NMR Solvent Data Chart More Solvents, More Sizes, More Solutions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1,1,1,2-Tetrafluoroethane
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Concise International Chemical Assessment Document 11 1,1,1,2-Tetrafluoroethane First draft prepared by Mrs P. Barker and Mr R. Cary, Health and Safety Executive, Liverpool, United Kingdom, and Dr S. Dobson, Institute of Terrestrial Ecology, Huntingdon, United Kingdom Please not that the layout and pagination of this pdf file are not identical to the printed CICAD Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 1998 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organisation (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization -
Interstellar Formamide (NH2CHO), a Key Prebiotic Precursor
Interstellar formamide (NH2CHO), a key prebiotic precursor Ana López-Sepulcre,∗,y,z Nadia Balucani,{ Cecilia Ceccarelli,y Claudio Codella,x,y François Dulieu,k and Patrice Theulé? yUniv. Grenoble Alpes, IPAG, F-38000 Grenoble, France zInstitut de Radioastronomie Millimétrique (IRAM), 300 rue de la piscine, F-38406 Saint-Martin d’Hères, France {Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, I-06123 Perugia, Italy xINAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125, Firenze, Italy kUniversité de Cergy-Pontoise, Observatoire de Paris, PSL University, Sorbonne Université, CNRS, LERMA, F-95000, Cergy-Pontoise, France ?Aix-Marseille Université, PIIM UMR-CNRS 7345, 13397 Marseille, France E-mail: [email protected] Abstract Formamide (NH2CHO) has been identified as a potential precursor of a wide variety arXiv:1909.11770v1 [astro-ph.SR] 25 Sep 2019 of organic compounds essential to life, and many biochemical studies propose it likely played a crucial role in the context of the origin of life on our planet. The detection of formamide in comets, which are believed to have –at least partially– inherited their current chemical composition during the birth of the Solar System, raises the question whether a non-negligible amount of formamide may have been exogenously delivered onto a very young Earth about four billion years ago. A crucial part of the effort to 1 answer this question involves searching for formamide in regions where stars and planets are forming today in our Galaxy, as this can shed light on its formation, survival, and chemical re-processing along the different evolutionary phases leading to a star and planetary system like our own. -
Functionalization of Heterocycles: a Metal Catalyzed Approach Via
FUNCTIONALIZATION OF HETEROCYCLES: A METAL CATALYZED APPROACH VIA ALLYLATION AND C-H ACTIVATION A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Sandeepreddy Vemula In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Chemistry and Biochemistry October 2018 Fargo, North Dakota North Dakota State University Graduate School Title FUNCTIONALIZATION OF HETEROCYCLES: A METAL CATALYZED APPROACH VIA ALLYLATION AND C-H ACTIVATION By Sandeepreddy Vemula The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Prof. Gregory R. Cook Chair Prof. Mukund P. Sibi Prof. Pinjing Zhao Prof. Dean Webster Approved: November 16, 2018 Prof. Gregory R. Cook Date Department Chair ABSTRACT The central core of many biologically active natural products and pharmaceuticals contain N-heterocycles, the installation of simple/complex functional groups using C-H/N-H functionalization methodologies has the potential to dramatically increase the efficiency of synthesis with respect to resources, time and overall steps to key intermediate/products. Transition metal-catalyzed functionalization of N-heterocycles proved as a powerful tool for the construction of C-C and C-heteroatom bonds. The work in this dissertation describes the development of palladium catalyzed allylation, and the transition metal catalyzed C-H activation for selective functionalization of electron deficient N-heterocycles. Chapter 1 A thorough study highlighting the important developments made in transition metal catalyzed approaches for C-C and C-X bond forming reactions is discussed with a focus on allylation, directed indole C-2 substitution and vinylic C-H activation. -
