiec, Poland 2016 11 20 - 2016 12 05 2 74 - 76 1 - 5 K. Zukowski,˙ R. Hirsch Borowiec, Poland 2017 01 15 1 67 12 S. Geier ORM, Spain 2017 01 25 1 67 14 M.-J. Kim, D.-H. Kim SOAO, South Korea 2017 02 08 1 67 16 A. Marciniak CTIO, Chile 2017 02 10 - 2017 02 11 2 67 16 M.-J. Kim, D.-H. Kim BOAO, South Korea 2018 02 23 - 2018 04 09 3 132 - 136 6 - 17 A. Marciniak, R. Hirsch, K. Zukowski˙ Borowiec, Poland 2018 03 14 - 2018 03 16 2 133 12 M.-J. Kim, D.-H. Kim BOAO, South Korea 2018 03 19 1 133 13 K. Kaminski´ Winer, USA 2019 04 26 - 2019 04 29 4 224 - 225 3 - 4 K. Kaminski´ Winer, USA 2019 05 11 1 222 4 - Montsec, Spain 2019 04 26 - 2019 05 19 23 220 - 225 3 - 7 Pál et al. (2020) TESS Spacecraft

(618) Elfriede

1984 05 12 1 236 6 Weidenschilling et al. (1990) Kitt Peak, USA 1989 04 16 - 1989 04 17 2 183 9 Weidenschilling et al. (1990) Kitt Peak, USA 2004 12 03 - 2004 12 11 6 125 12 - 14 L. Bernasconi Engarouines, France 2006 05 12 - 2006 06 02 7 175 - 176 15 - 17 Warner (2006) Palmer Divide, USA 2014 10 01 - 2014 12 09 12 4 - 10 8 - 18 - Montsec, Spain 2015 10 10 - 2016 01 27 5 86 - 98 4 - 18 - Montsec, Spain 2016 01 22 1 87 10 A. Marciniak Borowiec, Poland 2016 12 29 - 2017 04 09 4 150 - 163 8 - 15 J. Horbowicz, K. Zukowski˙ Borowiec, Poland 2017 01 25 1 162 10 M.-J. Kim, D.-H. Kim SOAO, South Korea 2017 02 04 - 2017 03 14 2 153 - 160 8 W. Ogłoza, M. Zejmo˙ Suhora, Poland 2017 02 22 - 2017 02 25 4 157 5 T. Polakis, B. Skiff Command Module, USA 2017 03 02 - 2017 03 17 9 153 - 156 5 - 8 Klinglesmith et al. (2017) Socorro, USA 2018 02 27 - 2018 05 09 5 226 - 232 7 - 17 K. Zukowski,˙ J. Horbowicz, A. Marciniak, J. Skrzypek Borowiec, Poland 2019 07 22 - 2019 07 26 5 306 2 - 3 W. Ogłoza Adiyaman, Turkey

(666) Desdemona

2013 10 02 - 2014 02 14 8 82 - 95 9 - 29 Marciniak et al. (2015) Borowiec, Poland; Winer, USA 2014 12 31 - 2015 03 14 15 192 - 196 5 - 19 - Montsec, Spain 2015 02 11 - 2015 03 31 2 186 - 197 6 - 15 K. Kaminski´ Winer, USA 2015 03 18 1 191 5 M. Figas Borowiec, Poland 2016 04 16 2 264 16 S. Geier Kitt Peak, USA 2016 04 29 1 264 13 S. Geier ORM, Spain 2016 05 01 1 263 13 - Montsec, Spain 2016 06 30 - 2016 07 05 4 251 - 252 10 - 11 R. Duffard, N. Morales La Sagra, Spain 2016 07 23 1 249 17 A. Marciniak Teide, Spain 2017 09 16 - 2017 09 22 7 57 - 58 27 - 25 T. Polakis, B. Skiff Tempe, USA 2017 09 18 - 2018 01 08 5 48 - 58 5 - 25 J. Horbowicz, K. Zukowski,˙ R. Hirsch Borowiec, Poland 2019 01 07 1 184 19 R. Duffard, N. Morales La Sagra, Spain 2019 02 01 - 2019 04 07 6 172 - 184 3 - 15 - Montsec, Spain 2019 02 07 1 184 14 Cs. Kalup Piszkésteto,˝ Hungary 2019 04 01 - 2019 04 03 2 173 6 - 7 M. Pawłowski, J. Krajewski Borowiec, Poland

(667) Denise

2014 03 28 - 2014 05 19 5 166 - 169 8 - 19 R. Hirsch, K. Sobkowiak, I. Konstanciak, P. Trela Borowiec, Poland 2015 03 23 - 2015 03 24 2 252 15 W. Ogłoza, A. Marciniak. V. Kudak Suhora, Poland 2015 04 21 - 2015 04 23 2 250 - 251 12 J. Horbowicz, A. Marciniak Borowiec, Poland 2015 05 31 1 243 9 K. Kaminski´ Winer, USA 2015 06 27 1 238 12 A. Marciniak Teide, Spain 2016 07 23 - 2016 07 26 3 298 5 - 6 - Montsec, Spain 2016 07 30 - 2016 08 20 4 293 - 297 6 - 10 R. Szakáts, E. Verebélyi Piszkésteto,˝ Hungary 2016 08 26 1 293 11 S. Geier ORM, Spain 2016 08 31 1 292 12 K. Zukowski˙ Borowiec, Poland 2017 08 07 1 359 12 W. Ogłoza Suhora, Poland 2017 08 27 1 357 8 A. Marciniak Teide, Spain 2017 08 31 - 2017 09 18 8 352 - 356 4 - 6 - Montsec, Spain 2018 11 23 - 2019 01 27 9 96 - 108 15 - 18 - Montsec, Spain 2019 02 18 1 94 19 M. K. Kaminska´ Borowiec, Poland

21 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Date Nlc λ Phase angle Observer Site [deg] [deg]

