Prediction of Clay Minerals and Grain-Coatings in Sandstone Reservoirs Utilising Ancient Examples and Modern Analogue Studies

Total Page:16

File Type:pdf, Size:1020Kb

Prediction of Clay Minerals and Grain-Coatings in Sandstone Reservoirs Utilising Ancient Examples and Modern Analogue Studies Prediction of clay minerals and grain-coatings in sandstone reservoirs utilising ancient examples and modern analogue studies Thesis submitted in accordance with the requirements of the University of Liverpool for the degree in Doctor of Philosophy by Patrick James Dowey November 2012 Contents 1. INTRODUCTION ....................................................................................... 1 1.1 Background ........................................................................................ 1 1.2 Research objectives .......................................................................... 3 1.2.1 What factors are common to the formation of chlorite- coated sandstone reservoirs?................................................................ 4 1.2.2 How are clay minerals distributed in modern estuaries, and what processes and factors control their occurrence?............ 9 1.2.3 Do grain-coats occur in modern estuarine environments and how do they form? ........................................................................ 15 1.3 Methods ............................................................................................ 20 1.3.1 Modern estuarine studies ........................................................ 20 1.3.2 Field mapping & sample collection ....................................... 21 1.3.3 Sample preparation & storage ............................................... 22 1.3.4 Grain size analysis ..................................................................... 23 1.3.5 X-ray Diffraction (XRD) ............................................................. 24 1.3.6 Infrared Spectroscopy ............................................................. 28 1.3.7 Scanning Electron Microscopy (SEM) .................................... 29 1.4 Organisation of the thesis ............................................................... 31 2. PRE-REQUISITES, PROCESSES, AND PREDICTION OF CHLORITE GRAIN-COATINGS IN PETROLEUM RESERVOIRS: A REVIEW OF SUBSURFACE EXAMPLES .............................................................................. 38 2.1 Abstract ............................................................................................. 38 2.2 Introduction ...................................................................................... 39 2.3 Chlorite coat formation: Pre-requisites ......................................... 40 2.3.1 Diagenetic chlorite coats from precursor clay minerals .... 42 2.3.2 Diagenetic chlorite-coats formed from the dissolution of detrital grains .......................................................................................... 45 2.4 Dataset .............................................................................................. 46 2.4.1 Data collection ......................................................................... 47 2.4.2 Defining depositional environment ........................................ 48 2.4.3 Defining reservoir quality ......................................................... 50 2.4.4 Age and depositional latitudes .............................................. 53 2.4.5 Elemental compositions ........................................................... 53 2.5 Results ................................................................................................ 54 2.5.1 Depositional environment, reservoir quality and age......... 54 2.5.2 Age and depositional latitude ............................................... 56 2.5.3 Elemental composition, reservoir quality and depositional environment .................................................................... 58 2.6 Discussion .......................................................................................... 58 2.6.1 Depositional environment as a control ................................. 60 2.6.2 Depositional age as a control ................................................ 65 2.6.3 Paleolatitude ............................................................................. 66 2.6.4 Reservoir quality ........................................................................ 69 i 2.6.5 Elemental composition ............................................................ 70 2.6.6 Likely and unlikely chlorite-coat sandstone scenarios ........ 71 2.7 Conclusions ....................................................................................... 74 3. CLAY MINERALS IN A COLD CLIMATE: ORIGIN, MINERALOGY AND DISTRIBUTION OF CLAY MINERALS IN THE LEIRÁRVOGUR ESTUARY, SW ICELAND ................................................................................ 77 3.1 Abstract ............................................................................................. 77 3.2 Introduction: ..................................................................................... 78 3.2.1 Estuarine dynamics ................................................................... 79 3.2.2 Geochemical development ................................................... 82 3.3 Study area ........................................................................................ 85 3.3.1 Bedrock geology ...................................................................... 85 3.3.2 Glacial & sea level context ..................................................... 87 3.3.3 Catchment ................................................................................ 87 3.3.4 Estuary geomorphology .......................................................... 89 3.3.5 Clay mineral formation in Icelandic rocks & soils ................ 91 3.3.6 Hydrothermal clay mineral alteration.................................... 92 3.3.7 River water geochemistry ........................................................ 93 3.3.8 Offshore clay mineralogy ........................................................ 94 3.4 Materials and methods ................................................................... 