4 Nuclear Magnetic Resonance
Chapter 4, page 1 4 Nuclear Magnetic Resonance Pieter Zeeman observed in 1896 the splitting of optical spectral lines in the field of an electromagnet. Since then, the splitting of energy levels proportional to an external magnetic field has been called the "Zeeman effect". The "Zeeman resonance effect" causes magnetic resonances which are classified under radio frequency spectroscopy (rf spectroscopy). In these resonances, the transitions between two branches of a single energy level split in an external magnetic field are measured in the megahertz and gigahertz range. In 1944, Jevgeni Konstantinovitch Savoiski discovered electron paramagnetic resonance. Shortly thereafter in 1945, nuclear magnetic resonance was demonstrated almost simultaneously in Boston by Edward Mills Purcell and in Stanford by Felix Bloch. Nuclear magnetic resonance was sometimes called nuclear induction or paramagnetic nuclear resonance. It is generally abbreviated to NMR. So as not to scare prospective patients in medicine, reference to the "nuclear" character of NMR is dropped and the magnetic resonance based imaging systems (scanner) found in hospitals are simply referred to as "magnetic resonance imaging" (MRI). 4.1 The Nuclear Resonance Effect Many atomic nuclei have spin, characterized by the nuclear spin quantum number I. The absolute value of the spin angular momentum is L =+h II(1). (4.01) The component in the direction of an applied field is Lz = Iz h ≡ m h. (4.02) The external field is usually defined along the z-direction. The magnetic quantum number is symbolized by Iz or m and can have 2I +1 values: Iz ≡ m = −I, −I+1, ..., I−1, I. -
Effect of Electronegative Elements on the NMR Chemical Shift in Some Simple R-X Organic Compounds
IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 6, Issue 4 Ver. III (Jul-Aug. 2014), PP 45-56 www.iosrjournals.org Effect of electronegative elements on the NMR chemical shift in some simple R-X organic compounds Muhammad A. AL-Jalali1, Yahia M. Mahzia2 1Physics Department, Faculty of Science, Taif University, Taif, AL-Haweiah, , P. O. Box 888, Zip code 21974, Kingdom of Saudi Arabia 2Physics Department, Faculty of Science, Damascus University, Damascus, Syrian Arab Republic. Abstract: Organic halides and other organic compounds that contain electronegative elements, have a strong chemical shift and a brilliant NMR spectrum will prevail. Relationship between 1H, 13C NMR chemical shift and Electronegativity in some simple R-X organic compounds (X=F, Cl, Br, I, O, H, ...R=CH3 or CH3-CH2-) give nonlinear equation, as well as a power series equation appears between nuclear magnetogyric ratio, magnetic shielding constant and chemical shift, which are not included in the theoretical expressions. More investigations required to remove the discrepancy between the theoretical and the experimental results. Keywords: Electronegativity, chemical shift, shielding constant, magnetogyric ratio. I. Introduction Nuclear magnetic resonance, or NMR is a physical phenomenon was observed in 1945[1,2], which occurs when the nuclei of certain atoms, firstly, subject to nuclear Zeeman effect[3,4,5]will Precession with the Larmor frequency [6, 7]. Secondly, exposed to an oscillating electromagnetic field (radio waves), then if the radio wave frequency exactly matches the precession frequency, the resonance phenomenon will happen and this is the so-called nuclear magnetic resonance. However, experimentally, it has been noticed [8, 9, 10] that a nucleus may have a different resonant frequency for a given applied magnetic field in different chemical compounds, this difference in resonant frequency is called the chemical shift or sometimes fine structure. -