(780) Armenia

2004 06 07 - 2004 07 15 3 256 - 263 8 - 13 J.-G. Bosch Collonges, France 2009 05 02 - 2009 06 02 15 217 - 223 8 - 12 Benishek & Pilcher (2009) Organ Mesa, USA; Belgrade, Serbia 2010 07 20 - 2010 08 31 2 298 - 306 5 - 13 R. Roy Blauvac, France 2014 02 25 - 2014 05 31 8 182 - 194 11 - 15 J. Horbowicz, A. Marciniak, I. Konstanciak, D. Oszkiewicz, Borowiec, Poland T. Santana - Ros, K. Sobkowiak 2015 04 16 - 2015 05 30 4 265 - 268 9 - 16 P. Kulczak, A. Marciniak Borowiec, Poland 2015 05 21 - 2015 06 22 7 260 - 266 8 - 11 K. Kaminski´ Winer, USA 2015 06 17 - 2015 07 06 11 257 - 261 8 - 11 - Montsec, Spain 2016 08 02 1 355 8 A. Marciniak CTIO, Chile 2016 10 08 - 2016 10 15 2 346 11 - 13 - Montsec, Spain 2016 10 10 - 2016 11 08 12 345 - 346 11 - 18 B. Skiff Lowell, USA 2016 12 04 - 2016 12 05 2 348 20 T. Polakis, B. Skiff Command Module, USA 2017 12 15 - 2017 01 21 3 84 - 91 8 - 12 F. Monteiro, H. Medeiros, E. Rondón, P. Arcoverde, OASI, Brasil D. Lazzaro, T. Rodrigues 2017 12 17 - 2018 02 13 3 83 - 90 7 - 16 M.-J. Kim, D.-H. Kim SOAO, South Korea 2018 01 03 - 2018 01 05 2 86 - 87 8 - 9 M.-J. Kim, D.-H. Kim LOAO, USA 2018 01 24 - 2018 03 27 2 84 - 88 13 - 18 K. Kaminski´ Winer, USA 2018 02 08 - 2018 02 16 2 83 16 - 17 M. Butkiewicz - B ˛ak, R. Hirsch Borowiec, Poland 2018 12 04 - 2019 01 06 3 163 - 165 14 - 17 M.-J. Kim, D-H. Kim SOAO, South Korea 2019 01 19 - 2019 03 30 6 152 - 164 2 - 12 R. Hirsch, J. Krajewski, A. Marciniak, K. Zukowski,˙ J. Skrzypek Borowiec, Poland 2019 02 22 1 159 2 V. Kudak, V. Perig Derenivka, Ukraine

(923) Herluga

2008 10 07 - 2008 11 29 8 39 - 49 8 - 16 Brinsfield (2009) Via Capote, USA 2012 10 19 - 2012 10 31 2 354 - 355 14 - 19 R. Hirsch, J. Nadolny Borowiec, Poland 2014 03 14 - 2014 04 18 7 149 - 152 9 - 18 - Montsec, Spain 2015 03 17 - 2015 03 27 6 227 - 238 7 - 16 - Montsec, Spain 2015 04 18 - 2015 06 22 3 223 - 235 4 - 14 K. Kaminski´ Winer, USA 2016 07 25 - 2016 09 10 12 330 - 320 8 - 14 Marciniak et al. (2018) Montsec, Spain; ORM, Spain; Borowiec, Poland 2018 03 18 - 2018 03 30 3 126 18 - 20 K. Kaminski´ Winer, USA 2019 03 30 - 2019 04 01 3 220 9 - 10 R. Szakáts Piszkésteto,˝ Hungary 2019 04 26 - 2019 05 11 7 211 - 215 2 - 7 - Montsec, Spain

(995) Sternberga

1989 01 07 - 1989 01 12 4 124 - 126 8 - 9 Barucci et al. (1992) ESO, La Silla, Chile 2007 03 21 - 2007 03 24 2 211 - 212 9 - 10 - Super WASP 2012 06 30 - 2012 07 15 10 292 - 292 9 - 11 Stephens (2013) Racho Cucamonga, USA 2013 11 13 - 2014 02 04 4 79 - 93 7 - 18 A. Marciniak, I. Konstanciak, P. Trela, J. Horbowicz, R. Hirsch Borowiec, Poland 2013 12 06 - 2013 12 15 5 87 - 89 5 - 7 F. Pilcher Organ Mesa, USA 2014 01 02 - 2014 02 21 4 80 - 82 9 - 20 K. Kaminski´ Winer, USA 2015 01 01 - 2015 03 16 15 169 - 178 5 - 18 - Montsec, Spain 2015 02 11 1 177 11 K. Kaminski´ Winer, USA 2015 02 25 1 174 7 F. Pilcher Organ Mesa, USA 2015 03 23 1 168 7 R. Hirsch Borowiec, Poland 2016 05 04 - 2016 07 10 24 252 - 265 5 - 15 Marciniak et al. (2018) Lowell, USA; Teide, Spain; Derenivka, Ukraine; Command Module, USA; La Sagra, Spain; Montsec, Spain; Bardon, France 2017 10 24 1 66 14 V. Kudak, V. Perig Derenivka, Ukraine 2017 12 07 - 2018 02 06 3 53 - 56 8 - 22 M. Butkiewicz - B ˛ak, R. Hirsch, J. Skrzypek Borowiec, Poland

22 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

(362) Havnia, 2017-01-07

P. Maley Gila Bend, AZ C. Wiesenborn Boulder City, NV W. Thomas Florence, AZ T. George Scottsdale, AZ

(618) Elfriede, 2008-05-26

D. Breadsell Toowoomba, Qld, AU J. Bradshaw Samford, Qld, AU P. Anderson Range Observatory, Qld, AU

(618) Elfriede, 2013-04-13

D. Herald Murrumbateman, NSW J. Drummond Patutahi, Gisborne, NZ

(618) Elfriede, 2015-12-30

J.Rovira ES R. Naves ES C.Perello,A.Selva ES C. Schnabel ES

(618) Elfriede, 2018-05-10

J. Broughton Woodburn, NSW, AU J. Broughton Grafton, NSW, AU J. Broughton Mullaway, NSW, AU

(667) Denise, 2008-04-08

R. Nugent Pontotoc, TX G. Nason Tobermory, ONT, CA M. McCants Kingsland, TX P. Maley, D. Weber Horseshoe Bay, TX

(667) Denise, 2020-04-11

S. Meister CH A. Schweizer CH C.Ellington DE S. Sposetti CH A. Manna CH A.Ossola CH O. Schreurs BE M.Bigi IT P. Baruffetti IT F. Van Den Abbeel BE J. Bourgeois BE R. Boninsegna BE

(667) Denise, 2020-05-10

K. Hanna MT K.Green CT R. Kamin PA S. Conard MD K.Getrost OH A. Scheck MD A. Caroglanian MD J. Massura IN J.Harris VA C. Anderson, K. Thomason ID M. Wasiuta, B. Billard VA B.Billard VA Table D.2: List of stellar occultation observers and locations of the observing sites.

23 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

Appendix E: Visible light curves Composite light curves in the visible, with the new data of target asteroids (Figures E.1 - E.66).

