Water Conditions Summary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Of Surface-Water Records to September 30, 1955
GEOLOGICAL SURVEY CIRCULAR 382 INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30, 1955 PART 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS UNITED STATES DEPARTMENT OF THE INTERIOR Fred A. Seaton, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director GEOLOGICAL SURVEY CIRCULAR 382 INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30,1955 PART 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS By P. R. Speer and A. B. Goodwin Washington, D. C., 1956 Free on application to the Geological Survey, Washington 25, D. C. INDEX OF SURFACE-WATER RECORDS TO SEPTEMBER 30,1955 PAET 2. SOUTH ATLANTIC SLOPE AND EASTERN GULF OF MEXICO BASINS By P. R Speer and A. B. Goodwin EXPLANATION This index lists the streamflow and reservoir stations in the South Atlantic slope and Eastern Gulf of Mexico basins for which records have been or are to be published in reports of the Geological Survey for periods prior to September 30, 1955. Periods of record for the same station published by other agencies are listed only when they contain more detailed information or are for periods not reported in publications of the Geological Survey. The stations are listed in the downstream order first adopted for use in the 1951 series of water-supply papers on surface-water supply of the United States. Starting at the headwater of each stream all stations are listed in a downstream direction. Tributary streams are indicated by indention and are inserted between main-stem stations in the order in which they enter the main stream. To indicate the rank of any tributary on which a record is available and the stream to which it is immediately tributary, each indention in the listing of stations represents one rank. -
Federal Dam, Oklawaha River, Moss Bluff, Fla
Corps of Engineers, Dept. of the Army, DoD § 207.170 (8) The building, assembling, or ans, Louisiana, if between Suwanee breaking up of a raft in a waterway River and St. Marks, Florida. will be permitted only upon special au- (j) Trespass on property of the United thority obtained from the District En- States. Trespass on waterway property gineer, and under such conditions as he or injury to the banks, locks, bridges, may prescribe. piers, fences, trees, houses, shops or (h) Dumping of refuse or oil in water- any other property of the United way, obstructions. Attention is invited States pertaining to the waterway is to the provisions of sections 13 and 20 strictly prohibited. No business, trad- of the River and Harbor Act of March 3, ing or landing of freight or baggage 1899 (30 Stat. 1152, 1154; 33 U. S. C. 407, will be allowed on or over Government 415), and of sections 2, 3, and 4 of the piers, bridges, or lock walls. Oil Pollution Act of June 7, 1924 (43 (k) Copies of regulations. Copies of the Stat. 604, 605; 33 U.S.C. 432–434), which regulations in this section will be fur- prohibit the depositing of any refuse nished free of charge upon application matter in these waterways or along to the nearest District Engineer. their banks where liable to be washed [Regs., Apr. 30, 1938, as amended at 8 FR into the waters; authorize the imme- 15381, Nov. 9, 1943; 25 FR 8908, Sept. 16, 1960; diate removal or destruction of any 26 FR 353, Jan. -
Indian River Lagoon: Lake Kissimmee Lessons, Challenges and Indian River Lagoon
Upper Chain of Lakes Indian River Lagoon: Lake Kissimmee Lessons, Challenges and Indian River Lagoon Opportunities Kissimmee River St. Lucie Estuary Lake Okeechobee Caloosahatchee Estuary Mark Perry, Executive Director Everglades Florida Oceanographic Society February 5, 2015 Biscayne Bay Florida Bay Coral Reefs Cool water Warm water Indian River Lagoon •2100 plant species •2200 animal species (700 fish, 310 birds) Most Biodiverse Estuary in North America Six Lagoon Segments – Six Inlets – Seagrass, major habitat Historic Watershed-572,800 acres Current Watershed- 1,216,640 acres 24 Major Drainage Canals – C-44 (St. Lucie Canal) the largest in the watershed Major Population Increase 1960 to Present Major Problems in the Indian River Lagoon Loss of Seagrass Beds Loss of Mangrove Wetlands & Shorelines Mosquito Impoundments – Disconnected Habitat Major Alteration and Expansion Drainage System in Watershed Changes in Circulation and Tidal Influences Major Increase in Nutrient Levels and Sediment Loads Major Increase in Boating, Fishing, Marina & Waterfront activity Increase in Invasive & Exotic Plants and Animals The ‘perfect storm’ , 2011 superbloom, 2012 brown tide bloom ??? 