The Chemical Shift Chem 117 the Chemical Shift Key Questions (1) What Controls Proton Chemical Shifts? Eugene E
E. Kwan Lecture 2: The Chemical Shift Chem 117 The Chemical Shift Key Questions (1) What controls proton chemical shifts? Eugene E. Kwan January 26, 2012. H H H H 0.86 ppm 5.28 2.88 Br Scope of Lecture 16.4 proton chemical problem shift trends diamagnetic vs. (2) What controls carbon chemical shifts? solving paramagnetic O O shielding O CH2 H C OH the chemical 3 H3C CH3 basic DEPT 49.2 49.2 40.5 69.2 and COSY shift H-bonding and solvent (3) What are COSY and DEPT? What useful information effects spin-orbit coupling, can they give about a structure? carbon chemical effect of unsaturation shift trends 123 Helpful References 10 0 1. Nuclear Magnetic Resonance Spectroscopy... Lambert, J.B.; 1 Mazzola, E.P. Prentice-Hall, 2004. (Chapter 3) 2 2. The ABCs of FT-NMR Roberts, J.D. University Science Books, 2000. (Chapter 10) 3 3. Spectrometric Identification of Organic Compounds (7th ed.) Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Wiley, 2005. (useful charts in the appendices of chapters 2-4) 10 4. Organic Structural Spectroscopy Lambert, J.B.; Shurvell, H.F.; Lightner, D.A.; Cooks, R.G. Prentice-Hall, 1998. I thank Professors William F. Reynolds (Toronto) and Gene Mazzola (Maryland/FDA) for providing some useful 5. Organic Structure Analysis Crews, P. Rodriguez, J.; Jaspars, material for this lecture. The section on chemical shifts M. Oxford University Press, 1998. is based on the discussion in Chapter 3 of reference 1. E. Kwan Lecture 2: The Chemical Shift Chem 117 Proton Chemical Shifts Clearly, the regions overlap: reference: Lambert and Mazzola, Chapter 3. -
NMR Chemical Shifts of Common Laboratory Solvents As Trace Impurities
7512 J. Org. Chem. 1997, 62, 7512-7515 NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E. Gottlieb,* Vadim Kotlyar, and Abraham Nudelman* Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel Received June 27, 1997 In the course of the routine use of NMR as an aid for organic chemistry, a day-to-day problem is the identifica- tion of signals deriving from common contaminants (water, solvents, stabilizers, oils) in less-than-analyti- cally-pure samples. This data may be available in the literature, but the time involved in searching for it may be considerable. Another issue is the concentration dependence of chemical shifts (especially 1H); results obtained two or three decades ago usually refer to much Figure 1. Chemical shift of HDO as a function of tempera- more concentrated samples, and run at lower magnetic ture. fields, than today’s practice. 1 13 We therefore decided to collect H and C chemical dependent (vide infra). Also, any potential hydrogen- shifts of what are, in our experience, the most popular bond acceptor will tend to shift the water signal down- “extra peaks” in a variety of commonly used NMR field; this is particularly true for nonpolar solvents. In solvents, in the hope that this will be of assistance to contrast, in e.g. DMSO the water is already strongly the practicing chemist. hydrogen-bonded to the solvent, and solutes have only a negligible effect on its chemical shift. This is also true Experimental Section for D2O; the chemical shift of the residual HDO is very NMR spectra were taken in a Bruker DPX-300 instrument temperature-dependent (vide infra) but, maybe counter- (300.1 and 75.5 MHz for 1H and 13C, respectively). -
Prepared by 3M