1 Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland. E-mail: [email protected] 2 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovickáchˇ 2, 180 00 Prague 8, Czech Republic 3 Max--Institut für Extraterrestrische Physik (MPE), Giessenbachstrasse 1, 85748 Garching, Germany 4 Mt. Suhora Observatory, Pedagogical University, Podchora ˛zych˙ 2, 30-084, Cracow, Poland 5 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Eotv˝ os˝ Loránd Research Network (ELKH), H-1121 Budapest, Konkoly Thege Miklós út 15-17, Hungary 6 MTA CSFK Lendület Near-Field Cosmology Research Group 7 ELTE Eötvös Loránd University, Institute of Physics, 1117, Pázmány Péter sétány 1/A, Budapest, Hungary 8 Astronomy Department, Eötvös Loránd University, Pázmány P. s. 1/A, H-1171 Budapest, Hungary 9 Observatório Nacional, R. Gen. José Cristino, 77 - São Cristóvão, 20921-400, Rio de Janeiro - RJ, Brazil 10 Observatory, CH-1290 Sauverny, 11 Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco 12 Les Engarouines Observatory, F-84570 Mallemort-du-Comtat, France 13 Collonges Observatory, F-74160 Collonges, France 14 Flarestar Observatory Fl.5/B, George Tayar Street, San Gwann SGN 3160, Malta 15 Stazione Astronomica, 28060 Sozzago (Novara), Italy 16 Haute-Provence Observatory, St-Michel l’Observatoire, France 17 Departamento de Sistema Solar, Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain 18 11 rue du Puits Coellier, F-37550 Saint-Avertin, France 19 Observatoíre du Bois de Bardon, 16110 Taponnat, France 20 Association T60, Observatoíre Midi-Pyrénées, 14, avenue Edouard Belin, 31400 Toulouse, France 21 Aix Marseille Université, CNRS, CNES, Laboratoire d’Astrophysique de Marseille, Marseille, France 22 Instituto de Astrofísica de Canarias, C/ Vía Lactea, s/n, 38205 La Laguna, Tenerife, Spain 23 Gran Telescopio Canarias (GRANTECAN), Cuesta de San José s/n, E-38712, Breña Baja, La Palma, Spain 24 Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun´ 25 School of Physical Sciences, The Open University, MK7 6AA, UK 26 Space sciences, Technologies and Astrophysics Research Institute, Université de Liège, Allée du 6 Août 17, 4000 Liège, Belgium 27 Institute of Physics, Jan Kochanowski University, ul. Uniwersytecka 7, 25-406 Kielce 28 Chungbuk National University, 1, Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea 29 Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055, Korea 30 Institute of Physics, Faculty of Natural Sciences, University of P. J. Šafárik, Park Angelinum 9, 040 01 Košice, Slovakia 31 Laboratory of Space Researches, Uzhhorod National University, Daleka st. 2a, 88000, Uzhhorod, Ukraine 32 Universidad de La Laguna, Dept. Astrofisica, E.38206 La Laguna, Tenerife, Spain 33 Institute of Theoretical Physics and Astronomy, Vilnius University, Sauletekio˙ al. 3, 10257 Vilnius, Lithuania 34 Organ Mesa Observatory, 4438 Organ Mesa Loop, Las Cruces, New Mexico 88011 USA 35 Command Module Observatory, 121 W. Alameda Dr., Tempe, AZ 85282 USA 36 Observatoire de Blauvac, 293 chemin de St Guillaume, F-84570 St-Estève, France 37 Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Alicante, Spain 38 Institut de Ciències del Cosmos, Universitat de Barcelona (IEEC-UB), Barcelona, Spain 39 Lowell Observatory, 1400 West Hill Road, Flagstaff, Arizona, 86001 USA 40 Department of Physics, Adiyaman University, 02040 Adiyaman, Turkey 41 European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany 42 Japan Spaceguard Association, Bisei Spaceguard Center, 1716-3, Okura, Bisei, Ibara, Okayama 714-1411 Japan 43 Kepler Institute of Astronomy, University of Zielona Góra, Lubuska 2, 65-265 Zielona Góra, Poland

24 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

108 Hecuba 108 Hecuba P = 14.255 h P = 14.30 h -5,6 -4,95 2015 2016/2017 Jul 2.1 Teide Aug 28.0 Bor. Aug 5.8 Adi Aug 29.0 Bor. Aug 6.9 Adi -5,55 -4,9 Sep 1.0 Bor. Aug 7.9 Adi Sep 8.0 Bor. Aug 11.0 OAdM Sep 15.9 Bor. Aug 12.0 OAdM Dec 12.9 Bor. -5,5 Aug 23.9 OAdM -4,85 Jan 8.8 Bor. Sep 5.9 OAdM Sep 6.9 OAdM Sep 13.9 OAdM -5,45 -4,8

Relative R magnitude -5,4 -4,75 Relative R and C magnitude

-5,35 -4,7

Zero time at 2015 Aug 7.7792 UTC, LT corr. Zero time at 2016 Sep 7.8417 UTC, LT corr. -5,3 -4,65 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.1: Composite light curve of (108) Hecuba from the year Fig.E.2: Composite light curve of (108) Hecuba from the years 2015. 2016-2017.

108 Hecuba 108 Hecuba P = 14.257 h P = 14.253 h -4,4 -4

-4,35 -3,95

-4,3 -3,9

-4,25 -3,85

2017/2018

Relative R magnitude -4,2 Nov 4.0 OAdM -3,8 Nov 10.1 OAdM Relative R and C magnitude 2019 Nov 12.2 OAdM Nov 14.1 OAdM Jan 19.1 Der. Feb 12.9 Der. -4,15 Nov 15.0 OAdM -3,75 Feb 28.8 Bor. Mar 23.9 Suh. Mar 2.9 Bor. Mar 30.9 Der. Zero time at 2017 Nov 9.9121 UTC, LT corr. Zero time at 2019 Mar 30.8146 UTC, LT corr. Apr 1.9 Mol. -4,1 -3,7 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.3: Composite light curve of (108) Hecuba from the years Fig.E.4: Composite light curve of (108) Hecuba from the year 2017-2018. 2019.

202 Chryseis 202 Chryseis P=23.671 h P=23.666 h -5,2 2014 -3,7 Sep 5.0 Kielce Sep 17.0 Bor. 2015/2016 Oct 6.0 Bor. Oct 28.1 Bor. Oct 11.0 Suhora Nov 9.0 Kielce Oct 26.9 Suhora Nov 23.0 Bor. Oct 31.9 OAdM -5,1 -3,6 Dec 4.1 Bor. Nov 3.5 Bisei Dec 21.0 Bor. Nov 13.8 OAdM Jan 9.8 Bor. Nov 20.9 OAdM Jan 10.3 Organ M. Jan 25.3 Organ M. Jan 28.8 Bor. Feb 23.2 Organ M. -5 -3,5 Relative C and R magnitude Relative R and C magnitude -4,9 -3,4

Zero time at: 2014 Sep 4.8729 UTC, LT corr. Zero time at: 2015 Oct 27.9667 UTC, LT corr. -4,8 -3,3 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.5: Composite light curve of (202)Chryseis from the year Fig.E.6: Composite light curve of (202) Chryseis from the 2014. years 2015-2016.

25 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

202 Chryseis 202 Chryseis P=23.661 h P=23.67 h 7,7

-4,5

7,8

2019 -4,4 Aug 24.0 Bardon 2017 Aug 25.0 Bardon Mar 20.4 Organ M. Aug 26.0 Adi. 7,9 Aug 26.1 Bardon Mar 24.0 OAdM Mar 25.0 Der. Aug 28.0 Bardon Mar 27.0 Bor. Sep 18.9 Bardon Mar 31.3 Organ M. -4,3 Sep 19.0 OAdM Apr 16.0 OAdM Sep 19.9 OAdM Apr 16.3 Organ M. Sep 21.0 OAdM Relative C and R magnitude Relative R and C magnitude 8 Apr 18.0 OAdM Sep 22.9 Adi. May 5.3 Organ M. Oct 5.2 Winer May 15.2 Organ M. Oct 7.9 Der. May 28.2 Organ M. Oct 14.9 Adi. -4,2 Oct 14.8 Piszkes. Zero time at: 2017 Mar 20.2071 UTC, LT corr. Zero time at: 2019 Sep 18.8612 UTC, LT corr. 8,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.7: Composite light curve of (202)Chryseis from the year Fig.E.8: Composite light curve of (202) Chryseis from the year 2017. 2019.