95 3.5 Results .............................................................................................. 102 3.5.1 Sediment texture ..................................................................... 102 3.5.2 Clay mineral identification in estuary samples................... 105 3.5.3 Bedrock mineralogy ............................................................... 112 3.5.4 Glacial mineralogy ................................................................. 112 3.5.5 Riverbank soil mineralogy ...................................................... 115 3.5.6 Estuary clay mineral distributions .......................................... 116 3.5.7 Estuary non-clay mineral distributions .................................. 119 3.5.8 Mineral cross-plots & average values .................................. 123 3.5.9 Worm cast mineralogy ........................................................... 128 3.6 Discussion ........................................................................................ 131 3.6.1 Sediment texture ..................................................................... 131 3.6.2 Detrital & inherited mineralogy ............................................. 134 3.6.3 Non-clay minerals ................................................................... 140 3.6.4 Detrital & inherited mineral summary .................................. 141 3.6.5 Intra-estuarine processes ....................................................... 144 3.7 Conclusions:.................................................................................... 154 4. CLAY MINERALS IN THE SUN: MINERALOGY AND DISTRIBUTION OF CLAY MINERALS IN THE ANLLÓNS ESTUARY, GALICIA, SPAIN .......... 157 4.1 Abstract ........................................................................................... 157 4.2 Introduction .................................................................................... 158 4.2.1 Estuarine dynamics ................................................................. 159 4.2.2 Geochemical development ................................................. 162 4.3 Study area ...................................................................................... 165 4.3.1 Geology and tectonics ......................................................... 165 4.3.2 Weathering and soils .............................................................. 168 4.3.3 Coastal clay mineralogy ....................................................... 169 ii 4.3.4 Relative sea level history ........................................................ 171 4.3.5 Anllóns estuary catchment ................................................... 172 4.3.6 Anllóns estuary geomorphology .......................................... 173 4.4 Materials and methods ................................................................. 177 4.5 Results .............................................................................................. 181 4.5.1 Clay mineral identification .................................................... 181 4.5.2 Mineralogy of the bedrock ................................................... 185 4.5.3 Mineralogy of riverbank soil sediments ............................... 186 4.5.4 Estuary sediment texture ........................................................ 186 4.5.5 Estuary mineralogy ................................................................. 191 4.5.6 Relative estuary mineral data ............................................... 205 4.5.7 Estuary transects ..................................................................... 214 4.5.8 Mineral indices ........................................................................ 221 4.5.9
Recommended publications
  • On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothennal Systems
    LBNL~,44804 Preprint ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothennal Systems Tianfu Xu and Karsten Pruess Earth Sciences Division February 2000 Submitted to Journal ofGeophysical Research ..;, ' '., --" c. - /" .. DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBNL-44804 On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothermal Systems Tianfu Xu and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720. Submitted to Journal o/Geophysical Research February 2000 . This work was supported by the Laboratory Directed Research and Development Program of the Ernest Orlando Lawrence Berkeley National Laboratory, and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal and Wind Technologies, of the U.S.
    [Show full text]
  • A Review of Feldspar Alteration and Its Geological Significance in Sedimentary Basins from Shallow Aquifers to Deep Hydrocarbon
    Originally published as: Yuan, G., Cao, Y., Schulz, H.-M., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K., Li, F. (2019): A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. - Earth-Science Reviews, 191, pp. 114—140. DOI: http://doi.org/10.1016/j.earscirev.2019.02.004 Earth-Science Reviews 191 (2019) 114–140 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs T ⁎ ⁎ Guanghui Yuana,b, , Yingchang Caoa,b, , Hans-Martin Schulzc, Fang Haoa, Jon Gluyasd, Keyu Liua, Tian Yanga, Yanzhong Wanga, Kelai Xia, Fulai Lia a Key laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum, Qingdao, Shandong 266580, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China c GFZ German Research Centre for Geosciences, Section 4.3, Organic Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany d Department of Earth Sciences, Durham University, Durham DH1 3LE, UK ARTICLE INFO ABSTRACT Keywords: The feldspar group is one of the most common types of minerals in the earth's crust. Feldspar alteration (in- Feldspar alteration cluding the whole processes of feldspar dissolution, transfer of released solutes, and secondary mineral pre- Dissolution mechanisms cipitation) is ubiquitous and important in fields including resources and environmental sciences. This paper Rate law provides a critical review of feldspar alteration and its geological significance in shallow aquifers to deep hy- Organic-inorganic interaction drocarbon reservoirs, as assessed from peer-reviewed paper in the literature.
