Infrared Observations of Exoplanet Atmospheres
Total Page:16
File Type:pdf, Size:1020Kb
University of California Los Angeles Infrared Observations of Exoplanet Atmospheres A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Astronomy by Ian James Mills Crossfield 2012 c Copyright by Ian James Mills Crossfield 2012 Abstract of the Dissertation Infrared Observations of Exoplanet Atmospheres by Ian James Mills Crossfield Doctor of Philosophy in Astronomy University of California, Los Angeles, 2012 Professor Brad M. S. Hansen, Chair The study of extrasolar planet atmospheres elucidates the formation and mi- gration history of planets and places the origin and evolution of Earth and the Solar System in a broader context. The last several years have seen rapid strides in this direction via routine detections of planetary transits, thermal emission, atmospheric circulation, and transmisission spectroscopy using both broadband photometry and spectroscopy. My dissertation employs all these techniques in an effort to investigate the atmospheric composition, structure, and dynamics of a broad range of exoplanet atmospheres. These observations focus on the infrared wavelengths where planet emission is strongest and molecular features are most prominent. I present transit, eclipse, and phase curve photometry of several hot Jupiters (υ And b, HD 209458b, and WASP-12b), and present spectroscopy for both WASP-12b (emission, observed at low resolution) and the cool, low-mass planet GJ 1214b (transmission at high resolution). This work will guide future observations and inform the next generation of models in preparation for future spectroscopy of ever smaller, cooler, and more Earthlike planets. ii The dissertation of Ian James Mills Crossfield is approved. Ian McLean Jonathan Mitchell Michael Jura Brad M. S. Hansen, Committee Chair University of California, Los Angeles 2012 iii To Betsy. iv Table of Contents Abstract :::::::::::::::::::::::::::::::::::: ii Table of Contents :::::::::::::::::::::::::::::: v List of Figures :::::::::::::::::::::::::::::::: xii List of Tables ::::::::::::::::::::::::::::::::: xv 1 Introduction :::::::::::::::::::::::::::::::: 1 1.1 Introduction..............................1 1.2 Probing Exoplanet Interiors and Atmospheres...........4 1.2.1 The Uncertain Nature of Exoplanet Atmospheres.....4 1.2.2 Circulation..........................6 1.2.3 Atmospheric Probes of Interior Compositions.......8 1.3 Observing Exoplanet Atmospheres................. 10 1.3.1 Eclipse Spectroscopy..................... 11 1.3.2 Transmission Spectroscopy.................. 11 1.4 Dissertation Outline......................... 12 2 Energy Balance and Atmospheric Circulation in upsilon An- dromedae b :::::::::::::::::::::::::::::::::: 14 2.1 Abstract................................ 14 2.2 Introduction.............................. 15 v 2.3 Observations and Analysis...................... 18 2.3.1 The υ Andromedae System................. 18 2.3.2 Observations......................... 19 2.3.3 Data Reduction........................ 19 2.3.4 Calibration and instrument stability............ 23 2.4 Results................................. 25 2.4.1 System flux.......................... 25 2.4.2 A two-hemisphere model................... 25 2.4.3 Model fits........................... 27 2.4.4 Phase curve amplitude.................... 35 2.4.5 Phase offset.......................... 36 2.5 Discussion............................... 37 2.6 Conclusions and Future Work.................... 41 2.7 υ And b: Post-publication Results.................. 43 3 Eclipses and Transits of HD 209458b at 24 Microns :::::: 48 3.1 Abstract................................ 48 3.2 Introduction.............................. 49 3.2.1 The HD 209458 system.................... 50 3.2.2 Outline............................ 53 3.3 Observations and Analysis...................... 53 3.3.1 Observations......................... 53 3.3.2 Data Reduction........................ 54 vi 3.3.3 Approach to Model Fitting.................. 55 3.4 Calibration and Instrument Stability................ 56 3.4.1 The Ramp........................... 56 3.4.2 The Fallback......................... 61 3.4.3 Instrument Stability..................... 64 3.5 Transits................................ 65 3.5.1 Fitting Approach....................... 65 3.5.2 Results............................. 66 3.5.3 Discussion........................... 69 3.6 Secondary Eclipses.......................... 74 3.6.1 Fitting Approach....................... 74 3.6.2 Results............................. 75 3.6.3 Discussion........................... 76 3.7 Joint Orbital Constraints and System Flux............. 78 3.7.1 Timing and Eccentricity: Still a Chance for Winds.... 78 3.7.2 System Flux: No Excess Detected.............. 