Application of Remote Sensing and GIS in Mineral Resource Mapping − an Overview

Total Page:16

File Type:pdf, Size:1020Kb

Application of Remote Sensing and GIS in Mineral Resource Mapping − an Overview Journal ofApplication Mineralogical of remote and Petrological sensing and GISSciences, in mineral Volume resource 99, page mapping 83─ 103, 2004 83 REVIEW Application of remote sensing and GIS in mineral resource mapping - An overview H.M. RAJESH Department of Geographical Sciences and Planning, Chamberlain Building, University of Queensland, St Lucia 4072, QLD, Australia Remote sensing, as a direct adjunct to field, lithologic and structural mapping, and more recently, GIS have played an important role in the study of mineralized areas. A review on the application of remote sensing in mineral resource mapping is attempted here. It involves understanding the application of remote sensing in lithologic, structural and alteration mapping. Remote sensing becomes an important tool for locating mineral deposits, in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithologic mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. In addition to these, understanding the use of hyperspectral remote sensing is crucial as hyperspectral data can help identify and thematically map regions of exploration interest by using the distinct absorption features of most minerals. Finally coming to the exploration stage, GIS forms the perfect tool in integrating and analyzing various georeferenced geoscience data in selecting the best sites of mineral deposits or rather good candidates for further exploration. Introduction regions of the earth have been found, current emphasis is on the location of deposits far below the earth’s surface or “Geologists seem to have rosy prospects in remote in inaccessible regions. Geophysical methods that sensing for the next decade. This period is likely to be provide deep penetration into the earth are generally one of consolidation rather than innovation, giving the needed to locate potential deposits and drill holes are majority of geologists the time to get to grips with what has been happening over the last three decades in geolog- required to confirm their existence. However, much ical remote sensing research, to apply the new data to information about potential areas for mineral exploration exciting new geological problems instead of repeatedly can be provided by interpretation of surface features on pawing over tiny test areas, and to catch up with their aerial photographs and satellite images. For example, in . colleagues in other fields ” (Drury, 2001, p. 67) Australia (where 70% of the continent is covered by sedi- ments), a comparison of all significant gold deposits Mineral resource mapping is an important type of geolo- currently known with the areas of weathered basement gic mapping activity and usually covers a great part of rocks (where gold and other mineral deposits are likely to varied studies, focused on spectral analysis (e.g. Longhi be found) indicates the potential for remote sensing in et al., 2001), geological mapping (e.g. Harris, 1991), discovering new deposits under the sedimentary cover structural mapping (e.g. Liu et al., 2000), identification of (Fig. 1). While use of remotely sensed images cannot hydrothermal alteration zones (e.g. Podwysocki et al., replace direct ground observation or data derived from 1983), mineral alteration mapping (e.g. Tangestani and field and laboratory studies, they can form valuable Moore, 2002), ferric oxide and oxyhydroxide mineral supplements to more traditional methods and provide mapping (e.g. Farrand, 1997), gold exploration (e.g. information and a perspective not otherwise available. Spatz, 1997), hyperspectral imagery (e.g. Neville et al., It should be appreciated that there is one important 2003), integration with geographic information systems limitation of remote sensing data in mineral exploration - (GIS) (e.g. Akhavi et al., 2001) etc. Because most of the the depth aspect. Remote sensing data have a depth pene- surface and near -surface mineral deposits in accessible tration of approximately a few micrometers in the very near infrared region, to a few centimeters in the thermal H.M. Rajesh, [email protected] Corresponding author infrared and some meters (in hyper arid regions) in the 84 H.M. Rajesh Application of remote sensing and GIS in mineral resource mapping 85 Figure 1. a: Digital Elevation Model (DEM) of Australia. b: Map of Australia showing areas of weathered basement rocks (dark), areas where basement is covered by younger sediments (light), and all significant gold deposits currently known in Australia (circles). (Courtesy: CSIRO, Australia) knowledge of the general geological make up of an area. Therefore, a little basic geology about the assumptions of mineral deposits is relevant: • A particular mineral deposit occurs in a particular rock type (e.g. diamond usually occurs in kimber- lite). • Mineral deposits usually occur along or adjacent to geologic structures (e.g. Fig. 2). • Mineral deposits usually show strong alteration on the surface. • Mineral deposits are usually (spatially) associated Figure 2. Proximity analysis (buffering) of anticlinal folds from an with a high temperature rock (e.g. granite). area, part of the Meguma terrane, Nova Scotia, Canada. The Meguma terrane consists of predominantly Cambrian and Ordo- • Mineral deposits usually occur near the contact vician sedimentary