The Roles of Dispersal and Mass Extinction in Shaping Palm Diversity Across the Caribbean

Total Page:16

File Type:pdf, Size:1020Kb

The Roles of Dispersal and Mass Extinction in Shaping Palm Diversity Across the Caribbean DOI: 10.1111/jbi.13225 RESEARCH PAPER The roles of dispersal and mass extinction in shaping palm diversity across the Caribbean Angela Cano1,2 | Christine D. Bacon2,3 | Fred W. Stauffer1 | Alexandre Antonelli2,3,4 | Martha L. Serrano-Serrano5 | Mathieu Perret1 1Conservatoire et Jardin botaniques de la Ville de Geneve and Department of Botany Abstract and Plant Biology, University of Geneva, Aim: The rich flora of the Caribbean islands and surrounding mainland evolved in a Chambesy, Geneva, Switzerland context of isolation alternated with phases of terrestrial connectivity between land- 2Gothenburg Global Biodiversity Centre, Goteborg,€ Sweden masses, climatic fluctuations and episodes of mass extinctions during the Cenozoic. 3Department of Biological and We explored how these events affected the evolution of the sister palm tribes Environmental Sciences, University of Gothenburg, Goteborg,€ Sweden Cryosophileae and Sabaleae, and how continent-island exchanges, endemic radia- 4Gothenburg Botanical Garden, Goteborg,€ tions and mass extinction shaped their extant diversity. Sweden Location: The American continent including the Caribbean region. 5Department of Ecology and Evolution, University of Lausanne, Lausanne, Methods: We reconstructed a time-calibrated phylogeny of the palm tribes Cryoso- Switzerland phileae and Sabaleae using 84% of the known species. We inferred ancestral distri- Correspondence bution and tested the effect of island colonization and mass extinction on extant Angela Cano, Conservatoire et Jardin diversity. botaniques de la Ville de Geneve, Chambesy, Geneva, Switzerland. Results: Our results indicate that Cryosophileae and Sabaleae originated c. 77 Ma Email: [email protected] most probably in Laurasia, and their extant species started to diversify between 56– – Funding information 35 Ma and 19 10 Ma respectively. Biogeographical state reconstruction estimated European Research Council, Grant/Award that Cryosophileae dispersed to South America between 56–35 Ma, then dispersed to Number: 331024; Vetenskapsradet, Grant/ – – Award Number: B0569601; Swiss National North-Central America between 39 25 Ma and the Caribbean islands between 34 Science Foundation, Grant/Award Number: 21 Ma. We detected a possible signature of a mass extinction event at the end of the 31003A_175655/1 Eocene, affecting the diversification of Cryosophileae and Sabaleae and we did not Editor: Lyn Cook detect a diversification rate shift related to the colonization of the Caribbean islands. Main conclusions: Species of Cryosophileae in the Caribbean islands are probably derived from a single Oligocene dispersal event that likely occurred overwater from North-Central America rather than through the hypothesized GAARlandia land bridge. Contrastingly, three independent Miocene dispersal events from North-Cen- tral America explain the occurrence of Sabaleae in the Caribbean islands. Contrary to our expectations, island colonization did not trigger increased diversification. Instead, we find that diversification patterns in this clade, and its disappearance from northernmost latitudes, could be the signature of a mass extinction triggered by the global temperature decline at the end of the Eocene. KEYWORDS Arecaceae, Boreotropical migrations, Caribbean, Coryphoideae, diversification, mass extinction, overwater dispersal, palms, Sabal, West Indies | Journal of Biogeography. 