80 3.8 Conclusions and Future Work.................... 81 4 Tentative Emission from WASP-12b via Ground-based Spec- troscopy :::::::::::::::::::::::::::::::::::: 84 4.1 Abstract................................ 84 4.2 Introduction.............................. 85 4.2.1 Ground-based Characterization of Exoplanet Atmospheres 85 vii 4.2.2 The WASP-12 System.................... 86 4.2.3 Outline............................ 87 4.3 Observations and Initial Reduction................. 88 4.3.1 Summary of Observations.................. 88 4.3.2 Initial Data Reduction.................... 91 4.4 Characterization of Systematic Effects............... 93 4.4.1 Instrumental Sources..................... 93 4.4.2 Slit Loss Effects....................... 97 4.5 Searching for the Eclipse Spectrum................. 102 4.5.1 Fitting to the Data...................... 102 4.5.2 Choice of Model........................ 104 4.5.3 Estimating Coefficient Uncertainties............. 105 4.6 Systematic Errors in High-Precision Single-Slit Spectroscopy... 106 4.6.1 Telluric Contamination.................... 107 4.6.2 Chromatic Slit Losses..................... 113 4.6.3 Result of Simulated Observations.............. 115 4.7 Results: Thermal Emission from WASP-12b............ 117 4.7.1 Initial Presentation of Results................ 117 4.7.2 Comparison With Observations............... 119 4.7.3 Spectral Signatures: Still Unconstrained.......... 122 4.7.4 Global Planetary Energy Budget.............. 122 4.8 Lessons for Future Observations................... 126 4.9 Conclusions.............................. 128 viii 5 Re-evaluating WASP-12b: Strong Emission at 2.315 µm, and Deeper Transits and Eclipses ::::::::::::::::::::::: 130 5.1 Abstract................................ 130 5.2 Introduction.............................. 131 5.2.1 Ground-based Characterization of Exoplanet Atmospheres 131 5.2.2 Paper Outline......................... 134 5.3 Subaru/MOIRCS Narrowband Time-series Photometry...... 134 5.3.1 Summary of Observations.................. 134 5.3.2 Initial Data Reduction.................... 136 5.3.3 Instrumental Systematics................... 138 5.4 Searching for the 2.315 µm Narrowband Eclipse.......... 140 5.4.1 Fitting to the Data...................... 140 5.4.2 Initial Narrowband Eclipse Depth.............. 142 5.4.3 Eclipse Duration and Timing: No Surprises........ 142 5.5 Bergfors-2: An Object Very Close to WASP-12........... 145 5.5.1 Planet Candidate Verification and Transit Dilution.... 145 5.5.2 Bergfors-2........................... 147 5.5.3 Observations of Bergfors-2.................. 148 5.5.4 The Spectral Type of Bergfors-2............... 155 5.5.5 Radial Velocities....................... 159 5.5.6 Interpretation of Bergfors-2................. 160 5.6 Revising Past Eclipse and Transit Measurements of WASP-12b.. 160 5.7 Results: Thermal Emission from WASP-12b............ 163 ix 5.7.1 Planetary Emission...................... 163 5.7.2 Alternative Explanations for a Deep 2.315 µm Eclipse... 166 5.8 Discussion............................... 168 6 Transmission Spectroscopy of GJ 1214b :::::::::::::: 171 6.1 Abstract................................ 171 6.2 Introduction.............................. 172 6.2.1 Characterizing Extrasolar Atmospheres........... 172 6.3 Observations and Atmospheric Models............... 174 6.3.1 The GJ 1214 System..................... 174 6.3.2 Atmospheric Models of GJ 1214b.............. 176 6.4 NIRSPEC Observations and Analysis................ 180 6.4.1 Summary of Observations.................. 180 6.4.2 Initial Data Reduction.................... 182 6.4.3 Measuring systematic effects................. 184 6.4.4 Identifying and Removing Systematic Effects........ 190 6.5 Needle in a Haystack: Searching for Transit Signatures...... 192 6.5.1 Fitting to the data...................... 193 6.5.2 Comparing models to data.................. 198 6.5.3 Sensitivity tests: injected models.............. 204 6.6 Results and Discussion........................ 209 6.6.1 Spectroscopic results..................... 209 6.6.2 Constraints on GJ 1214b's atmosphere........... 210 x 6.6.3 Lessons for future ground-based spectroscopy....... 214 6.7 Conclusions.............................. 216 6.8 GJ 1214b: Post-publication Updates................ 217 7 Conclusion ::::::::::::::::::::::::::::::::: 220 7.1 Summary of Dissertation....................... 220 7.2 Toward Multi-Object Exoplanet Spectroscopy........... 221 7.3 Selection of MOS Transit Targets.................. 225 7.4 Final Thoughts............................ 228 Bibliography ::::::::::::::::::::::::::::::::: 229 xi List of Figures 1.1 Census of known transiting planets..................2 1.2 Characterizing transiting exoplanet atmospheres..........3 1.3 Census of known super Earth.....................9