Infrared Observations of Exoplanet Atmospheres

Total Page:16

File Type:pdf, Size:1020Kb

Infrared Observations of Exoplanet Atmospheres University of California Los Angeles Infrared Observations of Exoplanet Atmospheres A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Astronomy by Ian James Mills Crossfield 2012 c Copyright by Ian James Mills Crossfield 2012 Abstract of the Dissertation Infrared Observations of Exoplanet Atmospheres by Ian James Mills Crossfield Doctor of Philosophy in Astronomy University of California, Los Angeles, 2012 Professor Brad M. S. Hansen, Chair The study of extrasolar planet atmospheres elucidates the formation and mi- gration history of planets and places the origin and evolution of Earth and the Solar System in a broader context. The last several years have seen rapid strides in this direction via routine detections of planetary transits, thermal emission, atmospheric circulation, and transmisission spectroscopy using both broadband photometry and spectroscopy. My dissertation employs all these techniques in an effort to investigate the atmospheric composition, structure, and dynamics of a broad range of exoplanet atmospheres. These observations focus on the infrared wavelengths where planet emission is strongest and molecular features are most prominent. I present transit, eclipse, and phase curve photometry of several hot Jupiters (υ And b, HD 209458b, and WASP-12b), and present spectroscopy for both WASP-12b (emission, observed at low resolution) and the cool, low-mass planet GJ 1214b (transmission at high resolution). This work will guide future observations and inform the next generation of models in preparation for future spectroscopy of ever smaller, cooler, and more Earthlike planets. ii The dissertation of Ian James Mills Crossfield is approved. Ian McLean Jonathan Mitchell Michael Jura Brad M. S. Hansen, Committee Chair University of California, Los Angeles 2012 iii To Betsy. iv Table of Contents Abstract :::::::::::::::::::::::::::::::::::: ii Table of Contents :::::::::::::::::::::::::::::: v List of Figures :::::::::::::::::::::::::::::::: xii List of Tables ::::::::::::::::::::::::::::::::: xv 1 Introduction :::::::::::::::::::::::::::::::: 1 1.1 Introduction..............................1 1.2 Probing Exoplanet Interiors and Atmospheres...........4 1.2.1 The Uncertain Nature of Exoplanet Atmospheres.....4 1.2.2 Circulation..........................6 1.2.3 Atmospheric Probes of Interior Compositions.......8 1.3 Observing Exoplanet Atmospheres................. 10 1.3.1 Eclipse Spectroscopy..................... 11 1.3.2 Transmission Spectroscopy.................. 11 1.4 Dissertation Outline......................... 12 2 Energy Balance and Atmospheric Circulation in upsilon An- dromedae b :::::::::::::::::::::::::::::::::: 14 2.1 Abstract................................ 14 2.2 Introduction.............................. 15 v 2.3 Observations and Analysis...................... 18 2.3.1 The υ Andromedae System................. 18 2.3.2 Observations......................... 19 2.3.3 Data Reduction........................ 19 2.3.4 Calibration and instrument stability............ 23 2.4 Results................................. 25 2.4.1 System flux.......................... 25 2.4.2 A two-hemisphere model................... 25 2.4.3 Model fits........................... 27 2.4.4 Phase curve amplitude.................... 35 2.4.5 Phase offset.......................... 36 2.5 Discussion............................... 37 2.6 Conclusions and Future Work.................... 41 2.7 υ And b: Post-publication Results.................. 43 3 Eclipses and Transits of HD 209458b at 24 Microns :::::: 48 3.1 Abstract................................ 48 3.2 Introduction.............................. 49 3.2.1 The HD 209458 system.................... 50 3.2.2 Outline............................ 53 3.3 Observations and Analysis...................... 53 3.3.1 Observations......................... 53 3.3.2 Data Reduction........................ 54 vi 3.3.3 Approach to Model Fitting.................. 