2018;1–12. wileyonlinelibrary.com/journal/jbi © 2018 John Wiley & Sons Ltd 1 2 | CANO ET AL. 1 | INTRODUCTION endangered sensu the International Union for Conservation of Nat- ure (Acevedo-Rodrıguez & Strong, 2008; Oleas et al., 2013). Com- The Americas have experienced dramatic geological changes over parative studies have shown a floristic affinity between the the past 100 Myr: North America was temporarily connected to Eur- Caribbean islands and the surrounding mainland (Acevedo-Rodrıguez asia through the North Atlantic and Beringian land bridges (Brikiatis, & Strong, 2008), but our understanding of the underlying evolution- 2014 and references therein), Central America was hit by a massive ary processes that shaped this diversity is still limited (Francisco- meteorite (Schulte et al., 2010), the Caribbean islands emerged and Ortega et al., 2007; Graham, 2003; Nieto-Blazquez, Antonelli, & drifted eastwards in the Caribbean Sea (Iturralde-Vinent & MacPhee, Roncal, 2017; Santiago-Valentin & Olmstead, 2004). Available bio- 1999), and South America ended its isolation with the formation of geographical studies focused on Caribbean plants point to multiple the Panama Isthmus (Montes et al., 2015). How these events influ- biotic exchanges among the islands, between North-Central America enced the outstanding biodiversity of the Neotropics has been a and South America, and local diversifications (Cervantes, Fuentes, subject of long-standing discussion (Antonelli & Sanmartın, 2011a), Gutierrez, Magallon, & Borsch, 2016; van Ee, Berry, Riina, & renewed in recent years with the advent of new molecular dating Gutierrez Amaro, 2008; Santiago-Valentin & Olmstead, 2004). For and biogeographical methods, and cross-taxonomic comparative example, the Caribbean Acalyphoideae (Euphorbiaceae) are esti- analyses (e.g., Bacon et al., 2015; Hoorn et al., 2010; O’Dea et al., mated to have repeatedly colonized the Caribbean islands during the 2016; Rull, 2011). In this context, the Andean and Amazonian Miocene mainly from Central America (Cervantes et al., 2016), regions have drawn the most attention, while much less effort has whereas Brunfelsia (Solanaceae) probably entered the Antilles 8– been devoted to understanding the evolution of the Caribbean, in 6 Ma from South America (Filipowicz & Renner, 2012). Phylogenetic particular its flora. studies in different palm lineages also indicate independent coloniza- The sister palm tribes Cryosophileae and Sabaleae (subfamily tions of the Caribbean islands from the mainland and multiple migra- Coryphoideae), known as the New World Thatch Palms (NWTP; tions between North and South America (Bacon, Baker, & Simmons, Dransfield et al., 2008), have evolved in the dynamic context of the 2012; Bacon, Mora, Wagner, & Jaramillo, 2013; Cuenca, Asmussen- Caribbean. They are currently restricted to the Caribbean islands (34 Lange, & Borchsenius, 2008; Roncal, Zona, & Lewis, 2008). For the species, most of them in the Greater Antilles) and nearby landmasses NWTP, previous phylogenetic hypotheses have suggested an origin of North-Central America (25 species) and South America (10 spe- of the Caribbean taxa from a mainland ancestor (Roncal et al., 2008). cies) (Henderson, Galeano, & Bernal, 1995). However, they had a lar- However, a better resolved phylogeny is needed to trace whether ger past distribution in the Northern hemisphere, as evidenced by their diversity in the Caribbean is the result of multiple mainland- their extensive fossil record (Figure 1) that dates to the Late Creta- island dispersal events or a colonization event followed by local ceous (Manchester, Lehman, & Wheeler, 2010). Combining these diversification. fossil data with a phylogeny of extant NWTP species would help Several geological models have been hypothesized to facilitate retrace their evolution in time and space, and illuminate the origin interchanges between land areas around the Caribbean region. These and