rocks intruded by Devonian granites. The between favorable rock types (e.g. porphyry copper fold axes were digitized from the geological map and buffered. deposits have a direct spatial association with the This map has 24 distance buffers spaced at 250 m intervals. The contact of granitic to intermediate intrusive rocks; reported gold occurrences occur close to the axial trace of the Guilbert and Park, 1996). anticlines (Bonham-Carter, 1994). A multiple combination of any of the above mentioned hypotheses is used to locate mineral resources microwave region. Therefore, in most cases, a remote in this paper. For example, the Chalice gold deposit, sensing data interpreter has to rely on indirect clues, such Yilgarn Craton, Western Australia, occurs in a sequence as general geologic setting, alteration zones, associated of intercalated mafic and ultramafic amphibolites, is rocks, structure, lineaments, oxidation products, spatially and temporally related to granitic rocks, is morphology, drainage, and vegetation anomaly, since only controlled by localized asymmetric folds, and is charac- - rarely is it possible to directly pinpoint the occurrence and terized by high temperature silicate and sulfide alteration mineralogy of a deposit based solely on remote sensing assemblages (Bucci et al., 2002). Because mineral data. In this perspective, both multispectral and hyper- resources are associated most frequently with very small spectral sensors, which can define mineralogy, are but highly anomalous areas where a great many processes expected to play a greater role in mineral exploration, by have all acted together to concentrate the metals involved helping to delineate ore minerals or their pathfinders. The above their normal abundances, it is very easy to miss results are being more and more integrated into opera- even very high value deposits in the field. However, the tional exploration models based on geographic informa- anomalous processes involved produce unusual rocks and tion systems (GIS) technology, which plays a relevant minerals associated with mineral deposits. It is toward role in mineral exploration (e.g. Bonham -Carter, 1994; these that remote sensing is directed. Remote sensing Memmi and Pride, 1997). becomes a powerful exploration tool in its own right Locating mineral resources relies primarily on when the primary and secondary processes of mineraliza- 84 H.M. Rajesh Application of remote sensing and GIS in mineral resource mapping 85 tion result in the formation of spectral anomalies. of mineral deposits. All the discussions in this paper on To evaluate the different aspects of the application of satellite imagery refer to either electro -optical sensors remote sensing in mineral resource mapping, this paper [measuring reflectance in the visible and near -infrared attempts a review approach, focusing on the application (VNIR; 0.3-1.0 μm), short-wave infrared (SWIR; 1.0 - of remote sensing in lithologic, structural, and alteration 2.5 μm) and mid-infrared or thermal infrared (TIR; 3-5 mapping. In addition to these an appreciation of the use μm; 8-14 μm) portions of the electromagnetic spectrum], of hyperspectral remote sensing in mineral resource the most common type carried aboard remote sensing mapping is important as hyperspectral data can help iden- satellites, or synthetic aperture radar (SAR) measuring tify and thematically map regions of exploration interest reflectance in the microwave or radar portion [2 - 100 by using the distinct absorption features of most minerals. cm; typically at 2.5 -3.8 cm (X band), 4.0 -7.5 cm (C Finally coming to the exploration stage, it is clear that the band), and 15 -30 cm (L band)] of the spectrum. The remote sensing data has to be integrated with other common satellites in the former category, detecting geoscience data like geochemical, geophysical data, etc. reflected sun-source energy, include Landsat Multispectral This demands a multithematic
Recommended publications
  • Remote Sensing and Airborne Geophysics in the Assessment of Natural Aggregate Resources
    U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY REMOTE SENSING AND AIRBORNE GEOPHYSICS IN THE ASSESSMENT OF NATURAL AGGREGATE RESOURCES by D.H. Knepper, Jr.1, W.H. Langer1, and S.H. Miller1 OPEN-FILE REPORT 94-158 1994 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1U.S. Geological Survey, Denver, CO 80225 CONTENTS ABSTRACT........................................................................................... iv CHAPTER I. INTRODUCTION.............................................................................. I-1 II. TYPES OF AGGREGATE DEPOSITS........................................... II-1 Crushed Stone............................................................................... II-1 Sedimentary Rocks............................................................. II-3 Igneous Rocks.................................................................... II-3 Metamorphic Rocks........................................................... II-4 Sand and Gravel............................................................................ II-4 Glacial Deposits................................................................ II-5 Alluvial Fans.................................................................... II-5 Stream Channel and Terrace Deposits............................... II-6 Marine Deposits...............................................................
