Effects of Hydrothermal Alteration on the Geomechanics of Degradation at the Bagdad Mine, Arizona
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothennal Systems
LBNL~,44804 Preprint ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothennal Systems Tianfu Xu and Karsten Pruess Earth Sciences Division February 2000 Submitted to Journal ofGeophysical Research ..;, ' '., --" c. - /" .. DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBNL-44804 On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothermal Systems Tianfu Xu and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720. Submitted to Journal o/Geophysical Research February 2000 . This work was supported by the Laboratory Directed Research and Development Program of the Ernest Orlando Lawrence Berkeley National Laboratory, and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal and Wind Technologies, of the U.S. -
A Review of Feldspar Alteration and Its Geological Significance in Sedimentary Basins from Shallow Aquifers to Deep Hydrocarbon
Originally published as: Yuan, G., Cao, Y., Schulz, H.-M., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K., Li, F. (2019): A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. - Earth-Science Reviews, 191, pp. 114—140. DOI: http://doi.org/10.1016/j.earscirev.2019.02.004 Earth-Science Reviews 191 (2019) 114–140 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs T ⁎ ⁎ Guanghui Yuana,b, , Yingchang Caoa,b, , Hans-Martin Schulzc, Fang Haoa, Jon Gluyasd, Keyu Liua, Tian Yanga, Yanzhong Wanga, Kelai Xia, Fulai Lia a Key laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum, Qingdao, Shandong 266580, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China c GFZ German Research Centre for Geosciences, Section 4.3, Organic Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany d Department of Earth Sciences, Durham University, Durham DH1 3LE, UK ARTICLE INFO ABSTRACT Keywords: The feldspar group is one of the most common types of minerals in the earth's crust. Feldspar alteration (in- Feldspar alteration cluding the whole processes of feldspar dissolution, transfer of released solutes, and secondary mineral pre- Dissolution mechanisms cipitation) is ubiquitous and important in fields including resources and environmental sciences. This paper Rate law provides a critical review of feldspar alteration and its geological significance in shallow aquifers to deep hy- Organic-inorganic interaction drocarbon reservoirs, as assessed from peer-reviewed paper in the literature. -
Petrography, Geochemistry, and Alteration of Country Rocks from the Bosumtwi Impact Structure, Ghana
Meteoritics & Planetary Science 42, Nr 4/5, 513–540 (2007) Abstract available online at http://meteoritics.org Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana Forson KARIKARI1*, Ludovic FERRIÈRE1, Christian KOEBERL1, Wolf Uwe REIMOLD2, and Dieter MADER1 1Center for Earth Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 2Museum of Natural History (Mineralogy), Humboldt University, Invalidenstrasse 43, D-10115 Berlin, Germany *Corresponding author. E-mail: [email protected] (Received 27 October 2006; revision accepted 18 January 2007) Abstract–Samples of the country rocks that likely constituted the target rocks at the 1.07 Myr old Bosumtwi impact structure in Ghana, West Africa, collected outside of the crater rim in the northern and southern parts of the structure, were studied for their petrographic characteristics and analyzed for their major- and trace-element compositions. The country rocks, mainly meta-graywacke, shale, and phyllite of the Early Proterozoic Birimian Supergroup and some granites of similar age, are characterized by two generations of alteration. A pre-impact hydrothermal alteration, often along shear zones, is characterized by new growth of secondary minerals, such as chlorite, sericite, sulfides, and quartz, or replacement of some primary minerals, such as plagioclase and biotite, by secondary sericite and chlorite. A late, argillic alteration, mostly associated with the suevites, is characterized by alteration of the melt/glass clasts in the groundmass of suevites to phyllosilicates. Suevite, which occurs in restricted locations to the north and to the south-southwest of the crater rim, contains melt fragments, diaplectic quartz glass, ballen quartz, and clasts derived from the full variety of target rocks. -