diversification of the Caribbean flora. include the Proto-Antilles, connecting North to South America during The Caribbean region, including the Greater and Lesser Antilles, the Late Cretaceous to the Palaeocene (94–63 Ma; Graham, 2003), contains about 13,000 seed plant species. Of these, 72% are ende- the Greater Antilles-Aves Ridge (GAARlandia) connecting the West mic to the region and at least 10% are either endangered or critically Indies to South America during the Oligocene (35–33 Ma; Iturralde- FIGURE 1 Distribution of extant Cryosophileae and Sabaleae (pink area) and fossils related to them from different epochs: Late Cretaceous (black; 100–66 Ma), Paleogene (grey; 66–23 Ma), Neogene (white; 23–2.6 Ma). Shapes represent different taxonomic groups: triangle Cryosophileae, square Sabal, circle Sabalites. See Appendix S1 for data sources. Map projection: sphere Mollweide (53,009) CANO ET AL. | 3 Vinent & MacPhee, 1999), and the Panama Isthmus formation start- the genera Cryosophila (7 species of 10, sensu Evans, 1995) and Coc- ing in the Miocene (Montes et al., 2015). To what extent these puta- cothrinax (10 species of 14, sensu Henderson et al., 1995). Sampling tive corridors facilitated species dispersal across the Caribbean in the monotypic tribe Sabaleae includes 14 of the 16 accepted spe- region is still debated (e.g. Ali, 2012; Nieto-Blazquez et al., 2017) cies of Sabal (Dransfield et al., 2008). To evaluate the phylogenetic and several studies postulate that overwater dispersal events have position of the NWTP within Coryphoideae, we also sampled repre- played a major role in the biogeographical history of Caribbean plant sentatives of other tribes in this subfamily. Two outgroups were lineages (Cervantes et al., 2016; Gugger & Cavender-Bares, 2013). selected in subfamilies Ceroxyloideae and Arecoideae. Silica-gel dried In addition to dispersal, the dynamics of speciation and extinc- leaf fragments were collected in the field (collection and export per- tion during the history of lineages may also have influenced the cur- mits 111,296 and 113,458 respectively, from the Paraguayan Secre- rent patterns of species richness across the Caribbean and tarıa del Ambiente)
Recommended publications
  • The Lost Sabals
    The Lost Sabals Article and photos by Justen Dobbs, Riverside, CA In California, palmetto palms are not seen very often, whereas in Florida and the Carolinas , they are everywhere. The Mexican fan palm ( Washingtonia robusta ), which is native to Mexico, is our version of the palmetto palm (Sabal palmetto ). However, the Mexican Fan is much faster growing and a little neater looking, which destined it for landscape use in Southern California. Only a palm collector could tell them apart ; to the general public, they’re both fan palms. The palmetto is more cold -hardy than the Mexican fan, but in Southern California this isn’t a necessary feature. I have grown Sabal minor, S . mexicana, S. uresana, S. uresana x mexicana, S . causiarum, S . rosei, and S. bermudana . I knew long before I began growing them that they were notoriously slow. In general, my seedlings take about 6 months to germinate and 3-4 years to get to a 1 gallon size. Compare that to a Mexican fan , which can reach a one-gallon size in a year , it becomes obvious why palmettos haven’t become popular in California. Not all Sabals are slow growers though; Sabal “blackburniana ” (an invalid name and one impossible to apply to recognized species) has a reputation for being a Left - Sabal “blackbur - niana” growing in Southern California. Although this is an invalid name that cannot be linked to a recognized species, Sabals labeled with this name have a reputation for being relatively fast growing. Above - A closeup of seeds on a mature Sabal “blackburniana”.