DRAFT ECOTOXICOLOGY AND ENVIRONMENTAL FATE TESTING OF SHORT CHAIN PERFLUOROALKYL COMPOUNDS RELATED TO 3M CHEMISTRIES XXX XX, 2008 Prepared by 3M Page 1 CONFIDENTIAL - SUBJECT TO A PROTECTIVE ORDER ENTERED IN 3M MN01537089 HENNEPIN COUNTY DISTRICT COURT, NO. 27-CV-10-28862 2231.0001 DRAFT TABLE OF CONTENTS Page Introduction (describes propose, goals, document organization .... ) 3 1) Degradation modes 4-27 Basic degradation pathways, Conversion routes from polymer to monomer & degradants or residual intermediates to degradants) 2) Degradants & Intermediates - Phys. Chem properties and test data by section & chapter i) Fluorinated Sulfonic acids and derivatives a) PFBS (PBSK) 28-42 b) PFBSI 43-44 ii) Fluorinated Carboxylates a) TFA 46-55 b) PFPA 56-59 c) PFBA (APFB) 60-65 d) MeFBSAA (MeFBSE Acid, M370) 66-68 iii) Fluorinated Non-ionics a) MeFBSE 70-74 b) MeFBSA 75-80 c) FBSE 81-84 d) FBSA 85-88 e) HxFBSA 89-91 iv) Fluorinated Inerts & volatiles a) PBSF 94-97 b) NFB, C4 hydride, CF3CF2CF2CF2-H 98-99 3) Assessments X Glossary 100-102 References/Endnotes 105- Page 2 CONFIDENTIAL - SUBJECT TO A PROTECTIVE ORDER ENTERED IN 3M MN01537090 HENNEPIN COUNTY DISTRICT COURT, NO. 27-CV-10-28862 2231.0002 DRAFT Introduction to Environmental White Papers on Perfluoroalkyl acids related to 3M chemistries Perfluorochemicals have been commonplace in chemical industry over 50 years but until recently there has been little information on environmental fate and effects avialble in open literature. The following chapters summarize the findings of"list specific C4 intermediates PFBS, PFBSI, PFBA, PFPA, MeFBSAA, TFA, MeFBSE, FBSA, HxFBSA, FBSE, PBSF, NFB " As background, 3M announced on May 16, 2000 the voluntary manufacturing phase out of perfluorooctanyl chemicals which included perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and PFOS-related chemistries. -
15 Aug 2017 Sims Ue2,2021 23, June Srnm Astrophysics & Astronomy .Codella C
Astronomy & Astrophysics manuscript no. codella˙astroph˙solisIII c ESO 2021 June 23, 2021 Letter to the Editor Seeds of Life in Space (SOLIS) III. Formamide in protostellar shocks: evidence for gas-phase formation C. Codella1, C. Ceccarelli2,1, P. Caselli3, N. Balucani4,1, V. Barone5, F. Fontani1, B. Lefloch2, L. Podio1, S. Viti6, S. Feng3, R. Bachiller7, E. Bianchi1,8, F. Dulieu9, I. Jim´enez-Serra10, J. Holdship6, R. Neri11, J. Pineda3, A. Pon12, I. Sims13, S. Spezzano3, A.I. Vasyunin3,14, F. Alves3, L. Bizzocchi3, S. Bottinelli15,16, E. Caux15,16, A. Chac´on-Tanarro3, R. Choudhury3, A. Coutens6, C. Favre1,2, P. Hily-Blant2, C. Kahane2, A. Jaber Al-Edhari2,17, J. Laas3, A. L´opez-Sepulcre11, J. Ospina2, Y. Oya18, A. Punanova3, C. Puzzarini19, D. Quenard10, A. Rimola20, N. Sakai21, D. Skouteris5, V. Taquet22,1, L. Testi23,1, P. Theul´e24, P. Ugliengo25, C. Vastel15,16, F. Vazart5, L. Wiesenfeld2, and S. Yamamoto18 1 INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy 2 Univ. Grenoble Alpes, CNRS, Institut de Plan´etologie et d’Astrophysique de Grenoble (IPAG), 38000 Grenoble, France 3 Max-Planck-Institut f¨ur extraterrestrische Physik (MPE), Giessenbachstrasse 1, 85748 Garching, Germany 4 Dipartimento di Chimica, Biologia e Biotecnologie, Via Elce di Sotto 8, 06123 Perugia, Italy 5 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy 6 Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK 7 IGN, Observatorio Astron´omico Nacional, Calle Alfonso XII, 28004 Madrid, Spain 8 Dipartimento di Fisica e Astronomia, Universit`adegli Studi di Firenze, Italy 9 LERMA, Universit´ede Cergy-Pontoise, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universit´e, UPMC, Univ. -
LIQUID DYNE PENS (#N001-002, #N001-015) Date Prepared: 5/1/03