55 3.4 Calibration and Instrument Stability................ 56 3.4.1 The Ramp........................... 56 3.4.2 The Fallback......................... 61 3.4.3 Instrument Stability..................... 64 3.5 Transits................................ 65 3.5.1 Fitting Approach....................... 65 3.5.2 Results............................. 66 3.5.3 Discussion........................... 69 3.6 Secondary Eclipses.......................... 74 3.6.1 Fitting Approach....................... 74 3.6.2 Results............................. 75 3.6.3 Discussion........................... 76 3.7 Joint Orbital Constraints and System Flux............. 78 3.7.1 Timing and Eccentricity: Still a Chance for Winds.... 78 3.7.2 System Flux: No Excess Detected.............. 80 3.8 Conclusions and Future Work.................... 81 4 Tentative Emission from WASP-12b via Ground-based Spec- troscopy :::::::::::::::::::::::::::::::::::: 84 4.1 Abstract................................ 84 4.2 Introduction.............................. 85 4.2.1 Ground-based Characterization of Exoplanet Atmospheres 85 vii 4.2.2 The WASP-12 System.................... 86 4.2.3 Outline............................ 87 4.3 Observations and Initial Reduction................. 88 4.3.1 Summary of Observations.................. 88 4.3.2 Initial Data Reduction.................... 91 4.4 Characterization of Systematic Effects............... 93 4.4.1 Instrumental Sources..................... 93 4.4.2 Slit Loss Effects....................... 97 4.5 Searching for the Eclipse Spectrum................. 102 4.5.1 Fitting to the Data...................... 102 4.5.2 Choice of Model........................ 104 4.5.3 Estimating Coefficient Uncertainties............. 105 4.6 Systematic Errors in High-Precision Single-Slit Spectroscopy... 106 4.6.1 Telluric Contamination.................... 107 4.6.2 Chromatic Slit Losses..................... 113 4.6.3 Result of Simulated Observations.............. 115 4.7 Results: Thermal Emission from WASP-12b............ 117 4.7.1 Initial Presentation of Results................ 117 4.7.2 Comparison With Observations............... 119 4.7.3 Spectral Signatures: Still Unconstrained.......... 122 4.7.4 Global Planetary Energy Budget.............. 122 4.8 Lessons for Future Observations................... 126 4.9 Conclusions.............................. 128 viii 5 Re-evaluating WASP-12b: Strong Emission at 2.315 µm, and Deeper Transits and Eclipses ::::::::::::::::::::::: 130 5.1 Abstract................................ 130 5.2 Introduction.............................. 131 5.2.1 Ground-based Characterization of Exoplanet Atmospheres 131 5.2.2 Paper Outline......................... 134 5.3 Subaru/MOIRCS Narrowband Time-series Photometry...... 134 5.3.1 Summary of Observations.................. 134 5.3.2 Initial Data Reduction.................... 136 5.3.3 Instrumental Systematics................... 138 5.4 Searching for the 2.315 µm Narrowband Eclipse.......... 140 5.4.1 Fitting to the Data...................... 140 5.4.2 Initial Narrowband Eclipse Depth.............. 142 5.4.3 Eclipse Duration and Timing: No Surprises........ 142 5.5 Bergfors-2: An Object Very Close to WASP-12........... 145 5.5.1 Planet Candidate Verification and Transit Dilution.... 145 5.5.2 Bergfors-2........................... 147 5.5.3 Observations of Bergfors-2.................. 148 5.5.4 The Spectral Type of Bergfors-2............... 155 5.5.5 Radial Velocities....................... 159 5.5.6 Interpretation of Bergfors-2................. 160 5.6 Revising Past Eclipse and Transit Measurements of WASP-12b.. 160 5.7 Results: Thermal Emission from WASP-12b............ 163 ix 5.7.1 Planetary Emission...................... 163 5.7.2 Alternative Explanations for a Deep 2.315 µm Eclipse... 166 5.8 Discussion............................... 168 6 Transmission Spectroscopy of GJ 1214b :::::::::::::: 171 6.1 Abstract................................ 171 6.2 Introduction.............................. 172 6.2.1 Characterizing Extrasolar Atmospheres........... 