Freeport-Mcmoran Annual Report 2020
Freeport-McMoRan Annual Report 2020 Form 10-K (NYSE:FCX) Published: February 14th, 2020 PDF generated by stocklight.com UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 FORM 10-K (Mark one) ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 ☒ For the fiscal year ended December 31, 2019 OR TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 ☐ For the transition period from to Commission file number: 001-11307-01 Freeport-McMoRan Inc. (Exact name of registrant as specified in its charter) Delaware 74-2480931 (State or other jurisdiction of (I.R.S. Employer Identification No.) incorporation or organization) 333 North Central Avenue Phoenix Arizona 85004-2189 (Address of principal executive offices) (Zip Code) (602) 366-8100 (Registrant’s telephone number, including area code) Securities registered pursuant to Section 12(b) of the Act: Title of each class Trading Symbol(s) Name of each exchange on which registered Common Stock, par value $0.10 per share FCX The New York Stock Exchange Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is a well-known seasoned issuer, as defined in Rule 405 of the Securities Act ☑ Yes ☐ No Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. ☐ Yes ☑ No Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. -
Sierrita Mine from Mine to Me How Copper Ore Becomes Copper Wire
Sierrita Mine From Mine to Me How copper ore becomes copper wire Arizona Copper Mines 3 Copper Sulfide Ore 5 Copper Oxide Ore 8 Exploration 11 Open Pit Mining 22 Crushing and Milling 37 Flotation 46 Smelting 54 Leaching Oxide Ore 71 2012 Heap Leaching 76 by Jan C. Rasmussen, Ph.D. Solvent Extraction 82 Electrowinning 87 Fabricating - Rod Mill 96 Electrorefining 100 Reclamation 112 Uses of Copper 118 2 Arizona Copper Mines • Bagdad • Bisbee • Carlota • Hayden Smelter • Johnson Camp • Miami • Mineral Park • Mission • Morenci • Pinto Valley • Ray • Resolution • Rosemont X San Manuel • Safford • San Manuel • Sierrita X Bisbee • Silver Bell • Tohono 3 Copper sulfide ore and copper oxide ore are processed in different ways. Exploration Mining Concentrating Sulfide Ore Copper Products Smelting To Customer Rod, Cake, and Cathode Oxide Ore Leaching Solvent Extraction Electrowinning Refining Copper Anodes to Texas Copper Product to Customer (Ray and Silver Bell) 4 Cathode Sulfide ore: Chalcopyrite & Bornite Chalcopyrite Chalcopyrite can be called copper fool’s gold. It is made of copper, iron, and sulfur. It is a brassy yellow, metallic mineral and it is very heavy. Chalcopyrite is not as hard as pyrite, which is called fool’s gold. Chalcopyrite will not scratch glass, but will scratch a copper penny. Pyrite will scratch glass. Chalcopyrite is also a brighter yellow than pyrite. It often tarnishes to a blue-green, iridescent color on weathered surfaces. Chalcopyrite is the main copper sulfide ore. Chalcocite Bornite is also known as Peacock Copper because of the blue-green tarnish. On freshly broken surfaces, it is Chalcocite is a sooty black, bronze colored. -
Coupled Mineral Alteration and Oil Degradation in Thermal Oil-Water-Feldspar Systems and Implications for Organic-Inorganic Interactions in Hydrocarbon Reservoirs
Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta 248 (2019) 61–87 www.elsevier.com/locate/gca Coupled mineral alteration and oil degradation in thermal oil-water-feldspar systems and implications for organic-inorganic interactions in hydrocarbon reservoirs Guanghui Yuan a,b,⇑, Yingchang Cao a,⇑, Nianmin Zan a, Hans-Martin Schulz c Jon Gluyas d, Fang Hao a, Qiang Jin a, Keyu Liu a, Yanzhong Wang a Zhonghong Chen a, Zhenzhen Jia a a Key Laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum, Qingdao 266580, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, No. 62, Fuzhou South Road, Qingdao 266071, China c GFZ German Research Centre for Geosciences, Section 4.3, Organic Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany d Department of Earth Sciences, Durham University, Durham DHs 3LE, UK Received 19 January 2018; accepted in revised form 2 January 2019; available online 11 January 2019 Abstract Organic-inorganic interactions after oil charging are critical for determining the ongoing evolution of hydrocarbons and rock quality in water-wet siliciclastic reservoirs. It is the conceptual approach of this study to simulate and decipher these interactions by using quantitative analyses of the interrelated changes of minerals, water, hydrocarbons, gases, and organic acids in heated oil-water-rock systems. The experimental results show that organic-inorganic interactions occur between the organic oil and inorganic feldspar in the presence of water. Water promotes the oil degradation by an extra supply of H+ and OHÀ ions. In the oil-water-rock systems, mutual exchanges of H+ and OHÀ ions among minerals, water, and hydrocarbons probably result in the mutual interactions between oil degradation and mineral alteration, with water serving as a matrix for the ion exchange. -
Identification of Hydrothermal Alteration Minerals for Exploring
remote sensing Article Identification of Hydrothermal Alteration Minerals for Exploring Gold Deposits Based on SVM and PCA Using ASTER Data: A Case Study of Gulong Kai Xu 1,2,3, Xiaofeng Wang 1, Chunfang Kong 1,2,4,* , Ruyi Feng 1, Gang Liu 1 and Chonglong Wu 1,2 1 School of Computer, China University of Geosciences, Wuhan 430074, China; [email protected] (K.X.); [email protected] (X.W.); [email protected] (R.F.); [email protected] (G.L.); [email protected] (C.W.) 2 Innovation Center of Mineral Resources Exploration Engineering Technology in Bedrock Area, Ministry of Natural Resources, Guiyang 550081, China 3 Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences), Ministry of Education, Wuhan 430074, China 4 National-Local Joint Engineering Laboratory on Digital Preservation and Innovative Technologies for the Culture of Traditional Villages and Towns, Hengyang 421000, China * Correspondence: [email protected]; Tel.: +86-027-6788-3286 Received: 3 December 2019; Accepted: 11 December 2019; Published: 13 December 2019 Abstract: Dayaoshan, as an important metal ore-producing area in China, is faced with the dilemma of resource depletion due to long-term exploitation. In this paper, remote sensing methods are used to circle the favorable metallogenic areas and find new ore points for Gulong. Firstly, vegetation interference was removed by using mixed pixel decomposition method with hyperplane and genetic algorithm (GA) optimization; then, altered mineral distribution information was extracted based on principal component analysis (PCA) and support vector machine (SVM) methods; thirdly, the favorable areas of gold mining in Gulong was delineated by using the ant colony algorithm (ACA) optimization SVM model to remove false altered minerals; and lastly, field surveys verified that the extracted alteration mineralization information is correct and effective. -
Failure to Capture and Treat Wastewater
U.S. OPERATING COPPER MINES: FAILURE TO CAPTURE & TREAT WASTEWATER BY BONNIE GESTRING, MAY 2019 In 2012, Earthworks released a report documenting the failure to capture and treat mine wastewater at U.S. operating copper mines accounting for 89% of U.S. copper production.1 The report found that 92% failed to capture and control mine wastewater, resulting in significant water quality impacts. This is an update to that effort. We reviewed government and industry documents for fifteen operating open-pit copper mines, representing 99% of U.S. copper production in 2015 – the most recent data on copper production available from the U.S. Geological