219 Thusnelda 219 Thusnelda P=59.77 h P = 59.63 h -2 -4

-1,9 -3,9

2016 Feb 5.1 OAdM -1,8 -3,8 Feb 8.4 Winer 2013 Feb 20.4 Winer May 25.0 OAdM Feb 21.4 Winer May 27.2 Organ M. Feb 27.4 Organ M. Jun 2.0 OAdM Jun 4.0 OAdM Feb 27.4 Winer Jun 5.0 OAdM. Mar 1.1 OAdM Jun 12.0 OAdM Jun 13.2 Organ M. Mar 2.0 OAdM Relative C and R magnitude Relative C nad R magnitude Jun 15.0 OAdM Mar 6.1 OAdM -1,7 Jun 21.0 OAdM -3,7 Jun 23.0 OAdM Mar 7.0 OAdM Jun 24.0 OAdM Mar 19.3 Organ M. Jun 25.0 OAdM Jun 25.2 Organ M. Mar 25.3 Organ M. Jun 26.0 OAdM Mar 31.2 Organ M. Jun 26.2 Organ M. Jun 27.0 OAdM Apr 2.9 Bor. Jun 30.0 OAdM Jul 1.0 OAdM Apr. 20.9 Bor. Zero time at: 2013 Apr 21.1250 UTC, LT corr. Zero time at: 2016 Apr 2.7696 UTC, LT corr. Apr 21.9 Bor. -1,6 -3,6 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.9: Composite light curve of (219) Thusnelda from the Fig.E.10: Composite light curve of (219) Thusnelda from the year 2013. year 2016.

(219) Thusnelda 219 Thusnelda P = 59.65 h P = 59.786 h 0,4 2017 May 26.7 SOAO May 27.7 SOAO Jun 24.0 Piszkes. Jul 4.0 La Sagra -4 Jul 4.0 La Sagra Jul 14.0 Malta Jul 14.1 OAdM Jul 15.1 OAdM Jul 20.0 OAdM Jul 22.0 Malta 0,5 Jul 22.1 OAdM Jul 22.9 OAdM Aug 5.0 Malta Aug 9.0 OAdM Aug 17.0 Malta Aug 31.9 OAdM Sep 6.0 OAdM -3,9 Sep 8.0 OAdM Sep 9.0 OAdM

0,6 2018/2019 Nov 16.1 Der. Dec 11.1 OAdM Dec 18.2 OAdM Dec 23.0 OAdM Dec 28.1 OAdM Dec 29.1 OAdM -3,8 Dec 30.1 OAdM Jan 4.4 Organ M. Jan 5.4 Organ M. Jan 7.4 Organ M. Relative R and V magnitude Relative R and C magnitude Jan 13.2 Organ M. Jan 18.0 OAdM 0,7 Jan 19.0 OAdM Jan 28.3 Organ M. Jan 30.9 Bor. Jan 31.3 Organ M. Feb 6.9 OAdM Feb 7.0 Bor. Feb 7.9 OAdM -3,7 Feb 8.8 Der. Feb 8.9 OAdM Feb 12.0 OAdM Feb 13.9 OAdM Zero time at: 2017 Aug 8.8533 UTC, LT corr. Zero time at: 2018 Nov 15.9862 UTC, LT corr. Feb 15.0 OAdM 0,8 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.11: Composite light curve of (219) Thusnelda from the Fig.E.12: Composite light curve of (219) Thusnelda from the year 2017. years 2018-2019.

26 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

223 Rosa 223 Rosa P = 20.29 h P = 20.27 h 10,15 -3,8

10,2 -3,75

10,25 -3,7

10,3 -3,65 2015 Sep 7.9 Bardon 2016 Sep 10.9 Bardon 10,35 Sep 22.0 Pic -3,6 Nov 2.0 OAdM Nov 10.0 OAdM Relative R and C magnitude Relative R and C magnitude Sep 24.0 Pic Nov 14.0 OAdM Oct 9.9 Bardon Nov 25.1 OAdM Nov 23.1 Lowell Dec 9.9 OAdM 10,4 -3,55 Dec 19.1 OAdM Dec 28.9 Bor.

Zero time at: 2015 Nov 23.0275 UTC, LT corr. Zero time at: 2016 Dec 28.6700 UTC, LT corr. 10,45 -3,5 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.13: Composite light curve of (223) Rosa from the year Fig.E.14: Composite light curve of (223) Rosa from the year 2015. 2016.

223 Rosa 223 Rosa P = 20.30 h P = 20.28 h -12,15 -12,4

-12,1 -12,35

-12,05 -12,3

-12 2018 -12,25 Feb 17.0 Bor. Feb 26.0 Bor. Mar 24.0 Der. Apr 13.2 Kepler -11,95 Relative R magnitude -12,2 2019 Apr 14.0 Kepler May 16.1 OAdM Relative R and C magnitude Apr 15.0 Kepler May 23.4 Winer Apr 15.8 Kepler May 30.0 OAdM -11,9 Apr 17.3 Kepler -12,15 May 31.0 OAdM Apr 18.0 Kepler Jun 1.0 OAdM Apr 19.0 Kepler Jun 2.0 OAdM Zero time at: 2018 Mar 23.7538 UTC, LT corr. Apr 19.9 Kepler Zero time at: 2019 May 29.8771 UTC, LT corr. Jul 20.1 TRAPPIST -11,85 -12,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.15: Composite light curve of (223) Rosa from the year Fig.E.16: Composite light curve of (223) Rosa from the year 2018. 2019.

223 Rosa 362 Havnia P = 20.279 h 2020 P=16.926 h 1,7 Jul 20.0 TRAPPIST N Jul 21.1 TRAPPIST N 10,3 Jul 22.0 TRAPPIST N Jul 23.1 TRAPPIST N 1,75 Jul 24.1 TRAPPIST N Jul 27.1 TRAPPIST N Aug 12.0 TRAPPIST N Aug 24.2 OASI 10,4 1,8 Aug 25.0 OASI Aug 25.2 OASI Aug 26.0 OASI Oct 14.8 TRAPPIST N Oct 16.9 TRAPPIST N 1,85 Oct 19.1 TRAPPIST S Oct 20.1 TRAPPIST S 10,5

1,9 Relative C magnitude

2006 Relative (I + z) and R magnitude 10,6 Jun 6.1 SuperWASP 1,95 Jun 19.0 SuperWASP Jun 23.1 SuperWASP Aug 13.8 SuperWASP Zero time at: 2020 Jul 19.9142 UTC, LT corr. Zero time at: 2006 Jun 5.9883 UTC, LT corr. Aug 26.8 SuperWASP 2 10,7 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.17: Composite light curve of (223) Rosa from the year Fig.E.18: Composite light curve of (362) Havnia from the year 2020. 2006.