170,000 acres of Lagoon bottom appropriate for seagrass habitat. Less than 84,000 acres support seagrass. More than 50% of the seagrass beds have been lost from the Lagoon. Direct Effects on Fisheries Economically important Spotted Seatrout fishery decline from overfishing and inhibited reproduction by low salinity levels in the estuary. Bottlenose Dolphins in Indian River Lagoon have Skin Disorders such as Dolphin Pox and Lobomycosis- (FAU HBOI) Sea Turtles in the Indian River Lagoon have Skin Disorders such as Fibropapilloma Upper Chain of Lakes flow south into Lake Kissimmee Lake Kissimmee flows south into the Kissimmee River – 105-mile Oxbow River with 2-mile-wide floodplain Water takes 6-8 Months to reach Lake Okeechobee Lake Okeechobee flows south through “River “River of Grass”, Everglades - 60-mile of wide shallow (1-foot deep) river flowing Grass” at 1 mile in 4 days. -
Indian River Lagoon Council Board of Directors Meeting
Indian River Lagoon Council Board of Directors Meeting Water Conditions Update Deborah Drum, Manager Ecosystem Restoration & Management Division Engineering Department Friday, October 13, 2017 Water Management District-Wide Rainfall September 2017 • September rainfall surpassed September average by 6.30” • District-wide, September rainfall was 13.27” (190% of average rainfall) • More than 8” attributed to Hurricane Irma Water Management District-Wide Rainfall October 2017 • October rainfall is 2.84” • 220% of average rainfall • 1 month precipitation outlook predicted as “above average” Rainfall Resulted in Serious Flooding State-wide Flooded Community along Shingle Creek west of Lake Toho (Kissimmee Area) Upper East Coast Operations • SFWMD releasing as much as possible through S-49 (C-24), S-97 (C-23) and S-99 (C-25) • Gordy Road structured overtopped during Irma • SFWMD utilized Ten Mile Creek Reservoir following the event Current Conditions (as of 0000 hours on October 11, 2017) • Lake Okeechobee at 17.20 feet. • Last time Lake O stage was this high was Oct. 2004 • Lake level increased ~3.5 feet from Irma rainfall, runoff and associated inflows, and October rainfall • Army Corps of Engineers commenced maximum practicable releases to St. Lucie Estuary on September 15th and to Caloosahatchee Estuary on September 19th. • S-80 was releasing ~4600 cfs yesterday; varies with tides. • S-80 flows ranging from 1190-4850 cfs • 770 million – 3.1 billion gallons / day • About 10% of flows from Lake Okeechobee Current Conditions (continued) • Lake inflows peaked ~38,000 cfs and have reduced to ~14,000 cfs coming mostly from Kissimmee • Maximizing flows through East Coast canals. -
Outfall and Sea Level Rise Vulnerability Analysis 2015
INDIAN RIVER LAGOON OUTFALL AND SEA LEVEL RISE VULNERABILITY ANALYSIS 2015 Outfall and Sea Level Rise Vulnerability Analysis Prepared by: The East Central Florida Regional Planning Council April 2016 1 INDIAN RIVER LAGOON OUTFALL AND SEA LEVEL RISE VULNERABILITY ANALYSIS 2015 Page intentionally left blank 2 INDIAN RIVER LAGOON OUTFALL AND SEA LEVEL RISE VULNERABILITY ANALYSIS 2015 Table of Contents I. Introduction 4 II. Planning Process and Outreach 5 III. GIS Methodology 7 ECFRPC 7 UF GeoPlan 10 IV: County Inundation Analyses 12 Volusia County Vulnerability Analysis 13 Brevard County Vulnerability Analysis 15 Indian River Vulnerability Analysis 17 St. Lucie County Vulnerability Analysis 19 Martin County Vulnerability Analysis 21 Canal System Vulnerability Analysis 23 V: Study Area Inundation Maps 24 High Projection Rate Curve Maps 25 Intermediate Projection Rate Curve Maps 37 Low Projection Rate Curve Maps 49 