172 6.3 Observations and Atmospheric Models............... 174 6.3.1 The GJ 1214 System..................... 174 6.3.2 Atmospheric Models of GJ 1214b.............. 176 6.4 NIRSPEC Observations and Analysis................ 180 6.4.1 Summary of Observations.................. 180 6.4.2 Initial Data Reduction.................... 182 6.4.3 Measuring systematic effects................. 184 6.4.4 Identifying and Removing Systematic Effects........ 190 6.5 Needle in a Haystack: Searching for Transit Signatures...... 192 6.5.1 Fitting to the data...................... 193 6.5.2 Comparing models to data.................. 198 6.5.3 Sensitivity tests: injected models.............. 204 6.6 Results and Discussion........................ 209 6.6.1 Spectroscopic results..................... 209 6.6.2 Constraints on GJ 1214b's atmosphere........... 210 x 6.6.3 Lessons for future ground-based spectroscopy....... 214 6.7 Conclusions.............................. 216 6.8 GJ 1214b: Post-publication Updates................ 217 7 Conclusion ::::::::::::::::::::::::::::::::: 220 7.1 Summary of Dissertation....................... 220 7.2 Toward Multi-Object Exoplanet Spectroscopy........... 221 7.3 Selection of MOS Transit Targets.................. 225 7.4 Final Thoughts............................ 228 Bibliography ::::::::::::::::::::::::::::::::: 229 xi List of Figures 1.1 Census of known transiting planets..................2 1.2 Characterizing transiting exoplanet atmospheres..........3 1.3 Census of known super Earth.....................9
Recommended publications
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • Characterization of the Gaseous Companion Κ Andromedae B⋆
    UvA-DARE (Digital Academic Repository) Characterization of the gaseous companion κ Andromedae b. New Keck and LBTI high-contrast observations Bonnefoy, M.; et al., [Unknown]; Thalmann, C. DOI 10.1051/0004-6361/201322119 Publication date 2014 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Bonnefoy, M., et al., U., & Thalmann, C. (2014). Characterization of the gaseous companion κ Andromedae b. New Keck and LBTI high-contrast observations. Astronomy & Astrophysics, 562, A111. https://doi.org/10.1051/0004-6361/201322119 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 A&A 562, A111 (2014) Astronomy DOI: 10.1051/0004-6361/201322119 & c ESO 2014 Astrophysics Characterization of the gaseous companion κ Andromedae b? New Keck and LBTI high-contrast observations?? M.
    [Show full text]
  • 1. Introduction
    1. Introduction Three variable stars with short periods and high-amplitude, CY Aqr, BP Peg, and GP And, are selected for the study, and the characteristic of each variable star is analyzed from their light curves. These three variable stars are difference a little, CY Aqr is probability a binary system, BP Peg is a type of delta Scuti star with two stable periods (Rodriguez et al., 1992), and GP And is a simple delta Scuti star. 1.1 Delta Scuti stars Delta Scuti, the fourth bright star in Scutum at V magnitude, 4.71, stand out as the prototype of one of these. On the HR diagram or temperature-luminosity diagram, the kind of variable stars were located in intersects of main sequence with instability strip shown in Figure 1. Figure 1. Delta Scuti stars were in intersects of main sequence with instability strip. Delta Scuti stars is the group of the second most numerous of pulsators in the Galaxy, after the pulsating white dwarfs, and their spectrum belong to type A to early F. Most delta Scuti stars belong to Population I (Antonello, Broglia & Mantegazza, 1986), but a few variables show low metals and 6 high space velocities typical of Population II (Rodriguez E., Rolland A. & Lopez de coca P., 1990). The delta Scuti stars is divided into two types, variable stars with high-amplitude delta Scuti (HADS) and high-amplitude SX Phe (HASXP) (Breger, 1983;Andreasen, 1983;Frolov and Irkaev, 1984). Both of them have asymmetrical light curve in V with amplitudes > 0.25 magnitude and probably hydrogen-burning stars in the main sequence or post main sequence stage.