    [Show full text]
  • On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothennal Systems
    LBNL~,44804 Preprint ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothennal Systems Tianfu Xu and Karsten Pruess Earth Sciences Division February 2000 Submitted to Journal ofGeophysical Research ..;, ' '., --" c. - /" .. DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. LBNL-44804 On Fluid Flow and Mineral Alteration in Fractured Caprock of Magmatic Hydrothermal Systems Tianfu Xu and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720. Submitted to Journal o/Geophysical Research February 2000 . This work was supported by the Laboratory Directed Research and Development Program of the Ernest Orlando Lawrence Berkeley National Laboratory, and by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal and Wind Technologies, of the U.S.
    [Show full text]
  • A Review of Feldspar Alteration and Its Geological Significance in Sedimentary Basins from Shallow Aquifers to Deep Hydrocarbon
    Originally published as: Yuan, G., Cao, Y., Schulz, H.-M., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K., Li, F. (2019): A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. - Earth-Science Reviews, 191, pp. 114—140. DOI: http://doi.org/10.1016/j.earscirev.2019.02.004 Earth-Science Reviews 191 (2019) 114–140 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs T ⁎ ⁎ Guanghui Yuana,b, , Yingchang Caoa,b, , Hans-Martin Schulzc, Fang Haoa, Jon Gluyasd, Keyu Liua, Tian Yanga, Yanzhong Wanga, Kelai Xia, Fulai Lia a Key laboratory of Deep Oil and Gas, School of Geosciences, China University of Petroleum, Qingdao, Shandong 266580, China b Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China c GFZ German Research Centre for Geosciences, Section 4.3, Organic Geochemistry, Telegrafenberg, D-14473 Potsdam, Germany d Department of Earth Sciences, Durham University, Durham DH1 3LE, UK ARTICLE INFO ABSTRACT Keywords: The feldspar group is one of the most common types of minerals in the earth's crust. Feldspar alteration (in- Feldspar alteration cluding the whole processes of feldspar dissolution, transfer of released solutes, and secondary mineral pre- Dissolution mechanisms cipitation) is ubiquitous and important in fields including resources and environmental sciences. This paper Rate law provides a critical review of feldspar alteration and its geological significance in shallow aquifers to deep hy- Organic-inorganic interaction drocarbon reservoirs, as assessed from peer-reviewed paper in the literature.
    [Show full text]
  • Petrography, Geochemistry, and Alteration of Country Rocks from the Bosumtwi Impact Structure, Ghana
    Meteoritics & Planetary Science 42, Nr 4/5, 513–540 (2007) Abstract available online at http://meteoritics.org Petrography, geochemistry, and alteration of country rocks from the Bosumtwi impact structure, Ghana Forson KARIKARI1*, Ludovic FERRIÈRE1, Christian KOEBERL1, Wolf Uwe REIMOLD2, and Dieter MADER1 1Center for Earth Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 2Museum of Natural History (Mineralogy), Humboldt University, Invalidenstrasse 43, D-10115 Berlin, Germany *Corresponding author. E-mail: [email protected] (Received 27 October 2006; revision accepted 18 January 2007) Abstract–Samples of the country rocks that likely constituted the target rocks at the 1.07 Myr old Bosumtwi impact structure in Ghana, West Africa, collected outside of the crater rim in the northern and southern parts of the structure, were studied for their petrographic characteristics and analyzed for their major- and trace-element compositions. The country rocks, mainly meta-graywacke, shale, and phyllite of the Early Proterozoic Birimian Supergroup and some granites of similar age, are characterized by two generations of alteration. A pre-impact hydrothermal alteration, often along shear zones, is characterized by new growth of secondary minerals, such as chlorite, sericite, sulfides, and quartz, or replacement of some primary minerals, such as plagioclase and biotite, by secondary sericite and chlorite. A late, argillic alteration, mostly associated with the suevites, is characterized by alteration of the melt/glass clasts in the groundmass of suevites to phyllosilicates. Suevite, which occurs in restricted locations to the north and to the south-southwest of the crater rim, contains melt fragments, diaplectic quartz glass, ballen quartz, and clasts derived from the full variety of target rocks.