VI: Maintenance Information 62 VII: Planning Team Contacts 66 VIII: Source Documentation 67 3 INDIAN RIVER LAGOON OUTFALL AND SEA LEVEL RISE VULNERABILITY ANALYSIS 2015 SECTION I: Introduction This vulnerability analysis is part of a grant awarded by the Florida Department of Economic Opportunity to the East Central Florida Regional Planning Council and the Treasure Coast Regional Planning Council to continue the work done for an associated grant awarded in 2014. As part of the 2014-15 planning project, the ECFRPC collected data and mapped all outfalls within the Indian River Lagoon, its connected water bodies and primary canals that flow into the lagoon system. As part of the 2014 project, the planning team also collected data for water quality, outfall ownership, and other important information. -
Lake Tohopekaliga Nutrient Reduction Plan… Two Years Later
Danielle Honour, P. E . , D.WRE Lake Tohopekaliga Nutrient Kimberly Lawrence Reduction Plan… Two Years Later Florida Stormwater Association Annual Conference June 12, 2014 Nutrient Reduction Plan Timeline Lake Tohopekaliga Nutrient Reduction Plan –2 Years Later Overview of Lake Toho Impairment • November 2010: Placed on Verified List by FDEP – Category 5: Impaired and Total Maximum Daily Load (TMDL) required – Initially impaired for nutrients due to increasing trend of Trophic State Index (TSI) • Osceola County and City of Kissimmee disagreed – Independent analysis showed no Upper Kissimmee Planning Unit TSI Impairment – Ambient nutrient content not related to algae Source: FDEP, 2011 Lake Tohopekaliga Nutrient Reduction Plan –2 Years Later Overview of Lake Toho Impairment (cont.) • FDEP reconsidered impairment – Agreed more research was needed – Imbalance of flora and fauna due to excessive macrophytes (hydrilla) • December 2011: Nutrient Reduction Plan (NRP) completed • February 2012: Final Listing – Category 4e : Impaired but ongoing restoration activities underway, no TMDL required Lake Tohopekaliga Nutrient Reduction Plan –2 Years Later NRP Process Timing and Applicability ***Prior to TMDL adoption*** Evaluation • Causative pollutant is questionable or uncertain Strategic Nutrient Monitoring and Reduction Plan Initial Implementation • Highly managed or Assessment variable systems Final • Marginal impairment ‐ Impairment Listing & fluctuates over time Adoption Lake Tohopekaliga Nutrient Reduction Plan –2 Years Later The TMDL Process -
Appendix 1 U.S
U.S. Department of the Interior Prepared in cooperation with the Appendix 1 U.S. Geological Survey Florida Department of Agriculture and Consumer Services, Office of Agricultural Water Policy Open-File Report 2014−1257 81°45' 81°30' 81°15' 81°00' 80°45' 524 Jim Creek 1 Lake Hart 501 520 LAKE 17 ORANGE 417 Lake Mary Jane Saint Johns River 192 Boggy Creek 535 Shingle Creek 519 429 Lake Preston 95 17 East Lake Tohopekaliga Saint Johns River 17 Reedy Creek 28°15' Lake Lizzie Lake Winder Saint Cloud Canal ! Lake Tohopekaliga Alligator Lake 4 Saint Johns River EXPLANATION Big Bend Swamp Brick Lake Generalized land use classifications 17 for study purposes: Crabgrass Creek Land irrigated Lake Russell Lake Mattie Lake Gentry Row crops Lake Washington Peppers−184 acresLake Lowery Lake Marion Creek 192 Potatoes−3,322 acres 27 Lake Van Cantaloupes−633 acres BREVARD Lake Alfred Eggplant−151 acres All others−57 acres Lake Henry ! UnverifiedLake Haines crops−33 acres Lake Marion Saint Johns River Jane Green Creek LakeFruit Rochelle crops Cypress Lake Blueberries−41 acres Citrus groves−10,861 acres OSCEOLA Peaches−67 acresLake Fannie Lake Hamilton Field Crops Saint Johns River Field corn−292 acres Hay−234 acres Lake Hatchineha Rye grass−477 acres Lake Howard Lake 17 Seeds−619 acres 28°00' Ornamentals and grasses Ornamentals−240 acres Tree nurseries−27 acres Lake Annie Sod farms−5,643Lake Eloise acres 17 Pasture (improved)−4,575 acres Catfish Creek Land not irrigated Abandoned groves−4,916 acres Pasture−259,823 acres Lake Rosalie Water source Groundwater−18,351 acres POLK Surface water−9,106 acres Lake Kissimmee Lake Jackson Water Management Districts irrigated land totals Weohyakapka Creek Tiger Lake South Florida Groundwater−18,351 acres 441 Surface water−7,596 acres Lake Marian St. -