    [Show full text]
  • The Search for Exomoons and the Characterization of Exoplanet Atmospheres
    Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler.
    [Show full text]
  • The 3-Dimensional Architecture of the Upsilon Andromedae Planetary System
    Draft version August 14, 2018 Preprint typeset using LATEX style emulateapj v. 04/17/13 THE 3-DIMENSIONAL ARCHITECTURE OF THE υ ANDROMEDAE PLANETARY SYSTEM Russell Deitrick Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Rory Barnes Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Barbara McArthur Department of Astronomy, University of Texas at Austin, TX 78712, USA Thomas R. Quinn Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Rodrigo Luger Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA Adrienne Antonsen Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA and G. Fritz Benedict Department of Astronomy, University of Texas at Austin, TX 78712, USA (Dated:) Draft version August 14, 2018 ABSTRACT The Upsilon Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the 3- dimensional configurations of planetary systems. We present, for the first time, full 3-dimensional, dynamically stable configurations for the 3 planets of the system consistent with all observational constraints. While the outer 2 planets, c and d, are inclined by ∼ 30◦, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or ∼ 8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde.
    [Show full text]
  • The Planetary System of Upsilon Andromedae
    The Planetary System of Upsilon Andromedae Ing-Guey Jiang & Wing-Huen Ip Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan National Central University, Chung-Li, Taiwan Received ; accepted {2{ ABSTRACT The bright F8 V solar-type star upsilon Andromedae has recently reported to have a system of three planets of Jovian masses. In order to investigate the orbital stability and mutual gravitational interactions among these planets, direct integrations of all three planets' orbits have been performed. It is shown that the middle and the outer planet have strong interaction leading to large time variations in the eccentricities of these planets. Subject headings: celestial mechanics - stellar dynamics - planetary system {3{ 1. Introduction As a result of recent observational efforts, the number of known extrasolar planets increased dramatically. Among these newly discovered planetary systems, upsilon Andromedae appears to be most interesting because of the presence of three planetary members (Butler et al. 1999). Since its discovery, the dynamics of this multiple planetary system has drawn a lot of attention. For example, it would be interesting to understand the origin of the orbital configurations of these three extrasolar planets and their mutual interactions. (See Table 1). Table 1: The Orbital Elements Companion Period M=MJ a/AU e B 4.62 d 0.72 0.059 0.042 C 242 d 1.98 0.83 0.22 D 3.8 yr 4.11 2.50 0.40 It is a remarkable fact that the eccentricities of the companion planets increase from 0.042 for the innermost member to a value as large as 0.40 for the outermost member.
    [Show full text]
  • Thesis, Anton Pannekoek Institute, Universiteit Van Amsterdam
    UvA-DARE (Digital Academic Repository) The peculiar climates of ultra-hot Jupiters Arcangeli, J. Publication date 2020 Document Version Final published version License Other Link to publication Citation for published version (APA): Arcangeli, J. (2020). The peculiar climates of ultra-hot Jupiters. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:09 Oct 2021 Jacob Arcangeli of Ultra-hot Jupiters The peculiar climates The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli The peculiar climates of Ultra-hot Jupiters Jacob Arcangeli © 2020, Jacob Arcangeli Contact: [email protected] The peculiar climates of Ultra-hot Jupiters Thesis, Anton Pannekoek Institute, Universiteit van Amsterdam Cover by Imogen Arcangeli ([email protected]) Printed by Amsterdam University Press ANTON PANNEKOEK INSTITUTE The research included in this thesis was carried out at the Anton Pannekoek Institute for Astronomy (API) of the University of Amsterdam.