    [Show full text]
  • Structural Modeling Based on Sequential Restoration of Gravitational Salt Deformation in the Santos Basin (Brazil)
    Marine and Petroleum Geology xxx (2012) 1e17 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Structural modeling based on sequential restoration of gravitational salt deformation in the Santos Basin (Brazil) Sávio Francis de Melo Garcia a,*, Jean Letouzey b, Jean-Luc Rudkiewicz b, André Danderfer Filho c, Dominique Frizon de Lamotte d a Petrobras E&P-EXP, Rio de Janeiro, Brazil b IFP Energies Nouvelles, France c Universidade Federal de Ouro Preto, Ouro Preto/MG, Brazil d Université de Cergy-Pontoise, France article info abstract Article history: The structural restoration of two parallel cross-sections in the central portion of the Santos Basin enables Received 8 December 2010 a first understanding of existent 3D geological complexities. Santos Basin is one of the most proliferous Received in revised form basins along the South Atlantic Brazilian margin. Due to the halokinesis, geological structures present 22 November 2011 significant horizontal tectonic transport. The two geological cross-sections extend from the continental shelf Accepted 2 February 2012 to deep waters, in areas where salt tectonics is simple enough to be solved by 2D restoration. Such cross- Available online xxx sections display both extensional and compressional deformation. Paleobathymetry, isostatic regional compensation, salt volume control and overall aspects related to structural style were used to constrain basic Keywords: fl Salt tectonics boundary conditions. Several restoration
    [Show full text]
  • Petrography, Geochemistry, and Alteration of Country Rocks from the Bosumtwi Impact Structure, Ghana
    Meteoritics & Planetary Science 42, Nr 4/5, 513–540 (2007) Abstract available online at http://meteoritics.org Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana Forson KARIKARI1*, Ludovic FERRIÈRE1, Christian KOEBERL1, Wolf Uwe REIMOLD2, and Dieter MADER1 1Center for Earth Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 2Museum of Natural History (Mineralogy), Humboldt University, Invalidenstrasse 43, D-10115 Berlin, Germany *Corresponding author. E-mail: [email protected] (Received 27 October 2006; revision accepted 18 January 2007) Abstract–Samples of the country rocks that likely constituted the target rocks at the 1.07 Myr old Bosumtwi impact structure in Ghana, West Africa, collected outside of the crater rim in the northern and southern parts of the structure, were studied for their petrographic characteristics and analyzed for their major- and trace-element compositions. The country rocks, mainly meta-graywacke, shale, and phyllite of the Early Proterozoic Birimian Supergroup and some granites of similar age, are characterized by two generations of alteration. A pre-impact hydrothermal alteration, often along shear zones, is characterized by new growth of secondary minerals, such as chlorite, sericite, sulfides, and quartz, or replacement of some primary minerals, such as plagioclase and biotite, by secondary sericite and chlorite. A late, argillic alteration, mostly associated with the suevites, is characterized by alteration of the melt/glass clasts in the groundmass of suevites to phyllosilicates. Suevite, which occurs in restricted locations to the north and to the south-southwest of the crater rim, contains melt fragments, diaplectic quartz glass, ballen quartz, and clasts derived from the full variety of target rocks.
    [Show full text]
  • 40. Geologic History and Origin of Sao Paulo
    40. GEOLOGIC HISTORY AND ORIGIN OF SAO PAULO PLATEAU (SOUTHEASTERN BRAZILIAN MARGIN), COMPARISON WITH THE ANGOLAN MARGIN, AND THE EARLY EVOLUTION OF THE NORTHERN SOUTH ATLANTIC Naresh Kumar and L.A.P. Gamboa,1 Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York B.C. Schreiber, Queens College, City University of New York, Flushing, New York and J. Mascle, Université Pierre et Marie Curie, Centre de Geodynamique sous Marine, 06230 Villefranche - sur mer, France ABSTRACT The Sào Paulo Plateau is a prominent marginal plateau in the southern Brazilian margin. It is underlain by oceanic crust and is bounded to the north and south by fracture zones. Seismic profiles and drilling data from Site 356 (located on its southeastern corner) indicate that the region occupied by the plateau has acted as a depocenter and has evolved as a marginal plateau since the Aptian time. The Oceanographic conditions and depositional environments prevailing over the plateau during its early evolution were almost identical to those suggested in the Angolan margin by the drilling data at Site 364 (DSDP). Reconstruction of the evolution of Sào Paulo Plateau and com- parison between the drilled geologic sequences on the opposing margins suggest the following history for the northern South Atlan- tic. Coarse terrigenous sediments were deposited in coastal basins at both the margins following the opening of the South Atlantic in the Neocomian. By Aptian time, a linear narrow basin, with barriers to the south and north, was created. The Walvis and Sào Paulo ridges formed the southern barrier whereas the equatorial fracture zones appear to have formed the northern barrier.
