Kallikrein Family Proteases KLK6 and KLK7 Are Potential Early Detection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
To Study Mutant P53 Gain of Function, Various Tumor-Derived P53 Mutants
Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Shama K Khokhar M.Sc., Bilaspur University, 2004 B.Sc., Bhopal University, 2002 2007 1 COPYRIGHT SHAMA K KHOKHAR 2007 2 WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES Date of Defense: 12-03-07 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SHAMA KHAN KHOKHAR ENTITLED Differential effects of mutant TAp63γ on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Madhavi P. Kadakia, Ph.D. Thesis Director Daniel Organisciak , Ph.D. Department Chair Committee on Final Examination Madhavi P. Kadakia, Ph.D. Steven J. Berberich, Ph.D. Michael Leffak, Ph.D. Joseph F. Thomas, Jr., Ph.D. Dean, School of Graduate Studies 3 Abstract Khokhar, Shama K. M.S., Department of Biochemistry and Molecular Biology, Wright State University, 2007 Differential effect of TAp63γ mutants on transactivation of p53 and/or p63 responsive genes and their effects on global gene expression. p63, a member of the p53 gene family, known to play a role in development, has more recently also been implicated in cancer progression. Mice lacking p63 exhibit severe developmental defects such as limb truncations, abnormal skin, and absence of hair follicles, teeth, and mammary glands. Germline missense mutations of p63 have been shown to be responsible for several human developmental syndromes including SHFM, EEC and ADULT syndromes and are associated with anomalies in the development of organs of epithelial origin. -
Depletion of the Third Complement Component Ameliorates Age- Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model
Hindawi Oxidative Medicine and Cellular Longevity Volume 2017, Article ID 5306790, 17 pages https://doi.org/10.1155/2017/5306790 Research Article Depletion of the Third Complement Component Ameliorates Age- Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model 1 1 1 1 Dorota Rogińska, Miłosz P. Kawa, Ewa Pius-Sadowska, Renata Lejkowska, 1 2 3,4 3,4 Karolina Łuczkowska, Barbara Wiszniewska, Kai Kaarniranta, Jussi J. Paterno, 5 1 2,6 Christian A. Schmidt, Bogusław Machaliński, and Anna Machalińska 1Department of General Pathology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland 2Department of Histology and Embryology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland 3Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland 4Department of Ophthalmology, Kuopio University Hospital, 70211 Kuopio, Finland 5Clinic for Internal Medicine C, University of Greifswald, 17475 Greifswald, Germany 6Department of Ophthalmology, Pomeranian Medical University, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland Correspondence should be addressed to Anna Machalińska; [email protected] Received 25 April 2017; Revised 28 June 2017; Accepted 9 July 2017; Published 8 August 2017 Academic Editor: Kota V. Ramana Copyright © 2017 Dorota Rogińska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of the study was to investigate the influence of complement component C3 global depletion on the biological structure and function of the aged retina. In vivo morphology (OCT), electrophysiological function (ERG), and the expression of selected oxidative stress-, apoptosis-, and autophagy-related proteins were assessed in retinas of 12-month-old C3-deficient and WT mice. -
Downloaded from Genomic Data Common Website (GDC at Accessed on 2019)
G C A T T A C G G C A T genes Article Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer Ritu Pandey 1,2,*, Muhan Zhou 3, Yuliang Chen 3, Dalila Darmoul 4 , Conner C. Kisiel 2, Valentine N. Nfonsam 5 and Natalia A. Ignatenko 1,2 1 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; [email protected] 2 University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; [email protected] 3 Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; [email protected] (M.Z.); [email protected] (Y.C.) 4 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France; [email protected] 5 Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death world- wide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated Citation: Pandey, R.; Zhou, M.; Chen, KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) Y.; Darmoul, D.; Kisiel, C.C.; and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome Nfonsam, V.N.; Ignatenko, N.A. -
Kallikrein 13: a New Player in Coronaviral Infections