*** MATERIAL SAFETY DATA SHEET *** DYNE SOLUTION-100CC (#N001-011), LIQUID DYNE PENS (#N001-002, #N001-015) Date Prepared: 5/1/03 SECTION A DISTRIBUTOR: UV PROCESS SUPPLY, INC 1229 W. CORTLAND ST. CHICAGO, IL 60614-4805 TELEPHONE: (773)248-0099 EMERGENCY #: (800)424-9300 SECTION B GENERAL PRODUCT INFORMATION PRODUCT NAME: CON-TROL-CURE DYNE TEST SOLUTIONS CON-TROL-CURE LIQUID DYNE PEN SET FORM: Liquid COLOR: Medium blue ODOR: Mild, non-residual; ethereal/ammoniacal SECTION C COMPOSITION/INGREDIENTS Constituent CAS No. Molecular Formula 2-ethoxyethanol, 100% pure (C)* 110-80-5 C2H5OC2H4OH Formamide, minimum 99.5% pure (F)** 75-12-7 HCONH2 Water (H) 7732-18-5 H2O Victoria Blue Dye, 100% pure 2185-86-6 no data *2-ethoxyethanol is also known as ethylene glycol monoethyl ether, cellosolve solvent, ehlyl cellosolve, and glycol ether EE. **Formamide is also known as methanamide. Mix Percentages by Dyne Level Level C (vol) F (vol) Level C (vol) F (vol) Level F (vol) H (vol) 30 100.0% 0.0% 44 22.0% 78.0% 57 100.0% 0.0% 31 97.5% 2.5% 45 19.7% 80.3% 58 81.2% 18.8% 32 89.5% 10.5% 46 17.2% 82.8% 59 73.1% 26.9% 33 81.0% 19.0% 47 15.0% 85.0% 60 65.0% 35.0% 34 73.5% 26.5% 48 13.0% 87.0% 61 56.0% 44.0% 35 65.0% 35.0% 49 11.1% 88.9% 62 47.0% 53.0% 36 57.5% 42.5% 50 9.3% 90.7% 63 38.8% 61.2% 37 51.5% 48.5% 51 7.8% 92.2% 64 30.6% 69.4% 38 46.0% 54.0% 52 6.3% 93.7% 65 24.4% 75.6% 39 41.0% 59.0% 53 4.9% 95.1% 66 18.2% 81.8% 40 36.5% 63.5% 54 3.5% 96.5% 67 13.4% 86.6% 41 32.5% 67.5% 55 2.2% 97.8% 68 8.6% 91.4% 42 28.5% 71.5% 56 1.0% 99.0% 69 6.1% 93.9% 43 25.3% 74.7% 70 3.6% 96.4% Concentration of Victoria Blue dye is 0.3 grams per liter. -
TR-541: Formamide (CASRN 75-12-7) in F344/N Rats and B6C3F1 Mice (Gavage Studies)
NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF FORMAMIDE (CAS NO. 75-12-7) IN F344/N RATS AND B6C3F1 MICE (GAVAGE STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 July 2008 NTP TR 541 NIH Publication No. 08-5884 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Technical Report series began in 1976 with carcinogenesis studies conducted by the National Cancer Institute. In 1981, this bioassay program was transferred to the NTP. The studies described in the Technical Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected substances in laboratory animals (usually two species, rats and mice). Substances selected for NTP toxicity and carcinogenicity studies are chosen primarily on the basis of human exposure, level of production, and chemical structure. -
Article Is Available Online Is One of the Most Comprehensive Ways to Envision Such at Doi:10.5194/Bg-13-2257-2016-Supplement
Biogeosciences, 13, 2257–2277, 2016 www.biogeosciences.net/13/2257/2016/ doi:10.5194/bg-13-2257-2016 © Author(s) 2016. CC Attribution 3.0 License. Molecular characterization of dissolved organic matter from subtropical wetlands: a comparative study through the analysis of optical properties, NMR and FTICR/MS Norbert Hertkorn1, Mourad Harir1, Kaelin M. Cawley2, Philippe Schmitt-Kopplin1, and Rudolf Jaffé2 1Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Analytical Biogeochemistry (BGC), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 2Southeast Environmental Research Center, and Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA Correspondence to: Rudolf Jaffé (jaffer@fiu.edu) Received: 23 July 2015 – Published in Biogeosciences Discuss.: 25 August 2015 Revised: 22 December 2015 – Accepted: 7 February 2016 – Published: 19 April 2016 Abstract. Wetlands provide quintessential ecosystem ser- relative disparity was largest between the Everglades long- vices such as maintenance of water quality, water supply and short-hydroperiod samples, whereas Pantanal and Oka- and biodiversity, among others; however, wetlands are also vango samples were more alike among themselves. Other- among the most threatened ecosystems worldwide. Natural wise, molecular divergence was most obvious in the case dissolved organic matter (DOM) is an abundant and criti- of unsaturated protons (δH > 5 ppm). 2-D NMR spectroscopy cal component in wetland biogeochemistry. This study de- for a particular sample revealed a large richness of aliphatic scribes the first detailed, comparative, molecular characteri- and unsaturated substructures, likely derived from microbial zation of DOM in subtropical, pulsed, wetlands, namely the sources such as periphyton in the Everglades.