    [Show full text]
  • Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins
    geosciences Article Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-Salt Basins Luiz Gamboa 1,*, André Ferraz 1, Rui Baptista 2 and Eugênio V. Santos Neto 3 1 Geology & Geophysical Department, Universidade Federal Fluminense, UFF, Niterói 2410-364, Brazil; [email protected] 2 Geology Department, F. Ciências Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] 3 Independent Consultant, Rio de Janeiro 22271-110, Brazil; [email protected] * Correspondence: [email protected] Received: 7 March 2019; Accepted: 16 May 2019; Published: 5 June 2019 Abstract: Exploratory work for hydrocarbons along the southeastern Brazilian Margin discovered high concentrations of CO2 in several fields, setting scientific challenges to understand these accumulations. Despite significant progress in understanding the consequences of high CO2 in these reservoirs, the role of several variables that may control such accumulations of CO2 is still unclear. For example, significant differences in the percentages of CO2 have been found in reservoirs of otherwise similar prospects lying close to each other. In this paper, we present a hypothesis on how the rifting geodynamics are related to these CO2-rich accumulations. CO2-rich mantle material may be intruded into the upper crustal levels through hyper-stretched continental crust during rifting. Gravimetric and magnetic potential methods were used to identify major intrusive bodies, crustal thinning and other geotectonic elements of the southeastern Brazilian Margin. Modeling based on magnetic, gravity, and seismic data suggests a major intrusive magmatic body just below the reservoir where a high CO2 accumulation was found. Small faults connecting this magmatic body with the sedimentary section could be the fairway for the magmatic sourced gas rise to reservoirs.
    [Show full text]
  • This Manuscript Is a Preprint and Has Been Formally Accepted for Publication in Basin Research
    This manuscript is a preprint and has been formally accepted for publication in Basin Research 1 Base-Salt Relief Controls on Salt-Tectonic Structural Style, São Paulo Plateau, Santos Basin, Brazil *Leonardo M. Pichel1, Christopher A-L. Jackson1; Frank Peel1,2, Tim P. Dooley2 1 – Basins Research Group (BRG), Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, SW7 2BP, United Kingdom 2 – The University of Texas at Austin, Bureau of Economic Geology, Jackson School of Geosciences, Austin, Texas, USA Key-words: SALT TECTONICS, MINIBASINS, DIAPIRISM, TRANSLATION, BASE- SALT RELIEF, RAMP-SYNCLINE BASINS, GRAVITY-DRIVEN DEFORMATION, SANTOS BASIN, BRAZIL, SÃO PAULO PLATEAU 2 ABSTRACT Base-salt relief influences salt flow, producing three-dimensionally complex strains and multiphase deformation within the salt and its overburden. Understanding how base-salt relief influences salt-related deformation is important to correctly interpret salt basin kinematics and distribution of structural domains, which have important implications to understand the development of key petroleum system elements. The São Paulo Plateau, Santos Basin, Brazil is characterized by a >2 km thick, mechanically layered Aptian salt layer deposited above prominent base-salt relief. We use 3D seismic reflection data, and physical and conceptual kinematic models to investigate how gravity-driven translation above thick salt, underlain by complex base-salt relief, generated a complex framework of salt structures and minibasins. We show that ramp-syncline basins developed above and downdip of the main pre- salt highs record c. 30 km of Late Cretaceous-Paleocene basinward translation. As salt and overburden translated downdip, salt flux variations caused by the base-salt relief resulted in non-uniform motion of the cover, and the simultaneous development of extensional and contractional structures.