27 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

362 Havnia 362 Havnia P=16.923 h P=16.930 h 0,1

9,4

0,2

9,5 2016/2017 Dec 22.1 Bor 0,3 Jan 20.0 Der Jan 23.1 Bor Jan 25.3 Tempe Jan 26.3 Tempe 9,6 Jan 27.4 Tempe Relative R magnitude 2015 Relative R magnitude Jan 28.2 Bor Jan 28.3 Tempe Oct 28.9 Bor. 0,4 Jan 29.3 Tempe Nov 8.9 Bor. Nov 29.9 OAdM Jan 30.3 Tempe Dec 1.9 OAdM Jan 31.4 Tempe Dec 10.8 Bor. 9,7 Mar 3.9 Bor Zero time at: 2015 Nov 8.8565 UTC, LT corr. Zero time at: 2017 Jan 19.9238 UTC, LT corr. 0,5 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.19: Composite light curve of (362) Havnia from the year Fig.E.20: Composite light curve of (362) Havnia from the 2015. years 2016-2017.

362 Havnia 483 Seppina P=16.928 h P = 12.716 h -3,2 8,8

-3,1 8,9

-3 9

2019/2020 2005

Aug 30.1 Bardon Relative R magnitude Jun 26.0 Sozzago Sep 5.0 Der. Relative R and C magnitude Jul 5.0 St. Avertin Sep 20.0 Bardon 9,1 -2,9 Jul 11.0 Blauvac Sep 22.0 Bor. Jul 11.9 Blauvac Sep 28.0 Adi. Jul 12.0 Sozzago Oct 15.8 Adi. Jul 13.0 Engar. Oct 17.8 Piszkes. Jul 16.0 Blauvac Zero time at: 2019 Sep 27.9571 UTC, LT corr. Jan 10.7 Piszkes. Zero time at: 2005 Jun 25.8808 UTC, LT corr. Jul 30.9 Blauvac -2,8 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.21: Composite light curve of (362) Havnia from the Fig.E.22: Composite light curve of (483) Seppina from the years 2019-2020. year 2005.

483 Seppina 483 Seppina P=12.719 h P=12.723 h -5,5 -5,2 2015 Jan 20.2 Winer Feb 12.8 Bor Mar 18.8 Bor Mar 21.2 Winer Mar 22.2 Winer -5,4 -5,1

-5,3 -5

2013 8 Oct, Bor. Relative C magnitude 16 Oct, Organ M. Relative R and C magnitude -5,2 22 Oct, Bor. -4,9 26 Oct, Organ M. 31 Oct, Bor. 20 Nov, Organ M. 17 Dec, Organ M. Zero time at: 2013 Oct 8.9121 UTC, LT corr. 23 Dec, Bor. Zero time at: 2015 Jan 20.0662 UTC, LT corr. -5,1 -4,8 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.23: Composite light curve of (483) Seppina from the Fig.E.24: Composite light curve of (483) Seppina from the year 2013. year 2015.

28 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

483 Seppina 483 Seppina P=12.721 h P=12.720 h -4,5

-5,1

-4,4

-5

-4,3 2017 Apr 2.0 Bor. -4,9 Apr 4.0 Bor.

Relative C magnitude Relative C magnitude Apr 5.0 Bor. 2016 Apr 10.0 Bor. -4,2 May 1.0 Bor. Jan 4.2 Bor. Jan 23.1 Bor. May 14.0 Bor. -4,8 Feb 17.0 Bor. May 18.9 Bor. Mar 18.0 Bor. May 27.0 Bor. Zero time at 2016 Jan 4.1308 UTC, LT corr. Apr 1.9 Bor. Zero time at 2017 May 14.8283 UTC, LT corr. May 29.9 Bor. -4,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.25: Composite light curve of (483) Seppina from the Fig.E.26: Composite light curve of (483) Seppina from the year 2016. year 2017.

483 Seppina 501 Urhixidur P=12.724 h P=13.175 h -3,9 -3,25

-3,2 -3,8

-3,15

2018 -3,7 Jul 20.1 OAdM Jul 21.1 OAdM Jul 22.9 OAdM Jul 23.9 OAdM Jul 29.1 OAdM -3,1 Jul 30.1 OAdM Jul 31.1 OAdM Relative R magnitude Aug 1.1 OAdM Relative C magnitude Aug 3.0 OAdM 2013 -3,6 Aug 5.0 OAdM Aug 6.0 OAdM 6 Sep, Bor. Aug 7.0 OAdM -3,05 24 Sep, Bor. Aug 14.9 OAdM 3 Oct, Bor. Aug 16.0 OAdM 24 Oct, Bor. 30 Dec, Bor. Zero time at 2018 Aug 7.8379 UTC, LT corr. Zero time at: 2013 Sep 24.8342 UTC, LT corr. -3,5 -3 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.27: Composite light curve of (483) Seppina from the Fig.E.28: Composite light curve of (501) Urhixidur from the year 2018. year 2013.

501 Urhixidur 501 Urhixidur P=13.174 h P=13.170 h -3,7 -4

-3,65 -3,95

-3,6 -3,9

2014/2015 -3,55 -3,85 Oct 30.0 Bor. 2016

Dec 28.8 Bor. Relative C magnitude Feb 7.2 Bor. Dec 29.8 Bor. Feb 13.3 Winer Relative C and R magnitude Jan 13.7 Bor. Feb 16.5 Winer Jan 21.1 Winer Feb 29.5 Winer -3,5 Feb 28.9 Bor. -3,8 Mar 1.4 Winer Mar 18.0 Bor. Mar 13.8 Bor. Mar 23.0 Suh. Mar 27.0 Bor. Mar 23.9 Suh. Apr 29.9 Bor. Zero time at: 2014 Oct 29.9471 UTC, LT corr. Apr 29.2 Winer Zero time at: 2016 Mar 1.1838 UTC, LT corr. -3,45 -3,75 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.29: Composite light curve of (501) Urhixidur from the Fig.E.30: Composite light curve of (501) Urhixidur from the years 2014-2015. year 2016.

29 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

501 Urhixidur P=13.18 h -4,75 501 Urhixidur P=13.176 h 9,1 2018 Aug 5.0 TESS -4,7 Aug 6.0 TESS Aug 7.0 TESS 9,15 Aug 7.8 TESS Aug 9.3 TESS Aug 10.0 TESS -4,65 Aug 11.0 TESS Aug 12.0 TESS 9,2 Aug 13.0 TESS Aug 14.0 TESS Aug 14.3 CTIO Aug 15.0 TESS -4,6 Aug 16.0 TESS 9,25 Aug 17.0 TESS Relative C magnitude Aug 18.0 TESS Aug 19.0 TESS 2017 Relative R and C magnitude Aug 20.0 TESS -4,55 Aug 21.0 TESS Feb 8.3 CTIO 9,3 Mar 9.2 CTIO Aug 22.1 TESS May 4.1 OASI Sep 14.1 OASI Sep 15.2 OASI Zero time at: 2017 May 4.0254 UTC, LT corr. Zero time at: 2018 Aug 6.5021 UTC, LT corr. -4,5 9,35 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 Phase Phase Fig.E.31: Composite light curve of (501) Urhixidur from the Fig.E.32: Composite light curve of (501) Urhixidur from the year 2017. year 2018.