Kissimmee Basin Water Supply Plan (2000 KB Plan), the Planning Process Analyses Identified Key Regional Issues
TTaabbllee ooff CCoonntteennttss Appendix A: Water Supply Development Projects Water Supply Development Projects .........................................................2 Appendix B: Information for Local Government Comprehensive Plans 1. Checklist of Needed Comprehensive Plan Data........................................1 1a. Cited Statutory Provisions (relevant portions) .........................................5 2. Tables Showing which Utilities Serve which Jurisdictions ...........................8 3. Maps of Utility Areas Currently Served (2005) and to-be-Served (2025)......... 10 Appendix C: Accomplishments Overview..........................................................................................1 Appendix D: Urban and Agricultural Demand Projections Demand Assessments and Projections........................................................1 Categories of Use................................................................................2 Public Water Supply and Domestic Self-Supply Demands .................................2 Agricultural Self-Supply ...................................................................... 10 Commercial/Industrial Self-Supply ......................................................... 26 Thermoelectric Power Generation Self-Supply ........................................... 27 Recreational Self-Supply ..................................................................... 27 Total Annual Water Demand................................................................. 35 Summary of 1-in-10 Year Water -
St. Lucie River Is 35 Miles Long and Has Two Major Forks, the North Fork and the South Fork
The St. Lucie River is 35 miles long and has two major forks, the North Fork and the South Fork. In the 1880s, the system was basically a freshwater stream flowing into the Indian River Lagoon. An inlet was dug in 1892 by local residents to provide direct access to the Atlantic Ocean, thus changing the St. Lucie from a river to an estuary. An estuary is found where a fresh water body (a river) meets a salt water body (the ocean) and forms brackish water. Estuaries have a high diver- sity of both plants and animals. Seagrasses, oysters, marine fish and invertebrates are all found in estuaries. FORT PIERCE C-25 U.S. 1 A1A Indian River Dr. C-24 PORT INDIAN RIVER LAGOON ST. LUCIE A1A HUTCHINSON C-24 d. ISLAND Blv ie uc t. L t S or P d Blv ach Be n se n Je C-23 JENSEN BEACH No rth Fo ST. LUCIE COUNTY rk ST. LUCIE C-23 RIVER MARTIN COUNTY Bessey S FLORIDA TURNPIKE Creek o A1A u STUART t h F o r PALM k CITY U.S. 1 ST. LUCIE INLET I-95 PORT SALERNO A1A S.R. 76 C-44 I-95 HOBE SOUND S.R. 710 HISTORY OF THE Creek in Palm City. The C-44 from Lake Okeechobee carries water east into the ST. LUCIE RIVER South Fork. When Lake Okeechobee The Ais Indians were first documented water levels get too high, water is in 1568 as occupying areas close to the released into the canal/river system. -
Use of Reasonable Assurance Plans As Alternatives to Tmdls
Use of Reasonable Assurance Plans as Alternatives to TMDLs Florida Stormwater Association Winter 2017 Meeting 6 December 2017 Presentations by: • Tony Janicki • Julie Espy • Tiffany Busby • Judy Grim • Brett Cunningham Florida Reasonable Assurance Plans Julie Espy Florida Department of Environmental Protection Florida Stormwater Association Winter 2017 Meeting 6 December 2017 Florida’s Requirements • Section 303(d) of the Federal CWA • Florida statute 403.067 established the Florida Watershed Restoration Act in 1999 • Surface Water Quality Standards Rule 62- 302, F A.C. • Impaired Waters Rule (IWR) 62-303, F.A.C. Watershed Management Approach Waterbody Identification Number - WBID Assessment Unit (waterbody) Blue Lake WBID Boundary Line for the stream WBID Assessment Unit (waterbody) and WBID line for lake WBID Assessment Category Descriptions Category 1 - Attaining all designated