    [Show full text]
  • Effects of Hydrothermal Alteration on the Geomechanics of Degradation at the Bagdad Mine, Arizona
    Effects of Hydrothermal Alteration on the Geomechanics of Degradation at the Bagdad Mine, Arizona Item Type text; Electronic Thesis Authors Coutinho, Paulo Citation Coutinho, Paulo. (2020). Effects of Hydrothermal Alteration on the Geomechanics of Degradation at the Bagdad Mine, Arizona (Master's thesis, University of Arizona, Tucson, USA). Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 14:56:11 Link to Item http://hdl.handle.net/10150/648603 EFFECTS OF HYDROTHERMAL ALTERATION ON THE GEOMECHANICS OF DEGRADATION AT THE BAGDAD MINE, ARIZONA by Paulo Coutinho ______________________________________________________________________________ Copyright © Paulo Coutinho 2020 A Thesis Submitted to the Faculty of the DEPARTMENT OF MINING AND GEOLOGICAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN MINING, GEOLOGICAL, AND GEOPHYSICAL ENGINEERING In the Graduate College THE UNIVERSITY OF ARIZONA 2020 2 3 Acknowledgements I would like to extend my sincere gratitude to my advisors, Dr. John Kemeny and Dr. Isabel Barton, for their crucial role in guiding me through my graduate studies. I would also like to thank my thesis committee members, Mr. Keith Taylor, for his valuable support and enlightening comments. Dr. Sergio Castro Reino for his resources and experience involving rock mass degradation. Furthermore, I would like to thank my coworkers at Freeport McMoRan Inc. for providing me geology and geological engineering knowledge pertaining to the Bagdad deposit, and Call & Nicholas for their constructive criticisms regarding my modeling techniques.
    [Show full text]
  • Coupled Mineral Alteration and Oil Degradation in Thermal Oil-Water-Feldspar Systems and Implications for Organic-Inorganic Interactions in Hydrocarbon Reservoirs
    Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 248 (2019) 61–87 www.elsevier.com/locate/gca Coupled mineral alteration and oil degradation in thermal oil-water-feldspar systems and implications for organic-inorganic interactions in hydrocarbon reservoirs Guanghui Yuan a,b,⇑, Yingchang Cao a,⇑, Nianmin Zan a, Hans-Martin Schulz c Jon Gluyas d, Fang Hao a, Qiang Jin a, Keyu Liu a, Yanzhong Wang a Zhonghong Chen a, Zhenzhen Jia a a Key Laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum, Qingdao 266580, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, No. 62, Fuzhou South Road, Qingdao 266071, China c GFZ German Research Centre for Geosciences, Section 4.3, Organic Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany d Department of Earth Sciences, Durham University, Durham DHs 3LE, UK Received 19 January 2018; accepted in revised form 2 January 2019; available online 11 January 2019 Abstract Organic-inorganic interactions after oil charging are critical for determining the ongoing evolution of hydrocarbons and rock quality in water-wet siliciclastic reservoirs. It is the conceptual approach of this study to simulate and decipher these interactions by using quantitative analyses of the interrelated changes of minerals, water, hydrocarbons, gases, and organic acids in heated oil-water-rock systems. The experimental results show that organic-inorganic interactions occur between the organic oil and inorganic feldspar in the presence of water. Water promotes the oil degradation by an extra supply of H+ and OHÀ ions. In the oil-water-rock systems, mutual exchanges of H+ and OHÀ ions among minerals, water, and hydrocarbons probably result in the mutual interactions between oil degradation and mineral alteration, with water serving as a matrix for the ion exchange.
    [Show full text]
  • Identification of Hydrothermal Alteration Minerals for Exploring
    remote sensing Article Identification of Hydrothermal Alteration Minerals for Exploring Gold Deposits Based on SVM and PCA Using ASTER Data: A Case Study of Gulong Kai Xu 1,2,3, Xiaofeng Wang 1, Chunfang Kong 1,2,4,* , Ruyi Feng 1, Gang Liu 1 and Chonglong Wu 1,2 1 School of Computer, China University of Geosciences, Wuhan 430074, China; [email protected] (K.X.); [email protected] (X.W.); [email protected] (R.F.); [email protected] (G.L.); [email protected] (C.W.) 2 Innovation Center of Mineral Resources Exploration Engineering Technology in Bedrock Area, Ministry of Natural Resources, Guiyang 550081, China 3 Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan 430074, China 4 National-Local Joint Engineering Laboratory on Digital Preservation and Innovative Technologies for the Culture of Traditional Villages and Towns, Hengyang 421000, China * Correspondence: [email protected]; Tel.: +86-027-6788-3286 Received: 3 December 2019; Accepted: 11 December 2019; Published: 13 December 2019 Abstract: Dayaoshan, as an important metal ore-producing area in China, is faced with the dilemma of resource depletion due to long-term exploitation. In this paper, remote sensing methods are used to circle the favorable metallogenic areas and find new ore points for Gulong. Firstly, vegetation interference was removed by using mixed pixel decomposition method with hyperplane and genetic algorithm (GA) optimization; then, altered mineral distribution information was extracted based on principal component analysis (PCA) and support vector machine (SVM) methods; thirdly, the favorable areas of gold mining in Gulong was delineated by using the ant colony algorithm (ACA) optimization SVM model to remove false altered minerals; and lastly, field surveys verified that the extracted alteration mineralization information is correct and effective.