Survey (see Table 1). Our research found similar results: 14 out of 15 (93%) failed to capture and control wastewater, resulting in significant water quality impacts (see TaBle 2). These unauthorized wastewater releases occurred from a number of different sources including uncontrolled seepage from tailings impoundments, waste rock piles, open pits, or other mine facilities, or failure of water treatment facilities, pipeline failures or other accidental releases. TABLE 1: Copper production from top 15 (as of 2015) U.S. open-pit copper mines (most recent data availaBle from USGS).2 MINE PRODUCTION (metric tons) Morenci 481,000 Chino 142,000 Safford 91,600 Bagdad 95,300 Bingham Canyon 92,000 Sierrita 85,700 Ray 75,100 Pinto Valley 60,400 Mission CompleX 68,300 Robinson 56,800 Tyrone 38,100 Continental pit 31,000 PhoeniX 21,100 Miami 19,500 Silver Bell 19,300 Total (99% of U.S. production) 1,377,000 U.S. -
Application of Imaging Spectroscopy for Mineral Exploration in Alaska: a Study Over Porphyry Cu Deposits in the Eastern Alaska Range
Economic Geology, v. 113, no. 2, pp. 489–510 Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range Garth E. Graham,1,† Raymond F. Kokaly,2 Karen D. Kelley,1 Todd M. Hoefen,2 Michaela R. Johnson,2 and Bernard E. Hubbard3 1 U.S. Geological Survey, PO Box 25046, MS 973, Denver Federal Center, Denver, Colorado 80225 2 U.S. Geological Survey, PO Box 25046, MS 964, Denver Federal Center, Denver, Colorado 80225 3 U.S. Geological Survey, 12201 Sunrise Valley Drive, MS 954, Reston, Virginia 20192 Abstract The U.S. Geological Survey tested the utility of imaging spectroscopy (also referred to as hyperspectral remote sensing) as an aid to regional mineral exploration efforts in remote parts of Alaska. Airborne imaging spectrom- eter data were collected in 2014 over unmined porphyry Cu deposits in the eastern Alaska Range using the HyMap™ sensor. Maps of the distributions of predominant minerals, made by matching reflectance signatures in the remotely sensed data to reference spectra in the shortwave infrared region, do not uniquely discriminate individual rock units. However, they do highlight hydrothermal alteration associated with porphyry deposits and prospects hosted mostly within the Nabesna pluton. In and around porphyry Cu deposits at Orange Hill and Bond Creek, unique spectral signatures are related to variations in chlorite and white mica abundance and their chemi- cal composition. This is best revealed in the longer-wavelength 2,200-nm Al-OH absorption feature positions in pixels spectrally dominated by white mica proximal to porphyry deposits. -
U.S.Copper Porphyry Mines and Water Quality
U.S. Copper Porphyry Mines Report THE TRACK RECORD OF WATER QUALITY IMPACTS RESULTING FROM PIPELINE SPILLS, TAILINGS FAILURES AND WATER COLLECTION AND TREATMENT FAILURES. JULY 2012 (REVISED 11/2012) TM EARTHWORKS U.S. COPPER PORPHYRY MINES: The track record of water quality impacts resulting from pipeline spills, tailings failures and water collection and treatment failures. EARTHWORKS, July 2012 (Revised 11/2012) By Bonnie Gestring Reviewed by Dave Chambers Ph. D., Center for Science in Public Participation (CSP2) TM EARTHWORKS Photos, top to bottom: TM Yankee Doodle tailings pond by Ecofight EARTHWORKS Chino Mine by Gila Resource Information Project (GRIP) Sierrita Mine by Ecofight Bird fatality at Tyrone Mine by Jim Kuipers TM EARTHWORKS TM EARTHWORKS Table of Contents ! Introduction, Methods, & Results ..................................................................................................... 4 Conclusion ……………………………………………………………………………………………………5 ! Table 1: Copper production amounts for mines reviewed in the report ................................... 6 Table 2. Synopsis of pipeline spills, tailings spills and impoundment failures, and water capture and treatment failures for 14 copper porphyry mines (1986-2012). ............... 7 Case Studies of Active U.S. Copper Porphyry Mines ! Morenci Mine, AZ…………………………………………………………………………………. 8 Bingham Canyon, UT .......................................................................................................... 10 Ray Mine, AZ ....................................................................................................................... -