    [Show full text]
  • The Baryon Halo of the Milky Way: a Fossil Record of Its Formation Joss Bland-Hawthorn1 and Ken Freeman2
    T HE M ILKY W AY 26. A. Udalski et al., Acta Astron. 43, 289 (1993). Proceedings of the Third Stromlo Symposium, B. Gib- 37. R. Williams et al., Astron J. 112, 1335 (1996). 27. C. Alard, S. Mao, J. Guibert, Astron. Astrophys. 300, son, T. Axelrod, M. Putnam, Eds. (Astronomical Soci- 38. R. Peccei and H. Quinn, Phys. Rev. Lett. 38, 1440 L17 (1996). ety of the Pacific, San Francisco, CA, 1999), pp. (1977). 28. C. Alcock et al., Astrophys. J. 499, L9 (1998). 503Ð514]. Theoretical investigations of what could 39. P. Sikivie Phys. Rev. Lett. 51, 1415 (1983). 29. A. Becker et al., in preparation; C. Alcock et al.,in be learned from this proposed survey are described 40. C. Hagmann et al., Phys. Rev. Lett. 80, 2043 (1998). preparation. by A. Gould [Astrophys. J. 517, 719 (1999)] and by N. 41. I thank my colleagues on the MACHO Project for 30. K. Sahu, Nature 370, 275 (1994). Evans and E. Kerins (preprint available at http:// their help and advice. Everything I know in this 31. D. Zaritsky and D. Lin, Astron J. 114, 2545 (1998). xxx.lanl.gov/abs/astro-ph/9909254). field has been learned through working with them. 32. H.-S. Zhao, in Proceedings of the Third Stromlo Sym- 35. B. Hansen, Nature 394, 860 (1998); Astrophys. J. 520, I also thank M. Merrifield, B. Sadoulet, and K. van posium, B. Gibson, T. Axelrod, M. Putnam, Eds. (As- 680 (1999). tronomical Society of the Pacific, San Francisco, CA, 36. R. Ibata et al., Astrophys. J.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland)
    Abstracts of Extreme Solar Systems 4 (Reykjavik, Iceland) American Astronomical Society August, 2019 100 — New Discoveries scope (JWST), as well as other large ground-based and space-based telescopes coming online in the next 100.01 — Review of TESS’s First Year Survey and two decades. Future Plans The status of the TESS mission as it completes its first year of survey operations in July 2019 will bere- George Ricker1 viewed. The opportunities enabled by TESS’s unique 1 Kavli Institute, MIT (Cambridge, Massachusetts, United States) lunar-resonant orbit for an extended mission lasting more than a decade will also be presented. Successfully launched in April 2018, NASA’s Tran- siting Exoplanet Survey Satellite (TESS) is well on its way to discovering thousands of exoplanets in orbit 100.02 — The Gemini Planet Imager Exoplanet Sur- around the brightest stars in the sky. During its ini- vey: Giant Planet and Brown Dwarf Demographics tial two-year survey mission, TESS will monitor more from 10-100 AU than 200,000 bright stars in the solar neighborhood at Eric Nielsen1; Robert De Rosa1; Bruce Macintosh1; a two minute cadence for drops in brightness caused Jason Wang2; Jean-Baptiste Ruffio1; Eugene Chiang3; by planetary transits. This first-ever spaceborne all- Mark Marley4; Didier Saumon5; Dmitry Savransky6; sky transit survey is identifying planets ranging in Daniel Fabrycky7; Quinn Konopacky8; Jennifer size from Earth-sized to gas giants, orbiting a wide Patience9; Vanessa Bailey10 variety of host stars, from cool M dwarfs to hot O/B 1 KIPAC, Stanford University (Stanford, California, United States) giants. 2 Jet Propulsion Laboratory, California Institute of Technology TESS stars are typically 30–100 times brighter than (Pasadena, California, United States) those surveyed by the Kepler satellite; thus, TESS 3 Astronomy, California Institute of Technology (Pasadena, Califor- planets are proving far easier to characterize with nia, United States) follow-up observations than those from prior mis- 4 Astronomy, U.C.