    [Show full text]
  • Approved Plant List 10/04/12
    FLORIDA The best time to plant a tree is 20 years ago, the second best time to plant a tree is today. City of Sunrise Approved Plant List 10/04/12 Appendix A 10/4/12 APPROVED PLANT LIST FOR SINGLE FAMILY HOMES SG xx Slow Growing “xx” = minimum height in Small Mature tree height of less than 20 feet at time of planting feet OH Trees adjacent to overhead power lines Medium Mature tree height of between 21 – 40 feet U Trees within Utility Easements Large Mature tree height greater than 41 N Not acceptable for use as a replacement feet * Native Florida Species Varies Mature tree height depends on variety Mature size information based on Betrock’s Florida Landscape Plants Published 2001 GROUP “A” TREES Common Name Botanical Name Uses Mature Tree Size Avocado Persea Americana L Bahama Strongbark Bourreria orata * U, SG 6 S Bald Cypress Taxodium distichum * L Black Olive Shady Bucida buceras ‘Shady Lady’ L Lady Black Olive Bucida buceras L Brazil Beautyleaf Calophyllum brasiliense L Blolly Guapira discolor* M Bridalveil Tree Caesalpinia granadillo M Bulnesia Bulnesia arboria M Cinnecord Acacia choriophylla * U, SG 6 S Group ‘A’ Plant List for Single Family Homes Common Name Botanical Name Uses Mature Tree Size Citrus: Lemon, Citrus spp. OH S (except orange, Lime ect. Grapefruit) Citrus: Grapefruit Citrus paradisi M Trees Copperpod Peltophorum pterocarpum L Fiddlewood Citharexylum fruticosum * U, SG 8 S Floss Silk Tree Chorisia speciosa L Golden – Shower Cassia fistula L Green Buttonwood Conocarpus erectus * L Gumbo Limbo Bursera simaruba * L
    [Show full text]
  • Darwin Initiative Action Plan for the Coastal Biodiversity of Anegada, British Virgin Islands
    Darwin Initiative Action Plan for the Coastal Biodiversity of Anegada, British Virgin Islands Darwin Anegada BAP 2006 Page We dedicate this document to the people of Anegada; the stewards of Anegada’s biodiversity and to Raymond Walker of the BVI National Parks Trust who tragically died after a very short illness during the course of this project. This report should be cited as: McGowan A., A.C.Broderick, C.Clubbe, S.Gore, B.J.Godley, M.Hamilton, B.Lettsome, J.Smith-Abbott, N.K.Woodfield. 2006. Darwin Initiative Action Plan for the Coastal Biodiversity of Anegada, British Virgin Islands. 13 pp. Available online at: http://www.seaturtle.org/mtrg/projects/anegada/ Darwin Anegada BAP 2006 Page 2 1. Introduction It well known that Anegada has globally important biodiversity. Indeed, biodiversity is the basis for most livelihoods; supporting fisheries and leading to the attractiveness that is such a draw to visitors. Over the last three years (2003-2006), a project was undertaken on Anegada with a wide range of activities focussing towards this Biodiversity Action Plan. From the outset it was known that the island hosts a globally important coral reef system, regionally significant populations of marine turtles, is of regional importance to birds and supports globally important endemic plants. The project arose following the encouragement of Anegada community members and subsequent extensive consultation between Dr. Godley (University of Exeter) and heads of BVI Conservation and Fisheries Department (CFD) and BVI National Parks Trust (NPT) who requested that funding be sourced for a project which: 1. Allowed the coastal biodiversity of Anegada to be assessed; 2.
    [Show full text]
  • Biome Evolution and Biogeographical Change Through Time Christine D
    thesis abstract ISSN 1948-6596 Biome evolution and biogeographical change through time Christine D. Bacon Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden; Laboratorio de Biología Molecular (CINBIN), Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia; [email protected] Abstract. Keystone plant groups can be used to infer the evolution of biomes and biogeographical change of communities and taxa. In this thesis I investigated whether lineages in Trachycarpeae palms could be used to track different forest types through time and whether change in biome or bio- geographic region had an effect on species diversification. These questions were approached using ge- netic data integrated with fossil record, species distribution, and speciation models. Although the three chapters of my thesis had additional foci outside of the main goal of inferring biogeographic change and diversification through time, they come together to paint a clear picture of how fine-scale and interdisci- plinary studies can lead to more robust hypothesis testing and conclusions. I found that outside of track- ing tropical forests through time, palms are useful for understanding island biogeography and the for- mation of other types of biomes. Keywords. Arecaceae, biogeography, macroevolution, phylogeny Introduction ies of biodiversity and biogeography, other model The inference of biogeography and diversification groups have proved equally important. One exam- is an integral window into the past that enables ple lies in leguminous plants, where studies have the investigation of how geographic regions, bi- shown that endemic legume clades track South omes, and communities are assembled through American seasonally dry tropical forests (SDTF) time and how they may evolve in the future.