    [Show full text]
  • Landslide Stability Analysis Using UAV Remote Sensing and in Situ Observations a Case Study for the Charonnier Landslide, Haute Alps in France
    Landslide stability analysis using UAV remote sensing and in situ observations A case study for the Charonnier Landslide, Haute Alps in France Job de Vries (5600944) Utrecht University Under supervision from: Prof. dr. S.M. de Jong Dr. R. van Beek May – 2016 Utrecht, the Netherlands Abstract An approach consisting of different methods is applied to determine the geometry, relevant processes and failure mechanism that resulted in the failure of the Charonnier landslide in 1994. Due to their hazardous nature landslides have been a relevant research topic for decades. Despite that individual landslide events are not as hazardous or catastrophic as for example earthquakes, floods or volcanic eruptions, they occur more frequent and are more widespread (Varnes, 1984). Also in the geological formations of the Terres Noires, in south-east France, it is not necessarily the magnitude of events, rather their frequency of occurrence that makes mass movements hazardous. An extremely wet period, between September 1993 and January 1994, caused a hillslope in the Haute- Alps district to fail. Highly susceptible Terres Noires deposit near Charonnier River failed into a rotational landslide, moving an estimated 107,000 m3 material downslope. Precipitation figures between 1985 and 2015 show a clear pattern of intense rainstorms and huge amounts of precipitation in antecedent rainfall. This suggests that the extreme event on January 6 with 65 mm of rain after the wet months of September, October and December caused the sliding surface to fail. A total of 36 soil samples and 22 saturated conductivity measurements show a decreasing permeability with depth and the presence of macro-pores in the topsoil, supplying lateral flow in extreme rainfall events and infiltration with antecedent rainfall periods.
    [Show full text]
  • Ground, Proximal, and Satellite Remote Sensing of Soil Moisture
    REVIEW ARTICLE Ground, Proximal, and Satellite Remote Sensing 10.1029/2018RG000618 of Soil Moisture Key Points: Ebrahim Babaeian1 , Morteza Sadeghi2 , Scott B. Jones2 , Carsten Montzka3 , • Recent soil moisture measurement 3 1 and monitoring techniques and Harry Vereecken , and Markus Tuller estimation models from the point to 1 2 the global scales and their Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, AZ, USA, Department of limitations are presented Plants, Soils and Climate, Utah State University, Logan, UT, USA, 3Forschungszentrum Jülich GmbH, Institute of Bio‐ • The importance and application of and Geosciences: Agrosphere (IBG‐3), Jülich, Germany soil moisture information for various Earth and environmental sciences disciplines such as fi forecasting weather and climate Abstract Soil moisture (SM) is a key hydrologic state variable that is of signi cant importance for variability, modeling hydrological numerous Earth and environmental science applications that directly impact the global environment and processes, and predicting and human society. Potential applications include, but are not limited to, forecasting of weather and climate monitoring extreme events and their impacts on the environment and variability; prediction and monitoring of drought conditions; management and allocation of water human society are presented resources; agricultural plant production and alleviation of famine; prevention of natural disasters such as wild fires, landslides, floods, and dust storms; or monitoring of ecosystem response to climate change. Because of the importance and wide‐ranging applicability of highly variable spatial and temporal SM fi Correspondence to: information that links the water, energy, and carbon cycles, signi cant efforts and resources have been M. Tuller, devoted in recent years to advance SM measurement and monitoring capabilities from the point to the global [email protected] scales.