501 Urhixidur 537 Pauly P=13.179 h P = 16.301 h -3,4 -4,4

-3,35 -4,3

-3,3 -4,2

2016 Feb 24.5 Winer -3,25 2019 -4,1 Mar 2.5 Winer Aug 12.0 Adi Mar 5.4 Winer

Aug 14.0 Adi Relative R and C magnitude Mar 10.4 Winer Relative R and C magnitude Aug 16.0 Adi Mar 18.1 Bor. -3,2 Aug 19.9 Adi Apr 30.0 Bor. Oct 11.9 Piszkes. -4 May 1.1 Bor. Oct 12.9 Bor. May 10.0 Bor. Oct 15.9 Bor. Zero time at: 2019 Oct 15.7850 UTC, LT corr. Dec 15.0 Piszkes. Zero time at 2016 Feb 24.3417 UTC, LT corr. -3,15 -3,9 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.33: Composite light curve of (501) Urhixidur from the Fig.E.34: Composite light curve of (537) Pauly from the year year 2019. 2016.

537 Pauly 537 Pauly

P = 16.301 h P = 16.295 h 2018

Oct 10.1 Bor. 2017 Oct 15.0 Bor. -2,5 Aug 3.0 OAdM -4,4 Oct 18.1 Bor. Oct 22.0 Bor. Aug 4.0 OAdM Nov 26.3 TESS Aug 5.0 OAdM Nov 27.0 TESS Aug 11.0 OAdM Nov 27.6 TESS Nov 29.3 TESS -2,4 Aug 14.0 OAdM -4,3 Nov 30.0 TESS Aug 17.0 OAdM Nov 30.0 Bor. Aug 18.9 OAdM Dec 1.0 TESS Dec 2.0 TESS Sep 23.9 OAdM Dec 3.0 TESS Sep 24.9 OAdM Dec 4.0 TESS -2,3 -4,2 Dec 5.0 TESS Dec 6.0 TESS Dec 7.0 TESS Dec 8.2 TESS Dec 9.0 TESS Dec 10.0 TESS -2,2 -4,1 Dec 11.0 TESS Relative R magnitude Relative R and C magnitude

-2,1 -4

Zero time at 2017 Aug 3.9142 UTC, LT corr. Zero time at: 2018 Oct 9.9512 UTC, LT corr. -2 -3,9 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 Phase Phase Fig.E.35: Composite light curve of (537) Pauly from the years Fig.E.36: Composite light curve of (537) Pauly from the year 2017. 2018.

30 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

537 Pauly 552 Sigelinde P = 16.299 h P=17.143 h -3,6 -4,9

-3,55

-4,8 -3,5

-4,7 -3,45

-4,6 2019/2020

Relative C magnitude -3,4 Nov 25.0 Adi. Relative R and C magnitude Nov 27.8 SOAO 2015 Nov 29.0 Adi. Aug 25.9 Bor. -4,5 Dec 6.1 Bor. Sep 19.0 Bor. Dec 17.9 Adi. -3,35 Sep 25.0 Bor. Jan 16.0 Der. Oct 1.0 Bor. Oct 2.9 Bor. Zero time at 2019 Nov 27.6367 UTC, LT corr. Zero time at: 2015 Aug 25.8729 UTC, LT corr. -4,4 -3,3 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.37: Composite light curve of (537) Pauly from the years Fig.E.38: Composite light curve of (552) Sigelinde from the 2019-2020. year 2015.

552 Sigelinde 552 Sigelinde P=17.150 h P=17.158 h -4,15 -4,95

-4,1 -4,9

-4,05 -4,85

-4 -4,8

-3,95 -4,75 2016/2017 2018 Relative R and C magnitude Relative R and C magnitude Nov 21.1 Bor. Feb 23.9 Bor. Dec 5.8 Bor. Feb 25.9 Bor. Jan 16.0 ORM Mar 14.5 SOAO -3,9 Jan 25.6 SOAO -4,7 Mar 16.6 SOAO Feb 8.1 CTIO Mar 19.2 Winer Feb 10.5 BOAO Apr 9.9 Bor. Zero time at: 2017 Feb 11.4238 UTC, LT corr. Feb 11.5 BOAO Zero time at: 2018 Mar 19.1075 UTC, LT corr. -3,85 -4,65 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.39: Composite light curve of (552) Sigelinde from the Fig.E.40: Composite light curve of (552) Sigelinde from the years 2016-2017. year 2018.

552 Sigelinde 618 Elfriede P = 14.799 h P = 17.152 h 2019 -4,15 -4,7 Apr 26.4 Winer Apr 26.4 TESS Apr 27.0 TESS Apr 27.4 Winer -4,65 -4,1 Apr 28.0 TESS C C A C A Apr 28.3 Winer A A C C CC Apr 29.0 TESS C C A A A A C Apr 29.3 Winer C C C C A A Apr 30.0 TESS A A -4,05 C A -4,6 A May 1.0 TESS A C A C C May 2.0 TESS A A A May 3.0 TESS C CA C A C May 4.0 TESS A C -4 May 5.0 TESS -4,55 C A May 5.8 TESS 2014 A A CA C A A A May 7.4 TESS Oct 2.0 OAdM C A C AA C A A C AC May 7.7 TESS Oct 22.0 OAdM CA A A A C CA C A C C A C May 11.1 TESS A A CA Oct 31.9 OAdM A Relative R magnitude -4,5 -3,95 C May 12.0 OAdM Nov 5.9 OAdM C A A May 12.0 TESS Relative R and C magnitude C Nov 8.9 OAdM May 13.0 TESS Nov 10.9 OAdM May 14.0 TESS Nov 12.9 OAdM -3,9 May 15.0 TESS -4,45 Nov 13.9 OAdM May 16.0 TESS Nov 20.9 OAdM May 17.0 TESS Dec 5.8 OAdM May 18.0 TESS Dec 7.9 OAdM Zero time at: 2019 Apr 26.1992 UTC, LT corr. A May 19.0 TESS Dec 9.8 OAdM Zero time at: 2014 Oct 31.8125 UTC, LT corr. -3,85 C May 20.0 TESS -4,4 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1 1,2 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.41: Composite light curve of (552) Sigelinde from the Fig.E.42: Composite light curve of (618) Elfriede from the year 2019. year 2014.