    [Show full text]
  • A Conservation Framework for the Critically Endangered Endemic Species of the Caribbean Palm Coccothrinax
    A conservation framework for the Critically Endangered endemic species of the Caribbean palm Coccothrinax B RETT J ESTROW,BRÍGIDO P EGUERO,FRANCISCO J IMÉNEZ,RAÚL V ERDECIA L ISBET G ONZÁLEZ-OLIVA,CELIO E. MOYA,WILLIAM C INEA,M.PATRICK G RIFFITH A LAN W. MEEROW,MIKE M AUNDER and J AVIER F RANCISCO-ORTEGA Abstract With threatened species ( categorized as plant exploration initiatives, taxonomic revisions, outreach, Critically Endangered and as Endangered, sensu IUCN), and fundraising. The ultimate aim of this review is to provide Coccothrinax (c. species) is the flagship palm genus for baseline information that will develop conservation synergy conservation in the Caribbean Island Biodiversity Hotspot. among relevant parties working on Coccothrinax conserva- Coccothrinax has its centre of taxonomic diversity in these tion in Cuba, Haiti and the Dominican Republic. Such colla- islands, with c. endemic species. We present a conservation borations could also benefit through partnerships with framework for the Critically Endangered species, found botanists working in other countries. in Cuba, Haiti or the Dominican Republic. Only two species Keywords Antilles, Arecaceae, IUCN, plant biodiversity, (C. jimenezii, C. montana) occur in more than one country red lists, taxonomy, tropical islands (Haiti and the Dominican Republic). Immediate threats include oil drilling and nickel mining, intrusion of saline water into soil, urban and agricultural development, low population recruitment, uncontrolled fires, interspecific hy- Introduction bridization, and unsustainable ethnobotanical practices. Coccothrinax bermudezii, C. borhidiana, C. crinita ssp. crini- alms are an iconic feature of the Caribbean landscape ta, C. leonis and C. spissa are not conserved in protected areas. Pand are associated with strong folk and ethnobotani- Coccothrinax bermudezii, C.
    [Show full text]
  • Livistona Carinensis, Bankoualé Palm
    The IUCN Red List of Threatened Species™ ISSN 2307-8235 (online) IUCN 2008: T30402A95306943 Scope: Global Language: English Livistona carinensis, Bankoualé Palm Assessment by: Cosiaux, A., Welch, H., Gardiner, L.M., Welch, G. & Couvreur, T.L.P. View on www.iucnredlist.org Citation: Cosiaux, A., Welch, H., Gardiner, L.M., Welch, G. & Couvreur, T.L.P. 2018. Livistona carinensis. The IUCN Red List of Threatened Species 2018: e.T30402A95306943. http://dx.doi.org/10.2305/IUCN.UK.2018-1.RLTS.T30402A95306943.en Copyright: © 2018 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale, reposting or other commercial purposes is prohibited without prior written permission from the copyright holder. For further details see Terms of Use. The IUCN Red List of Threatened Species™ is produced and managed by the IUCN Global Species Programme, the IUCN Species Survival Commission (SSC) and The IUCN Red List Partnership. The IUCN Red List Partners are: Arizona State University; BirdLife International; Botanic Gardens Conservation International; Conservation International; NatureServe; Royal Botanic Gardens, Kew; Sapienza University of Rome; Texas A&M University; and Zoological Society of London. If you see any errors or have any questions or suggestions on what is shown in this document, please provide us with feedback so that we can correct or extend the information provided. THE IUCN RED LIST OF THREATENED SPECIES™ Taxonomy Kingdom Phylum Class Order Family Plantae Tracheophyta Liliopsida Arecales Arecaceae Taxon Name: Livistona carinensis (Chiov.) Dransf.