uses Category 2 - Not impaired and no TMDL is needed Category 3 - Insufficient data to verify impairment (3a, 3b, 3c) Category 4 - Sufficient data to verify impairment, no TMDL is needed because: 4a – A TMDL has already been done 4b – Existing or proposed measures will attain water quality standards; Reasonable Assurance 4c – Impairment is not caused by a pollutant, natural conditions 4d – No causative pollutant has been identified for DO or Biology 4e – On-going restoration activities are underway to improve/restore the waterbody Category 5 - Verified impaired and a TMDL is required Descriptions of the Lists • Planning list – used to plan for monitoring • Study -
Your Guide to Eating Fish Caught in Florida
Fish Consumption Advisories are published periodically by the Your Guide State of Florida to alert consumers about the possibility of chemically contaminated fish in Florida waters. To Eating The advisories are meant to inform the public of potential health risks of specific fish species from specific Fish Caught water bodies. In Florida February 2019 Florida Department of Health Prepared in cooperation with the Florida Department of Environmental Protection and Agriculture and Consumer Services, and the Florida Fish and Wildlife Conservation Commission 2019 Florida Fish Advisories • Table 1: Eating Guidelines for Fresh Water Fish from Florida Waters (based on mercury levels) page 1-50 • Table 2: Eating Guidelines for Marine and Estuarine Fish from Florida Waters (based on mercury levels) page 51-52 • Table 3: Eating Guidelines for species from Florida Waters with Heavy Metals (other than mercury), Dioxin, Pesticides, Polychlorinated biphenyls (PCBs), or Saxitoxin Contamination page 53-54 Eating Fish is an important part of a healthy diet. Rich in vitamins and low in fat, fish contains protein we need for strong bodies. It is also an excellent source of nutrition for proper growth and development. In fact, the American Heart Association recommends that you eat two meals of fish or seafood every week. At the same time, most Florida seafood has low to medium levels of mercury. Depending on the age of the fish, the type of fish, and the condition of the water the fish lives in, the levels of mercury found in fish are different. While mercury in rivers, creeks, ponds, and lakes can build up in some fish to levels that can be harmful, most fish caught in Florida can be eaten without harm. -
Annual Report of Activities Conducted Under the Cooperative Aquatic Plant Control Program in Florida Public Waters for Fiscal Year 2012-2013
Annual Report of Activities Conducted under the Cooperative Aquatic Plant Control Program in Florida Public Waters for Fiscal Year 2012-2013 Florida Fish and Wildlife Conservation Commission Invasive Plant Management Section Submitted by: FL Fish and Wildlife Conservation Commission Invasive Plant Management Section 3900 Commonwealth Blvd. MS705 Tallahassee, FL 32399 Phone: 850-617-9420 Fax: 850-922-1249 Annual Report of Activities Conducted under the Cooperative Aquatic Plant Control Program in Florida Public Waters for Fiscal Year 2012-2013 This report was prepared in accordance with §369.22 (7), Florida Statutes, to provide an annual summary of plants treated and funding necessary to manage aquatic plants in public waters. The Cooperative Aquatic Plant Control Program administered by the Florida Fish and Wildlife Conservation Commission (FWC) in Florida’s public waters involves complex operational and financial interactions between state, federal and local governments as well as private sector companies. FWC’s aquatic plant management program mission is to reduce negative impacts from invasive nonindigenous plants like water hyacinth, water lettuce and hydrilla to conserve the multiple uses and functions of public lakes and rivers. Invasive plants infest 96% of Florida’s 451 public waters inventoried in 2013 that comprise 1.26 million acres of fresh water. Once established, eradicating invasive plants is difficult or impossible and very expensive; therefore, continuous maintenance is critical to keep invasive plants at low levels to