    [Show full text]
  • Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping
    remote sensing Article Understanding Fields by Remote Sensing: Soil Zoning and Property Mapping Onur Yuzugullu 1,2,* , Frank Lorenz 3, Peter Fröhlich 1 and Frank Liebisch 2,4 1 AgriCircle, Rapperswil-Jona, 8640 St.Gallen, Switzerland; [email protected] 2 Group of Crop Science, Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland; [email protected] 3 LUFA Nord-West, Jägerstr. 23 - 27, 26121 Oldenburg, Germany; [email protected] 4 Water Protection and Substance Flows, Department of Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland * Correspondence: [email protected] Received: 27 February 2020; Accepted: 29 March 2020; Published: 1 April 2020 Abstract: Precision agriculture aims to optimize field management to increase agronomic yield, reduce environmental impact, and potentially foster soil carbon sequestration. In 2015, the Copernicus mission, with Sentinel-1 and -2, opened a new era by providing freely available high spatial and temporal resolution satellite data. Since then, many studies have been conducted to understand, monitor and improve agricultural systems. This paper presents results from the SolumScire project, focusing on the prediction of the spatial distribution of soil zones and topsoil properties, such as pH, soil organic matter (SOM) and clay content in agricultural fields through random forest algorithms. For this purpose, samples from 120 fields were investigated. The zoning and soil property prediction has an accuracy greater than 90%. This is supported by a high agreement of the derived zones with farmer’s observations. The trained models revealed a prediction accuracy of 94%, 89% and 96% for pH, SOM and clay content, respectively.
    [Show full text]
  • Improvement of Clay and Sand Quantification Based on a Novel
    remote sensing Article Improvement of Clay and Sand Quantification Based on a Novel Approach with a Focus on Multispectral Satellite Images Caio T. Fongaro 1, José A. M. Demattê 1,*, Rodnei Rizzo 2, José Lucas Safanelli 1 , Wanderson de Sousa Mendes 1 , André Carnieletto Dotto 1, Luiz Eduardo Vicente 3, Marston H. D. Franceschini 4 and Susan L. Ustin 5 1 Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, USP, Ave. Pádua Dias, 11, Cx Postal 09, Piracicaba 13416-900, São Paulo, Brazil; [email protected] (C.T.F.); [email protected] (J.L.S.); [email protected] (W.d.S.M.); [email protected] (A.C.D.) 2 Center of Nuclear Energy in Agriculture, University of São Paulo, Centenário Avenue, 303, Piracicaba 13416-000, São Paulo, Brazil; [email protected] 3 Embrapa Environment/Low Carbon Agriculture Platform, Road SP-340, Km 127,5, PO Box 69, Tanquinho Velho, Jaguariúna 13820-000, São Paulo, Brazil; [email protected] 4 Laboratory of Geo-Information, Science and Remote Sensing, Wageningen University and Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands; [email protected] 5 Department of Land, Air, and Water Resources, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA; [email protected] * Correspondence: [email protected]; Tel.: +55-19-3417-2109 Received: 31 August 2018; Accepted: 25 September 2018; Published: 27 September 2018 Abstract: Soil mapping demands large-scale surveys that are costly and time consuming. It is necessary to identify strategies with reduced costs to obtain detailed information for soil mapping.
    [Show full text]
  • Effects of Hydrothermal Alteration on the Geomechanics of Degradation at the Bagdad Mine, Arizona
    Effects of Hydrothermal Alteration on the Geomechanics of Degradation at the Bagdad Mine, Arizona Item Type text; Electronic Thesis Authors Coutinho, Paulo Citation Coutinho, Paulo. (2020). Effects of Hydrothermal Alteration on the Geomechanics of Degradation at the Bagdad Mine, Arizona (Master's thesis, University of Arizona, Tucson, USA). Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction, presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 14:56:11 Link to Item http://hdl.handle.net/10150/648603 EFFECTS OF HYDROTHERMAL ALTERATION ON THE GEOMECHANICS OF DEGRADATION AT THE BAGDAD MINE, ARIZONA by Paulo Coutinho ______________________________________________________________________________ Copyright © Paulo Coutinho 2020 A Thesis Submitted to the Faculty of the DEPARTMENT OF MINING AND GEOLOGICAL ENGINEERING In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN MINING, GEOLOGICAL, AND GEOPHYSICAL ENGINEERING In the Graduate College THE UNIVERSITY OF ARIZONA 2020 2 3 Acknowledgements I would like to extend my sincere gratitude to my advisors, Dr. John Kemeny and Dr. Isabel Barton, for their crucial role in guiding me through my graduate studies. I would also like to thank my thesis committee members, Mr. Keith Taylor, for his valuable support and enlightening comments. Dr. Sergio Castro Reino for his resources and experience involving rock mass degradation. Furthermore, I would like to thank my coworkers at Freeport McMoRan Inc. for providing me geology and geological engineering knowledge pertaining to the Bagdad deposit, and Call & Nicholas for their constructive criticisms regarding my modeling techniques.