    [Show full text]
  • Journal of the International Palm Society Vol. 58(1) Mar. 2014 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 58(1) Mar. 2014 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225, Fax 44-20-8332-5278. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Leland Lai, 21480 Colina Drive, Topanga, Miami, Florida 33199 USA, e-mail [email protected], tel. California 90290 USA, e-mail [email protected], 1-305-348-1247, Fax 1-305-348-1986. tel. 1-310-383-2607. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: Jeff Brusseau, 1030 Heather Drive, Cornell University, Ithaca, New York 14853 USA, e- Vista, California 92084 USA, e-mail mail [email protected], tel. 1-607-257-0885.
    [Show full text]
  • Journal of the International Palm Society Vol. 58(4) Dec. 2014 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 58(4) Dec. 2014 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE, United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225, Fax 44-20-8332-5278. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Leland Lai, 21480 Colina Drive, Topanga, Miami, Florida 33199 USA, e-mail [email protected], tel. California 90290 USA, e-mail [email protected], 1-305-348-1247, Fax 1-305-348-1986. tel. 1-310-383-2607. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: Jeff Brusseau, 1030 Heather Drive, Cornell University, Ithaca, New York 14853 USA, e- Vista, California 92084 USA, e-mail mail [email protected], tel. 1-607-257-0885.
    [Show full text]
  • Thrinax Radiata Family: Arecaceae Florida Thatch Palm, Jamaican Thatch, Thatch Palm, Chit
    Stephen H. Brown, Horticulture Agent Donna Cressman, Master Gardener Lee County Extension, Fort Myers, Florida (239) 533-7513 [email protected] http://lee.ifas.ufl.edu/hort/GardenHome.shtml Thrinax radiata Family: Arecaceae Florida thatch palm, Jamaican thatch, thatch palm, chit Florida Thatch Palm Synonyms (Discarded names): Cocothrinax martii, C. radiate, Thrinax floridana, T. martii, T. multiflora; T. wendlandiana Origin: Extreme southern mainland coast of Florida, Florida Keys, Bahamas, western Cuba, Cayman Islands, Jamaica, Hispaniola, Puerto Rico, Yucatan Peninsula, Honduras, Nicaragua U.S.D.A. Zone: 10A-12B (28°F leaf damage) Growth Rate: Slow Typical Height: 20’ Habit: Solitary; canopy of 12-20 leaves Crownshaft: None Leaf: Palmate, induplicate, circular, slightly folded; divided about halfway into segments that are split at the tips; pointed hastula Leaf Size: 4-5’ wide; segments 2.5’ long, 2” wide Salt Tolerance: High Drought Tolerance: High Wind Tolerance: High Light Requirements: Moderate, high Soil: Widely adaptable Nutritional Requirements: Low Potential Insect Pests: Aphids; scales Propagation: Seeds Human hazards: None Uses: Small gardens; containers; outdoors patios; roadways; parking lots; seasides; specimen Left: The infructescence (fruited stems) hang in a circle around the trunk, sometimes extending beyond the leaf. Natural Geographic Distribution The Florida Thatch Palm, Thrinax radiata, is indigenous to the extreme southern mainland coast of Florida, the Florida Keys, Bahamas, western Cuba, The Cayman Islands, Jamaica, Hispaniola, Puerto Rico, Honduras, Nicaragua, and the eastern coast of the Yucatan Peninsula in Mexico and Belize. In na- ture, this palm almost always grows within the range of salt-laden winds near coastal areas. It grows naturally in sandy or calcareous soils.