    [Show full text]
  • Issue #87 of Lunar and Planetary Information Bulletin
    Lunar and Planetary Information BULLETIN Fall 1999/NUMBER 87 • LUNAR AND PLANETARY INSTITUTE • UNIVERSITIES SPACE RESEARCH ASSOCIATION CONTENTS EXTRASOLAR PLANETS THE EFFECT OF PLANET DISCOVERIES ON FACTOR fp NEWS FROM SPACE NEW IN PRINT FIRE IN THE SKY SPECTROSCOPY OF THE MARTIAN SURFACE CALENDAR PREVIOUSPREVIOUS ISSUESISSUES n recent years, headlines have trumpeted the beginning of a I new era in humanity’s exploration of the universe: “A Parade of New Planets” (Scientific American), “Universal truth: Ours EXTRASOLAR Isn’t Only Solar System” (Houston Chronicle), “Three Planets Found Around Sunlike Star” (Astronomy). With more than 20 extrasolar planet or planet candidate discoveries having been announced in the press since 1995 (many PLANETS: discovered by the planet-searching team of Geoff Marcy and Paul Butler of San Francisco State University), it would seem that the detection of planets outside our own solar system has become a commonplace, even routine affair. Such discoveries capture the imagination of the public and the scientific community, in no THE small part because the thought of planets circling distant stars appeals to our basic human existential yearning for meaning. SEARCH In short, the philosophical implication for the discovery of true extrasolar planets (and the ostensible reason why the discovery of FOR extrasolar planets seems to draw such publicity) is akin to when the fictional mariner Robinson Crusoe first spotted a footprint in NEW the sand after 20 years of living alone on a desert island. It’s not exactly a signal from above, but the news of possible extrasolar WORLDS planets, coupled with the recent debate regarding fossilized life forms in martian meteorites, heralds the beginning of a new way of thinking about our place in the universe.
    [Show full text]
  • Are the Orbital Poles of Binary Stars in the Solar Neighbourhood Anisotropically Distributed?
    A&A 574, A6 (2015) Astronomy DOI: 10.1051/0004-6361/201323056 & c ESO 2015 Astrophysics Are the orbital poles of binary stars in the solar neighbourhood anisotropically distributed? J.-L. Agati1,D.Bonneau2, A. Jorissen3,E.Soulié4,S.Udry5,P.Verhas6, and J. Dommanget†,7 1 13 rue Beyle Stendhal, 38000 Grenoble, France 2 Laboratoire Lagrange, UMR 7293, Univ. Nice Sophia-Antipolis, CNRS, Observatoire de la Côte d’Azur, 06300 Nice, France e-mail: [email protected] 3 Institut d’Astronomie et d’Astrophysique, Université Libre de Bruxelles, CP 226, Boulevard du Triomphe, 1050 Brussels, Belgium 4 CEA/Saclay, DSM, 91191 Gif-sur-Yvette Cedex, France 5 Observatoire de Genève, Chemin des Maillettes, 1290 Sauverny, Suisse 6 251 vieille rue du Moulin, 1180 Brussels, Belgium 7 Observatoire Royal de Belgique, Avenue Circulaire 3, 1180 Bruxelles, Belgique Received 15 November 2013 / Accepted 30 October 2014 ABSTRACT We test whether or not the orbital poles of the systems in the solar neighbourhood are isotropically distributed on the celestial sphere. The problem is plagued by the ambiguity on the position of the ascending node. Of the 95 systems closer than 18 pc from the Sun with an orbit in the 6th Catalogue of Orbits of Visual Binaries, the pole ambiguity could be resolved for 51 systems using radial velocity collected in the literature and CORAVEL database or acquired with the HERMES/Mercator spectrograph. For several systems, we can correct the erroneous nodes in the 6th Catalogue of Orbits and obtain new combined spectroscopic/astrometric orbits for seven systems [WDS 01083+5455Aa,Ab; 01418+4237AB; 02278+0426AB (SB2); 09006+4147AB (SB2); 16413+3136AB; 17121+4540AB; 18070+3034AB].
    [Show full text]