    [Show full text]
  • Clay Minerals Mapping from Imaging Spectroscopy Gilles Grandjean, Xavier Briottet, Karine Adeline, Anne Bourguignon, Audrey Hohmann
    Clay Minerals Mapping from Imaging Spectroscopy Gilles Grandjean, Xavier Briottet, Karine Adeline, Anne Bourguignon, Audrey Hohmann To cite this version: Gilles Grandjean, Xavier Briottet, Karine Adeline, Anne Bourguignon, Audrey Hohmann. Clay Min- erals Mapping from Imaging Spectroscopy. Earth Observation and Geospatial Analyses, pp.1-14, 2019, 10.5772/intechopen.86149. hal-02172266 HAL Id: hal-02172266 https://hal.archives-ouvertes.fr/hal-02172266 Submitted on 3 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Clay Minerals Mapping from Imaging Spectroscopy Gilles Grandjean, Xavier Briottet, Karine Adeline, Anne Bourguignon and Audrey Hohmann Abstract Mapping subsurface clay minerals is an important issue because they have particular behaviors in terms of mechanics and hydrology that directly affects assets laid at the surface such as buildings, houses, etc.
    [Show full text]
  • Automatic Soil Identification from Remote Sensing Data
    DR. KAM W. WONG University of-Illinois at Urbana-C hampaign Urbana, IL 61801 DR. T. H. THORNBUR Las Vegas, NV 89109 M. A. KHOURY University of Illinois at Urbana-Champaign Urbana, IL 61801 Automatic Soil Identification from Remote Sensing Data Small differences in soil types can be distinguished by the use of quantitative terrain factors which are computed from digital terrain data. INTRODUCTION pends primarily on the ability of the in­ HE CHARACTERISTICS of a soil and by terpreter, and (3) they are relatively time­ T extension its engineering properties are consuming. With the advance of electronic chiefly a function of the parent material, to­ computers and the corresponding develop­ pography, vegetation, climate, and time. ments in automatic topographic mapping Thus, having a thorough understanding of and remote sensing, the automation of soil geomorphology and the natural forces ofero­ classification has become an interesting as sion and weathering such as wind, ice, and well as promising possibility. water, a soil scientist experienced in air This paper describes a systems approach photo interpretation techniques can identify for the automatic identification of soils by soil characteristics from the land forms, ero- the combined application of remote sensing ABSTRACT: A reliable method ofautomatic soil identification can be developed by the combined application ofremote sensing and digital terrain data. Research results have demonstrated that small differ­ ences in soil types can be distinguished by the use of quantitative terrain factors which are computed from digital terrain data. Con­ tinuing research effort is dil-ected towards the improvement of the terrain factors, the development ofstatistical prediction techniques, and testing the effectiveness ofthese factors in the identification of soils.
    [Show full text]
  • Soil Erosion Modelling by Using Gis & Remote Sensing
    SOIL EROSION MODELLING BY USING GIS & REMOTE SENSING : A CASE STUDY, GANOS MOUNTAIN Berk Ustun a, ∗* a ITU, Civil Engineering Faculty, 80626 Maslak Istanbul, Turkey-([email protected]) KEY WORDS: Environment, GIS, Hazards, Land Cover, Prediction, Vegetation, Monitoring ABSTRACT: This paper focuses on the size of the amount of soil loss because of the erosion in the surrounding area of the Ganos Mountain over Thrace Peninsula region in Turkey. Ganos Mountain is the second highest point in this peninsula. In this study satellite imagery is used to reach rapidly to the actual land use classification. Morgan method is applied to solve the modelling problem of the soil erosion. Geographic information system software named ILWIS and ERDAS Imagine are used to monitor the probable success of the determining method. The question why Morgan method is preferred can be answered by the following explanations made by geologists and agricultural engineers. According to them Morgan method has a more powerful physical fundamental than the USLE method and is easier and more flexible method than the CREAMS method. 1. INTRODUCTION agriculture especially for vineyards. Figure 1 illustrates the location of the study area. Nowadays one of the major problems on global scale is the rapidly increasing demand to the food. This demand is of course totally parallel to the population growth. Even more land is used for agricultural purposes day by day. Cultivation without using specific control techniques, unplanned land use, such as establishing industrial facilities or constructing summer houses on the agriculture land, uncontrolled urban development and Mar also destroying forests are fundamental factors of soil erosion (Biard and Baret,1997).
    [Show full text]