    [Show full text]
  • TAXON:Phoenix Sylvestris SCORE:5.0 RATING:Evaluate
    TAXON: Phoenix sylvestris SCORE: 5.0 RATING: Evaluate Taxon: Phoenix sylvestris Family: Arecaceae Common Name(s): date sugar palm Synonym(s): Elate sylvestris L. (basionym) Indian date silver date palm wild date palm Assessor: No Assessor Status: Assessor Approved End Date: 29 Jul 2014 WRA Score: 5.0 Designation: EVALUATE Rating: Evaluate Keywords: Naturalized, Tropical Palm, Spiny, Dioecious, Bird-dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs
    [Show full text]
  • Floral Anatomy of Chelyocarpus, Cryosophila, and Ltaya (Palmae)
    19721 UHL: FLORAL ANATON,IY B9 Floral Anatomy of Chelyocarpus, Cryosophila, and ltaya (Palmae) Nlrar,rs W. Unr-* L. H. Bailey Hortorium, Cornell Uniuersity, Ithaca, New York 14850 This paper presentsthe floral anatomy Descripfions ol the Chelyocctrpus alliance to accom- CuBlvoc.q.npus(Fig. 1-7) . pany a current assessmentof the group including the descriptionof a new genus Chelyocarpwsulei is described from t'Moore, L972). Although reports of Moore anil Salazar 9494. Flowers, each floral anatomy in palms are few, those 4-5 mm. long and 2 by 4 mm. wide, completed have been valuable in deter- have two broadly ovate sepals, 2 rrrm' mining functions of floral organs and long by 2 mm. wide, which are distinct relationships among genera, and have or slightly joined at the base forming a provided new information on floral shallow cup around two distinct ovate structure in angiosperms (Uhl and petalsof aboutthe samesize. The androe- Moore, 1971). As the accompanying cium consists of seven (five-eight) paper (Moore, 1972) explains, the stamens in a distinctive arrangement. genera considered here are of special One stamen is opposite and sheathedby interest becausethey may form a primi- each sepal and the others form two rows tive alliance within the palms, and of two to three stamenseach, one row becausetwo species,ClrcIyocarpus dia- opposite each petal (Fig. 6). The nuerus and C. zrlel possessflor,al plans flower is thus wider along the axis of that are unique in rthefamily. petal insertion. Filaments of the stamens (Fig. 3a, b) are 2.5 mm.long, ventrally Mqteriqls qnd Methods expanded, and tightly encase the lower two-thirds of two (three, four) carpels.
    [Show full text]
  • The Discovery of the Amazing Sabinaria Magnifica
    PALM S Bernal: Sabinaria magnifica Vol. 58(1) 2014 The Discovery RODRIGO BERNAL of the Instituto de Ciencias Naturales, Universidad Nacional de Amazing Colombia, Apartado 7495, Sabinaria Bogotá, Colombia. [email protected] magnifica 1. The locality where Sabinaria magnifica grows. The new genus of fan palm, Sabinaria, was recently discovered in the area bordering Colombia and Panama. Here is a narrative of its discovery. The discovery of a new palm genus in the years. No wonder, then, I was shocked on 15 western hemisphere is a rare event. So rare, April 2013 when Saúl Hoyos, a former student indeed, that out of the 184 genera accepted in of mine, sent me some photos of an unusual the family up to 2012, only eleven were palm that looked unlike any genus known to discovered in the Americas during the past 100 date. Saúl had taken the photos at the base of PALMS 58(1): 5 –18 5 PALM S Bernal: Sabinaria magnifica Vol. 58(1) 2014 the Serranía del Darién, the remote, forested include any details of the stem, the leaf bases mountain range that forms the border between or the flowers, which were vital details to Colombia and Panama, and had grabbed a proceed any further. specimen in a rush, while returning from a Full of excitement, I called Gloria Galeano, my trip to the Serranía in search of the elusive lifetime companion and fellow palm researcher Magnolia sambuensis . With daylight fading and for over 30 years, who was on her way back five hours of forest walk ahead to their base in from a field trip.
    [Show full text]