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971499; this version posted March 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Kallikrein 13: a new player in coronaviral infections. 2 3 Aleksandra Milewska1,2, Katherine Falkowski2, Magdalena Kalinska3, Ewa Bielecka3, 4 Antonina Naskalska1, Pawel Mak4, Adam Lesner5, Marek Ochman6, Maciej Urlik6, Jan 5 Potempa2,7, Tomasz Kantyka3,8, Krzysztof Pyrc1,* 6 7 1 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian 8 University, Gronostajowa 7a, 30-387 Krakow, Poland. 9 2 Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, 10 Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. 11 3 Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska 12 Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, 13 Poland. 14 4 Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and 15 Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387, Krakow, Poland. 16 5 University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland. 17 6 Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical 18 University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland. 19 7 Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, 20 Louisville, KY 40202, USA. 21 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 22 5020 Bergen, Norway 23 24 25 26 27 28 29 30 31 * Correspondence should be addressed to Krzysztof Pyrc ([email protected]), Virogenetics 32 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 33 Gronostajowa 7, 30-387 Krakow, Poland; Phone number: +48 12 664 61 21; www: 34 http://virogenetics.info/. -
AACR2006-1686P
Funding Proteinases and Inflammation Network Group grant Kallikrein 14 Signalling through Proteinase-Activated Receptors CIHR operating grant 1,2 3,4 3,4 3,4 5 Alberta Heritage Foundation for Katerina Oikonomopoulou , Kristina K. Hansen , Mahmoud Saifeddine , Illa Tea , Patricia Andrade-Gordon , Medical Research Graeme S. Cottrell6, Nigel W. Bunnett6, Nathalie Vergnolle3, Eleftherios P. Diamandis1,2 and Morley D. Hollenberg3,4 NSERC / CRSNG 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto; 2Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto; 3Department of Pharmacology & Therapeutics, and 4Department of Medicine, University of Calgary, Calgary; 5Johnson & Johnson Pharmaceutical Research and Development, Spring House, Pennsylvania, 6Departments of Surgery and Physiology, University of California, San Francisco Kallikrein 14 can selectively disarm PAR (lower concentrations), OVERVIEW Figure 1: Mechanism of PAR activation (activation by proteolysis) 2. Kallikrein 14 can selectively disarm PAR1 (lower concentrations), 2+ Proteinase-activated receptors (PARs): a family of G-protein coupled receptors activated by serine proteinase cleavage site whilst activating PARs 2 and 4; Ca in HEK cells proteinases via a proteolytically revealed ‘tethered ligand’ (Fig. 1). Four family members (Fig. 2); PARs N PAR disarming 1, 2 and 4 signal to cells. N PAR1 dis-arming1 vs. activation Selective activation of PAR4 vs. PARs 1, 2 Human kallikreins (hKs): A 15-member family of secreted serine proteinases implicated in tumour 1 cm Thrombin 1 cm 2 min 2 min TFLLR-NH2 progression and cell survival (Fig. 4). (selective desensitization hK14: a tryptic kallikrein; wide tissue distribution, implicated in breast and ovarian cancer (Fig. 5 and 6). of PAR1) The mechanism of kallikrein action is not yet known: Although some targets have been identified (e.g. -
Aberrant Human Tissue Kallikrein Levels in the Stratum Corneum and Serum of Patients with Psoriasis: Dependence on Phenotype, Severity and Therapy N
CLINICAL AND LABORATORY INVESTIGATIONS DOI 10.1111/j.1365-2133.2006.07743.x Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy N. Komatsu,* à K. Saijoh,§ C. Kuk,* F. Shirasaki,à K. Takeharaà and E.P. Diamandis* *Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada àDepartment of Dermatology and §Department of Hygiene, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan Summary Correspondence Background Human tissue kallikreins (KLKs) are a family of 15 trypsin-like or Eleftherios P. Diamandis. chymotrypsin-like secreted serine proteases (KLK1–KLK15). Multiple KLKs have E-mail: [email protected] been quantitatively identified in normal stratum corneum (SC) and sweat as can- didate desquamation-related proteases. Accepted for publication 7 November 2006 Objectives To quantify KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13 and KLK14 in the SC and serum of patients with psoriasis, and their variation Key words between lesional and nonlesional areas and with phenotype, therapy and severity. diagnostic marker, human kallikreins, psoriasis, The overall SC serine protease activities were also measured. serine proteases, stratum corneum, therapy Methods Enzyme-linked immunosorbent assays and enzymatic assays were used. Conflicts of interest Results The lesional SC of psoriasis generally contained significantly higher levels None declared. of all KLKs. KLK6, KLK10 and KLK13 levels were significantly elevated even in the nonlesional SC. The overall trypsin-like, plasmin-like and furin-like activities were significantly elevated in the lesional SC. -