DOCTORAL THESIS Chalcopyrite (Bio)Leaching in Sulphate Solutions
DOCTORAL T H E SIS Department of Civil, Environmental and Natural Resources Engineering Division of Minerals and Metallurgical Engineering Mohammad Khoshkhoo Chalcopyrite (Bio)leaching in Sulphate Solutions ISSN 1402-1544 Chalcopyrite (Bio)leaching in Sulphate Solutions ISBN 978-91-7583-507-5 (print) ISBN 978-91-7583-508-2 (pdf) An Investigation into Hindered Dissolution with Luleå University of Technology 2016 a Focus on Solution Redox Potential Mohammad Khoshkhoo Process Metallurgy Chalcopyrite (Bio)leaching in Sulphate Solutions An Investigation into Hindered Dissolution with a Focus on Solution Redox Potential Mohammad Khoshkhoo Division of Minerals and Metallurgical Engineering Department of Civil, Environmental and Natural Resources Engineering Luleå University of Technology SE– 971 87 Luleå Sweden February 2016 Printed by Luleå University of Technology, Graphic Production 2015 ISSN 1402-1544 ISBN 978-91-7583-507-5 (print) ISBN 978-91-7583-508-2 (pdf) Luleå 2016 www.ltu.se Abstract Chalcopyrite (CuFeS2) is the most abundant and the most economically important copper mineral. Increasing worldwide demand for copper accompanied by exhaustion of copper resources necessitate the development of new processes for treating lower–grade copper ores. Heap (bio)leaching of copper oxides and secondary sulphides (covellite (CuS) and chalcocite (Cu2S)) is a proven and convenient technology. However, chalcopyrite is recalcitrant to leaching and bioleaching in conventional leaching systems in sulphate media. Slow dissolution of chalcopyrite is attributed to the formation of compounds on the surface of the mineral during its dissolution and is often termed “passivation” or “hindered dissolution”. There is still no consensus about the nature of the passivation layer. There are, however, four proposed candidates suggested in the literature: metal deficient sulphides, polysulphides, jarosite and elemental sulphur. -
Water Consumption at Copper Mines in Arizona by Dr
Water Consumption at Copper Mines in Arizona by Dr. Madan M. Singh State of Arizona Department of Mines & Mineral Resources Special Report 29 December 2010 State of Arizona Jan Brewer, Governor Phoenix, Arizona ARIZONA DEPARTMENT OF MINES AND MINERAL RESOURCES Dr. Madan M. Singh, Director 1502 West Washington Phoenix, Arizona 85007 602 771-1600 Fax 602-771-1616 Toll-free in Arizona – 800-446-4259 www.mines.az.gov Board of Governors R. L. Holmes - Phoenix Chairman P.K. Medhi - Casa Grande M.A. Marra - Phoenix Secretary Member L.H. White - Phoenix Member WATER CONSUMPTION AT COPPER MINES IN ARIZONA Arizona has the best copper deposits in the United States, and produces more of the red metal than most countries except Chile and Peru. All mining needs water for mining and processing and copper mining is no exception. Arizona is mostly desert and, therefore, short of water. This scarcity has been exacerbated because of the rapid growth of population in the state and the resulting enhanced demands for the resource. This has also attracted the attention of the general public to the use of water for mining. Most water is used in flotation beneficiation, smelting, and electro-refining. Small amounts are used for domestic purposes (drinking, bathing, and such). It is also used for wetting roads to suppress dust. Factors affecting dust suppression include annual precipitation, natural vegetation, land morphology, and other factors. The amount of water used for wetting may vary between 0% and 15% of the total water used at the mine, depending on conditions. The water source may be from underground aquifers, Central Arizona (CAP), surface streams, precipitation, or a combination.