31 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

618 Elfriede 618 Elfriede P = 14.795 h P = 14.794 h -4,3 -5,35

-4,25 -5,3

-4,2 -5,25

-4,15 -5,2 2016/2017 Dec 29.2 Bor. -4,1 -5,15 Jan 7.0 Bor. Jan 25.8 SOAO

Relative R and C magnitude 2015/2016 Relative R and C magnitude Feb 4.9 Suh. Oct 11.1 OAdM Feb 22.3 Tempe Nov 16.1 OAdM Feb 23.4 Tempe -4,05 Nov 17.1 OAdM -5,1 Feb 24.3 Tempe Jan 3.0 OAdM Feb 25.3 Tempe Jan 22.9 Bor. Mar 14.9 Suh. Zero time at: 2015 Nov 17.9004 UTC, LT corr. Jan 27.9 OAdM Zero time at: 2017 Jan 7.9217 UTC, LT corr. Mar 16.1 Bor. -4 -5,05 Apr 9.9 Bor. 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.43: Composite light curve of (618) Elfriede from the Fig.E.44: Composite light curve of (618) Elfriede from the years 2015-2016. year 2017.

618 Elfriede 618 Elfriede P = 14.797 h P = 14.80 h -3,65

-3,85 -3,6

-3,8 -3,55

-3,75 -3,5 2018 Feb 27.1 Bor. Mar 2.1 Suhora -3,7 Relative R magnitude -3,45 Mar 3.1 Suhora

Relative R and C magnitude Apr 13.0 Der. 2019 Apr 19.0 Bor. Apr 21.0 Bor. Jul 22.9 Adi. -3,65 May 8.0 Der. -3,4 Jul 23.9 Adi. Jul 24.9 Adi. May 8.0 Bor. Jul 25.9 Adi. Zero time at: 2018 Mar 1.9767 UTC, LT corr. May 9.0 Bor. Zero time at: 2019 Jul 23.8283 UTC, LT corr. Jul 26.9 Adi. -3,6 -3,35 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.45: Composite light curve of (618) Elfriede from the Fig.E.46: Composite light curve of (618) Elfriede from the year 2018. year 2019.

666 Desdemona 666 Desdemona P = 14.617 h 2015 P = 14.604 h -4,9 -1,9 Jan 1.2 OAdM Jan 2.2 OAdM Jan 3.2 OAdM Jan 23.2 OAdM Jan 24,2 OAdM -4,8 Feb 12.4 Winer -1,8 Feb 16.1 OAdM Feb 18.9 OAdM Feb 20.1 OAdM Feb 26.1 OAdM -4,7 Feb 28.0 OAdM -1,7 Mar 3.1 OAdM Mar 12.0 OAdM Mar 14.0 OAdM Mar 15.0 OAdM Mar 17.0 OAdM 2016 Mar 19.0 Bor. -4,6 -1,6 Apr 17.4 Kitt Peak Apr 14.1 Winer Apr 17.5 Kitt Peak Relative R magnitude Apr 30.2 ORM Relative C and R magnitude May 2.1 OAdM Jul 1.0 La Sagra -4,5 -1,5 Jul 2.0 La Sagra Jul 4.0 La Sagra Jul 5.0 La Sagra Zero time at: 2015 Jan 24.0546 UTC, LT corr. Zero time at: 2016 Apr 17.3654 UTC, LT corr. Jul 24.0 Teide -4,4 -1,4 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.47: Composite light curve of (666) Desdemona from the Fig.E.48: Composite light curve of (666) Desdemona from the year 2015. year 2016.

32 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

666 Desdemona 666 Desdemona P = 14.611 h P = 14.601 h 11,4 -6,5

11,5 -6,4

11,6 -6,3

2017/2018 2019 Sep 17.4 Tempe 11,7 -6,2 Jan 8.1 La Sagra Sep 18.4 Tempe Feb 4.2 OAdM Sep 19.0 Bor. Feb 7.1 Piszkes. Sep 19.4 Tempe Feb 10.2 OAdM Relative R and C magnitude Relative r' and C magnitude Sep 20.4 Tempe Mar 11.9 OAdM Sep 21.4 Tempe Apr 1.9 Bor 11,8 Sep 22.4 Tempe -6,1 Apr 3.9 Bor. Sep 23.4 Tempe Apr 4.0 OAdM Oct 17.1 Bor. Apr 4.8 OAdM Nov 23.1 Bor. Apr 8.0 OAdM Zero time at: 2017 Sep 17.2500 UTC, LT corr. Dec 13.8 Bor. Zero time at: 2019 Feb 6.9550 UTC, LT corr. 11,9 Jan 8.8 Bor. -6 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.49: Composite light curve of (666) Desdemona from the Fig.E.50: Composite light curve of (666) Desdemona from the years 2017-2018. year 2019.

667 Denise 667 Denise P=12.686 h P=12.683 h

2014 2015 28.9 Mar, Bor. 23.1 Mar, Suhora 31.0 Mar, Bor. -3,5 -4,3 24.1 Mar, Suhora 30.0 Apr, Bor. 22.0 Apr, Bor. 1.0 May, Bor. 24.0 Apr, Bor. 19.9 May, Bor. 31.2 May, Winer 28.0 Jun, Teide -3,4 -4,2

-3,3 -4,1 Relative C magnitude Relative C and R magnitude

-3,2 -4 Zero time at: 2014 Mar 28.7658 UTC, LT corr. Zero time at: 2015 Mar 23.0529 UTC, LT corr. 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.51: Composite light curve of (667) Denise from the year Fig.E.52: Composite light curve of (667) Denise from the year 2014. 2015.

667 Denise 667 Denise P=12.687 h P=12.684 h -3,2

-3,6

-3,1

-3,5

-3 2017 Aug 8.0 Suhora 2016 -3,4 Aug 27.2 Teide Jul 24.1 OAdM

Relative R magnitude Sep 1.1 OAdM Jul 25.1 OAdM Sep 2.0 OAdM Relative R and C magnitude Jul 27.0 OAdM -2,9 Jul 31.0 Piszkes. Sep 3.0 OAdM Aug 2.9 Piszkes. Sep 5.0 OAdM Aug 19.9 Piszkes. Sep 10.0 OAdM Aug 20.9 Piszkes. -3,3 Sep 13.0 OAdM Aug 27.0 ORM Sep 17.0 OAdM Zero time at: 2016 Aug 20.8283 UTC, LT corr. Aug 31.9 Bor. Zero time at: 2017 Aug 8.9042 UTC, LT corr. Sep 18.1 OAdM -2,8 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.53: Composite light curve of (667) Denise from the year Fig.E.54: Composite light curve of (667) Denise from the year 2016. 2017.

33 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

667 Denise 780 Armenia P=12.691 h P=19.890 h -2,2 -2,95 2014 Feb 25.1 Bor. Feb 26.1 Bor -2,9 Mar 12.1 Bor. Mar 14.1 Bor. -2,1 Mar 21.2 Bor. Mar 30.9 Bor. -2,85 Apr 17.9 Bor. May 31.9 Bor.