Human Tissue Kallikrein Expression in the Stratum Corneum and Serum of Atopic Dermatitis Patients
DOI:10.1111/j.1600-0625.2007.00562.x www.blackwellpublishing.com/EXD Original Article Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients Nahoko Komatsu1,2,3,4, Kiyofumi Saijoh4, Cynthia Kuk1, Amber C. Liu1, Saba Khan1, Fumiaki Shirasaki3, Kazuhiko Takehara3 and Eleftherios P. Diamandis1,2 1Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; 2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; 3Department of Dermatology, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan; 4Department of Hygiene, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan Correspondence: Eleftherios P. Diamandis, MD, PhD, FRCPC, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada, Tel.: +1 416 586 8443, Fax: +1 416 586 8628, e-mail: [email protected] Accepted for publication 9 March 2007 Abstract: Human tissue kallikreins are a family of 15 trypsin- or differ significantly. In the serum of AD patients, KLK8 was chymotrypsin-like secreted serine proteases (KLK1–KLK15). Many significantly elevated and KLK5 and KLK11 were significantly KLKs have been identified in normal stratum corneum (SC) and decreased. However, their serum levels were not modified by sweat, and are candidate desquamation-related proteases. We corticosteroid topical agents. The alterations of KLK levels in the report quantification by enzyme-linked immunosorbent assay SC of AD were more pronounced than those in the serum. KLK7 (ELISA) of KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13 and in the serum was significantly correlated with eosinophil counts in KLK14 in the SC and serum of atopic dermatitis (AD) patients by the blood of AD patients, while KLK5, KLK8 and KLK11 were ELISA, and examine their variation with clinical phenotype, significantly correlated with LDH in the serum. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Download, Or Email Articles for Individual Use
Florida State University Libraries Faculty Publications The Department of Biomedical Sciences 2010 Functional Intersection of the Kallikrein- Related Peptidases (KLKs) and Thrombostasis Axis Michael Blaber, Hyesook Yoon, Maria Juliano, Isobel Scarisbrick, and Sachiko Blaber Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] Article in press - uncorrected proof Biol. Chem., Vol. 391, pp. 311–320, April 2010 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BC.2010.024 Review Functional intersection of the kallikrein-related peptidases (KLKs) and thrombostasis axis Michael Blaber1,*, Hyesook Yoon1, Maria A. locus (Gan et al., 2000; Harvey et al., 2000; Yousef et al., Juliano2, Isobel A. Scarisbrick3 and Sachiko I. 2000), as well as the adoption of a commonly accepted Blaber1 nomenclature (Lundwall et al., 2006), resolved these two fundamental issues. The vast body of work has associated 1 Department of Biomedical Sciences, Florida State several cancer pathologies with differential regulation or University, Tallahassee, FL 32306-4300, USA expression of individual members of the KLK family, and 2 Department of Biophysics, Escola Paulista de Medicina, has served to elevate the importance of the KLKs in serious Universidade Federal de Sao Paulo, Rua Tres de Maio 100, human disease and their diagnosis (Diamandis et al., 2000; 04044-20 Sao Paulo, Brazil Diamandis and Yousef, 2001; Yousef and Diamandis, 2001, 3 Program for Molecular Neuroscience and Departments of 2003; -
Table S1. List of All Proteins Included in the Proseek® Multiplex Oncology I V2 96X96 Cancer Panel