    [Show full text]
  • Application of Imaging Spectroscopy for Mineral Exploration in Alaska: a Study Over Porphyry Cu Deposits in the Eastern Alaska Range
    Economic Geology, v. 113, no. 2, pp. 489–510 Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range Garth E. Graham,1,† Raymond F. Kokaly,2 Karen D. Kelley,1 Todd M. Hoefen,2 Michaela R. Johnson,2 and Bernard E. Hubbard3 1 U.S. Geological Survey, PO Box 25046, MS 973, Denver Federal Center, Denver, Colorado 80225 2 U.S. Geological Survey, PO Box 25046, MS 964, Denver Federal Center, Denver, Colorado 80225 3 U.S. Geological Survey, 12201 Sunrise Valley Drive, MS 954, Reston, Virginia 20192 Abstract The U.S. Geological Survey tested the utility of imaging spectroscopy (also referred to as hyperspectral remote sensing) as an aid to regional mineral exploration efforts in remote parts of Alaska. Airborne imaging spectrom- eter data were collected in 2014 over unmined porphyry Cu deposits in the eastern Alaska Range using the HyMap™ sensor. Maps of the distributions of predominant minerals, made by matching reflectance signatures in the remotely sensed data to reference spectra in the shortwave infrared region, do not uniquely discriminate individual rock units. However, they do highlight hydrothermal alteration associated with porphyry deposits and prospects hosted mostly within the Nabesna pluton. In and around porphyry Cu deposits at Orange Hill and Bond Creek, unique spectral signatures are related to variations in chlorite and white mica abundance and their chemi- cal composition. This is best revealed in the longer-wavelength 2,200-nm Al-OH absorption feature positions in pixels spectrally dominated by white mica proximal to porphyry deposits.
    [Show full text]
  • Seismic Characterization of Carbonate Platforms and Reservoirs: an Introduction and Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Seismic characterization of carbonate platforms and reservoirs: an introduction and review James Hendry1,2*, Peter Burgess3, David Hunt4, Xavier Janson5 and Valentina Zampetti6 1Iapetus Geoscience Ltd, Unit 7, Watson & Johnson Centre, Mill Road, Greystones, Co. Wicklow, Ireland 2School of Earth Sciences, University College Dublin, Bellfield, Dublin 4, Ireland 3School of Environmental Sciences, University of Liverpool, Brownlow Street, Liverpool L69 3GP, UK 4Equinor, Sandsliveien 90, Sandsli, N-5234, Norway 5Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78713, USA 6Shell Global Solutions, Lange Kleiweg 40, 2288 ER Rijswijk, The Netherlands JH, 0000-0002-8448-6057; DH, 0000-0003-1911-9389 *Correspondence: [email protected] Abstract: Improved seismic data quality in the last 10–15 years, innovative use of seismic attribute combina- tions, extraction of geomorphological data and new quantitative techniques have significantly enhanced under- standing of ancient carbonate platforms and processes. 3D data have become a fundamental toolkit for mapping carbonate depositional and diagenetic facies, and associated flow units and barriers, giving a unique perspective on how their relationships changed through time in response to tectonic, oceanographic and climatic forcing. Sophisticated predictions of lithology and porosity are being made from seismic data in reservoirs with good borehole log and core calibration for detailed integration with structural, palaeoenvironmental and sequence stratigraphic interpretations. Geologists can now characterize entire carbonate platform systems and their large-scale evolution in time and space, including systems with few outcrop analogues such as the Lower Cre- taceous Central Atlantic ‘pre-salt’ carbonates.
    [Show full text]