-2 -2,8

2018/2019 Nov 24.0 OAdM Dec 11.1 OAdM Relative C magnitude -2,75 Dec 23.1 OAdM Relative R and C magnitude Dec 24.1 OAdM -1,9 Dec 25.1 OAdM Dec 27.1 OAdM Jan 26.0 OAdM -2,7 Jan 26.9 OAdM Jan 27.9 OAdM Zero time at: 2018 Dec 10.0371 UTC, LT corr. Feb 18.8 Bor. Zero time at: 2014 Feb 25.0588 UTC, LT corr. -1,8 -2,65 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.55: Composite light curve of (667) Denise from the Fig.E.56: Composite light curve of (780) Armenia from the years 2018-2019. year 2014.

780 Armenia 780 Armenia P=19.898 h P=19.882 h -5,15 9,45 2015 2016 Aug 26.4 CTIO Apr 16.0 Bor Oct 8.9 OAdM May 1.0 Bor Oct 10.2 Lowell May 16.0 Bor Oct 11.1 Lowell -5,1 May 21.4 Winer 9,5 May 22.4 Winer Oct 11.2 Lowell May 31.0 Bor Oct 12.1 Lowell Jun 7.4 Winer Jun 12.2 Winer Oct 13.2 Lowell Jun 18.0 OAdM Oct 15.9 OAdM Jun 19.0 OAdM Jun 19.3 Winer Oct 20.1 Lowell -5,05 Jun 20.0 OAdM 9,55 Jun 20.4 Winer Oct 22.1 Lowell Jun 21.0 OAdM Jun 22.0 OAdM Oct 23.1 Lowell Jun 22.4 Winer Oct 31.1 Lowell Jun 25.0 OAdM Jun 27.0 OAdM Nov 2.1 Lowell Jun 28.0 OAdM Nov 3.1 Lowell -5 CCC A Jul 3.0 OAdM 9,6 A B Jul 5.0 OAdM B Nov 8.1 Lowell A C Jul 7.0 OAdM C A B Dec 4.1 Tempe C C B Dec 5.1 Tempe C A B C -4,95 A BB Relative R magnitude 9,65 A B Relative R and C magnitude A B

-4,9 9,7

Zero time at: 2015 Jun 20.2929 UTC, LT corr. Zero time at: 2016 Oct 20.0704 UTC, LT corr. -4,85 9,75 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.57: Composite light curve of (780) Armenia from the Fig.E.58: Composite light curve of (780) Armenia from the year 2015. year 2016.

780 Armenia 780 Armenia P=19.890 h P=19.892 h -4,8 -3,55

-4,75 -3,5

-4,7 -3,45

2017/2018 -4,65 -3,4 Dec 15.2 OASI 2018/2019 Dec 17.6 SOAO Dec 19.7 SOAO Dec 4.9 SOAO Jan 3.4 LOAO Jan 5.7 SOAO -4,6 Jan 5.4 LOAO -3,35 Jan 6.8 SOAO

Relative R and C magnitude Jan 21.0 OASI Relative R and C magnitude Jan 20.1 Bor. Jan 22.0 OASI Feb 1.1 Bor. Jan 24.2 Winer Feb 7.2 Bor. -4,55 Feb 8.8 Bor. -3,3 Feb 23.0 Der. Feb 13.6 SOAO Feb 24.0 Bor. Feb 16.9 Bor. Mar 1.0 Bor. Zero time at: 2018 Jan 24.0604 UTC, LT corr. Mar 27.2 Winer Zero time at: 2019 Jan 6.6642 UTC, LT corr. Mar 30.9 Bor. -4,5 -3,25 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.59: Composite light curve of (780) Armenia from the Fig.E.60: Composite light curve of (780) Armenia from the years 2017-2018. years 2018-2019.

34 Marciniak et al.: Properties of slowly rotating asteroids from CITPM

923 Herluga 923 Herluga P=29.703 h P=29.708 h -2,45 -2 2014 2015 14 Mar, OAdM Mar 17.1 OAdM -2,4 16 Mar, OAdM -1,95 Apr 2.2 OAdM 17 Mar, OAdM Apr 3.2 OAdM 23 Mar, OAdM Apr 4.0 OAdM 17 Apr, OAdM Apr 5.1 OAdM -2,35 18 Apr, OAdM -1,9 Apr 18.4 Winer 23 Apr, OAdM May 11.3 Winer May 28.0 OAdM -2,3 -1,85 Jun 22.3 Winer

-2,25 -1,8

Relative R and C magnitude -2,2 Relative R and C magnitude -1,75

-2,15 -1,7

Zero time at: 2014 Mar 14.8221 UTC, LT corr. Zero time at: 2015 Mar 17.0312 UTC, LT corr. -2,1 -1,65 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.61: Composite light curve of (923) Herluga from the Fig.E.62: Composite light curve of (923) Herluga from the year 2014. year 2015.

923 Herluga 995 Sternberga P=29.74 h P=11.201 h -4,4 -2,15 Zero time at: 2013 Dec 7.1329 UTC, LT corr.

-4,35 -2,1

-4,3

-2,05 -4,25 2019 Mar 30.0 Piszkes. 2013/2014 Apr 1.1 Piszkes. Nov 14.0 Bor. -4,2 Apr 2.0 Piszkes. Dec 2.0 Bor. Apr 27.1 OAdM -2 Dec 6.3 Organ M. Apr 28.1 OAdM Dec 7.3 Organ M. Relative C magnitude Apr 29.1 OAdM Dec 10.4 Organ M.

Relative R and C magnitude -4,15 May 4.9 OAdM Dec 14.3 Organ M. May 5.9 OAdM Dec 15.3 Organ M. May 10.9 OAdM -1,95 Dec 27.9 Bor. Jan 2.2 Winer May 12.0 OAdM -4,1 Jan 10.3 Winer Feb 4.8 Bor. Zero time at: 2019 Mar 29.9025 UTC, LT corr. Feb 20.2 Winer Feb 21.2 Winer -4,05 -1,9 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.63: Composite light curve of (923) Herluga from the Fig.E.64: Composite light curve of (995) Sternberga from the year 2019. years 2013-2014.

995 Sternberga 995 Sternberga P = 11.198 h P = 11.203 h -4 10

-3,95 10,05

-3,9 10,1

2015 Jan 1.1 OAdM -3,85 Jan 2.1 OAdM 10,15 Jan 3.1 OAdM Jan 15.2 OAdM

Jan 23.1 OAdM Relative C magnitude Jan 24.1 OAdM Feb 10.1 OAdM Relative R and C magnitude Feb 11.1 OAdM Feb 11.4 Winer Feb 25.4 Organ M. Feb 26.0 OAdM 2017/2018 -3,8 Feb 28.0 OAdM 10,2 Mar 3.0 OAdM Mar 12.9 OAdM Oct 24.9 Der. Mar 13.9 OAdM Dec 7.8 Bor. Mar 15.0 OAdM Mar 17.0 OAdM Jan 7.9 Bor. Zero time at: 2015 Mar 13.8283 UTC, LT corr. Mar 23.9 Bor. Zero time at: 2017 Dec 24.8358 UTC, LT corr. Feb 6.8 Bor. -3,75 10,25 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 Phase Phase Fig.E.65: Composite light curve of (995) Sternberga from the Fig.E.66: Composite light curve of (995) Sternberga from the year 2015. years 2017-2018.

35