Wake Turbulence Mitigation for Arrivals (Wtma)

Total Page:16

File Type:pdf, Size:1020Kb

Wake Turbulence Mitigation for Arrivals (Wtma) 26TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES WAKE TURBULENCE MITIGATION FOR ARRIVALS (WTMA) Daniel Williams, Gary Lohr NASA Langley Research Center, Hampton, Virginia, USA Keywords: Wake, Vortex, Turbulence, CSPR, Arrivals Abstract Approach Procedures (IAPs). While instrument approaches are often used in visual conditions, The preliminary Wake Turbulence Mitigation an airport’s acceptance rate is degraded when for Arrivals (WTMA) concept of operations is the weather forces instrument-only conditions described in this paper. The WTMA concept for aircraft navigation and traffic separation, and provides further detail to work initiated by the ATC must control aircraft according to radar Wake Vortex Avoidance System Concept and wake separation standards. Evaluation Team and is an evolution of the This paper includes a background of the Wake Turbulence Mitigation for Departure current or state-of-the-art of operational concept. Anticipated benefits about reducing procedures including applicable research, and wake turbulence separation standards in cross- then provides a description of the WTMA wind conditions, and candidate WTMA system concept and system architecture considerations considerations are discussed. to improve those procedures for NextGen traffic projections. Finally future research efforts and 1 Introduction/Background recommendations are described. The authors are passionate about supporting operators with The current air traffic system is not prepared for appropriate technology and procedures, so this the two- to three-fold increase in traffic paper includes that perspective. projected for the 2025 time-frame [1]. Current system limitations, procedures, and the absence of automation-based tools define a highly 1.1 CSPR Description constrained environment. To cope with future Closely Spaced Parallel Runways (CSPRs) are traffic demands, fundamental changes are defined as runways whose centerlines are required to effectively manage traffic and separated by less than 2500’ [3]. Many airports maximize the utility of airports. In the U.S., the throughout the U.S. have CSPRs, and NextGen Next Generation Air Transportation System includes a vision for better utilizing them in (NextGen) is being developed to meet this IMC. When CSPRs are used for arrival projected traffic growth [2]. operations, the capacity can vary significantly An important area for supporting the based on whether visual approaches or potential air traffic growth is to improve the instrument approaches are in use. When visual capacities of airports when weather deteriorates approaches are used, simultaneous arrival from Visual Meteorological Conditions (VMC) operations can be conducted to both CSPRs, and to Instrument Meteorological Conditions (IMC). visual separation has to be applied between When ceiling and visibility are reduced such traffic on the parallel runways when standard that aircrew cannot visually navigate, or reliably separation does not exist. In the case of see and avoid other traffic, then Instrument instrument approaches, simultaneous operations Flight Rules (IFR) must be used. Air Traffic are not permitted, so the arrival rate is Control (ATC) shifts from allowing aircrew to significantly smaller than when visual fly visual approach procedures to Instrument approaches are in use. Concepts for increasing 1 DANIEL WILLIAMS, GARY LOHR the CSPR arrival rate could increase the utility 1.3 Wake Vortex Avoidance System of these airports to assist meeting increased Summary of Concepts for CSPR Approaches traffic projections. In 2005, a multi-organizational Wake Vortex Avoidance System (WakeVAS) Concept 1.2 Wake Separation Standard for In-Trail Evaluation Team (CET) documented five Approaches generic CSPR instrument approach geometries Terminal Radar Approach Control (TRACON) and procedures [5]. For these concepts, and Airport Traffic Control Tower (ATCT) approach controllers position aircraft as a controllers apply radar separation (R) of 2.5 NM “dependent-stagger” operation with a minimum or 3 NM [3] between aircraft on approach. In 1.5 NM diagonal stagger at the runway addition, if specific pairings by weight category threshold during appropriate cross-wind occur, wake separation standards are applied conditions. The concepts require cross-wind (Figure 1). These minima are applied for surveillance within an alternate separation zone single-runway Instrument Landing System (ASZ), a 3-D volume encompassing the IAPs of (ILS) approach procedures and straight-in concern, so that wake separation standards may approaches including approaches to CSPRs be reduced according to a “red-light/green- where the lateral separation between approach light” condition (Figure 2). The “green-light” paths is less than 2500 ft. Although not condition occurs when cross-winds reach a explicitly stated, these minima account for wake specified threshold value (a local constraint vortex descent and decay to acceptable levels of dependent upon RCL spacing and IAP safety for wake avoidance. geometry), that will inhibit the transport of lead aircraft wake vortices to the CSPR approach path of an “up-wind” trailing aircraft. Conceptually, this will allow ATC to reduce the lead-trail wake vortex separation within the ASZ for specific diagonal pairs. Fig. 1. ILS Approach In-Trail Wake Separation Minima at the Threshold [3] Reducing the wake separation minima to the radar separation minima is the target benefit Fig. 2. WakeVAS CET Dependent-Stagger for WTMA on a per aircraft-pair