Table S1. List of all proteins included in the Proseek® Multiplex Oncology I v2 96x96 Cancer Panel. Adrenomedullin (AM) Ezrin (EZR) Latency-associated peptide transforming growth factor beta-1 (LAP TGF-beta-1) Amphiregulin (AR) Fas antigen ligand (FasL) Angiopoietin-1 receptor (TIE2) FAS-associated death domain protein (FADD) Lipopolysaccharide-induced tumor necrosis factor- alpha factor (LITAF) B-cell activating factor (BAFF) Fms-related tyrosine kinase 3 ligand (Flt3L) Cadherin-3 (CDH3) Folate receptor alpha (FR-alpha) Macrophage colony-stimulating factor 1 (CSF-1) Carbonic anhydrase IX (CAIX) Follistatin (FS) Matrix metalloproteinase-1 (MMP-1) Carcinoembryonic antigen (CEA) Furin (FUR) Melanoma-derived growth regulatory protein (MIA) Caspase-3 (CASP-3) Growth hormone (GH) MHC class I polypeptide-related sequence A (MIC-A) C-C motif chemokine 19 (CCL19) Growth/differentiation factor 15 (GDF-15) Midkine (MK) CD40 ligand (CD40-L) Heparin-binding EGF-like growth factor (HB-EGF) Monocyte chemotactic protein 1 (MCP-1) C-X-C motif chemokine 5 (CXCL5) Hepatocyte growth factor (HGF) Myeloid differentiation primary response protein MyD88 (MYD88) C-X-C motif chemokine 9 (CXCL9) ICOS ligand (ICOSLG) C-X-C motif chemokine 10 (CXCL10) Immunoglobulin-like transcript 3 (ILT-3) NF-kappa-B essential modulator (NEMO) C-X-C motif chemokine 11 (CXCL11) Integrin alpha-1 (ITGA1) NT-3 growth factor receptor (NTRK3) C-X-C motif chemokine 13 (CXCL13) Interferon gamma (IFN-gamma) Ovarian cancer-related tumor marker CA 125 (CA-125) Cyclin-dependent kinase inhibitor -
Activation Profiles and Regulatory Cascades of the Human Kallikrein-Related Peptidases Hyesook Yoon
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2008 Activation Profiles and Regulatory Cascades of the Human Kallikrein-Related Peptidases Hyesook Yoon Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES ACTIVATION PROFILES AND REGULATORY CASCADES OF THE HUMAN KALLIKREIN-RELATED PEPTIDASES By HYESOOK YOON A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2008 The members of the Committee approve the dissertation of Hyesook Yoon defended on July 10th, 2008. ________________________ Michael Blaber Professor Directing Dissertation ________________________ Hengli Tang Outside Committee Member ________________________ Brian Miller Committee Member ________________________ Oliver Steinbock Committee Member Approved: ____________________________________________________________ Joseph B. Schlenoff, Chair, Department of Chemistry and Biochemistry The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGMENTS I would like to dedicate this dissertation to my parents for all your support, and my sister and brother. I would also like to give great thank my advisor, Dr. Blaber for his patience, guidance. Without him, I could never make this achievement. I would like to thank to all the members in Blaber lab. They are just like family to me and I deeply appreciate their kindness, consideration and supports. I specially like to thank to Mrs. Sachiko Blaber for her endless guidance and encouragement. I would like to thank Dr Jihun Lee, Margaret Seavy, Rani and Doris Terry for helpful discussions and supports. -
A Multiparametric Serum Kallikrein Panel for Diagnosis of Non ^ Small
Imaging, Diagnosis, Prognosis A Multiparametric Serum Kallikrein Panel for Diagnosis of Non ^ Small Cell Lung Carcinoma Chris Planque,1, 2 Lin Li,3 Yingye Zheng,3 Antoninus Soosaipillai,1, 2 Karen Reckamp,4 David Chia,5 Eleftherios P. Diamandis,1, 2 and Lee Goodglick5 Abstract Purpose: Human tissue kallikreins are a family of15 secreted serine proteases.We have previous- ly shown that the expression of several tissue kallikreins is significantly altered at the transcription- al level in lung cancer. Here, we examined the clinical value of 11members of the tissue kallikrein family as potential biomarkers for lung cancer diagnosis. Experimental Design: Serum specimens from 51 patients with non ^ small cell lung cancer (NSCLC) and from 50 healthy volunteers were collected. Samples were analyzed for11kallikreins (KLK1, KLK4-8, and KLK10-14) by specific ELISA. Data were statistically compared and receiver operating characteristic curves were constructed for each kallikrein and for various combinations. Results: Compared with sera from normal subjects, sera of patients with NSCLC had lower levels of KLK5, KLK7, KLK8, KLK10, and KLK12, and higher levels of KLK11, KLK13, and KLK14. Expres- sion of KLK11and KLK12 was positively correlated with stage.With the exception of KLK5, expres- sion of kallikreins was independent of smoking status and gender. KLK11, KLK12, KLK13, and KLK14 were associated with higher risk of NSCLC as determined by univariate analysis and con- firmed by multivariate analysis.The receiver operating characteristic curve of KLK4, KLK8, KLK10, KLK11,KLK12, KLK13, and KLK14 combined exhibited an area under the curve of 0.90 (95% con- fidence interval, 0.87-0.97).