case. Procedure Determining benefits by airport was the focus of a 2005 MITRE report [4]. It highlighted nine of Another IAP-based concept and wake the busiest 35 U.S. airports as potentially avoidance procedure included assigning trailing benefitting by WTMA due to the CSPR runway aircraft to IAPs with steeper approach paths. configuration and cross-wind availability. The This ensured that trailing aircraft would avoid specific airports analyzed were Boston (BOS), the wake of a lead aircraft by procedural Cleveland (CLE), Detroit (DTW), Newark separation and flight path guidance [6]. (EWR), Los Angeles (LAX), Philadelphia Another feature of this concept took advantage (PHL), Seattle (SEA), San Francisco (SFO), and of CSPRs with displaced thresholds, using the St. Louis (STL). displacement in conjunction with the steeper approach for the trailing aircraft to fly above 2 WAKE TURBULENCE MITIGATION FOR ARRIVALS (WTMA) and land beyond the leading aircraft’s wake assessment of the information requirements vortices. needed to support approval of the procedure was also conducted. Supervisors felt that the 1.4 Wake Turbulence Mitigation for required information was currently available in Departures (WTMD) Summary the ATCT and that the decision to approve and monitor use of the procedure could be integrated A concept focusing on wind-dependent into their workload. A full reporting of the departure operations has been developed [7]. results can be found in [9]. The current version of this concept is called Wake Turbulence Mitigation for Departures (WTMD). This concept would be applied to 1.5 Current CSPR Approach Procedures and operations at airports with CSPRs, and takes Application of Wake Separation Standards advantage of the fact that cross-winds of 1.5.1 Visual Pairings sufficient velocity transport wakes generated by Air Traffic Control (ATC) positioning of two “heavy” and B757 category aircraft on the aircraft to approach a CSPR so they arrive as a downwind runway away from the upwind “visual pair” is currently conducted at several runway. This means that departures on the U.S. airports. These aircraft often fly a Charted upwind runway are not affected by wakes Visual Flight Procedure (CVFP) highlighting generated on the downwind runway; therefore key visual navigation features and ATC contact wake separation of upwind runway departure points. Aircraft may be paired by ATC under traffic from traffic on the downwind runway is visual approach conditions where aircrew not required. Wake standard separation would assume the responsibility for visual navigation still have to be applied between consecutive to the runway, traffic separation and wake departures from the same runway and for vortex avoidance from traffic they are following departures from the downwind runway to a CSPR. Within the pair, aircraft may be following departures from the upwind runway. separated laterally during the final approach by Human-in-the-loop simulations were conducted only the runway centerline spacing, (minus a that focused on the role of the “local” ATCT wingspan distance), since they may be adjacent controller, who would apply the requisite to each other “wingtip to wingtip.” Wake separation standards. The results clearly separation standards (Figure 1) are applied indicate that using the WTMD procedures was between pairs by approach controllers until relatively easy, with workload remaining within aircrew can assume separation responsibility. acceptable limits. Further, the prototype interface provided adequate information to 1.5.2 Simultaneous Offset Instrument Approach accomplish responsibilities with respect to the As a way of maximizing CSPR throughput, procedure. Finally, departure rate Simultaneous Offset Instrument Approach improvements were observed when WTMD (SOIA) procedures (Figure 3) have been operations were in effect [8]. Supervisory Air developed to enable dual arrival streams in Traffic Controllers would be responsible for conditions of limited ceiling and visibility. authorizing use of
Recommended publications
  • Supporting the Future Air Traffic Control Projection Process
    t Supporting the Future Air Traffic Control Projection Process Hayley J. Davison & R John Hansman, Jr. International Centerfor Air Transportation Massachusetts Institute of Technology Cambridge, MA USA ABSTRACT traffic systems that are being designed for the In air traffic control, projecting what the air traffic future. situation will be over the next 30 seconds to 30 minutes is The air traffic control system is at a point of a key process in identifying conflicts that may arise so transition that could potentially change the that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New controller’s projection task. As the demand for York terminal radar approach control (TRACON) more fuel-efficient and environment-fnendly facilities and in the oceanic air traffic control facilities in procedures increases, there is a need for increased New York and Reylqavlk, Iceland were conducted to flexibility currently required by the FAA and other investigate the projection process in two different ATC air traffic authorities. It is critical to determine the domains. The results from the site visits suggest that two role of the existing structure in the airspace and types of projection are currently used in ATC tasks, procedures in the controller’s projection task before depending on the type of separation minima and/or traffic it is removed or changed. restriction and information display used by the controller. As technologies improve and procedures change, care One example of a procedure increasing route should be taken by designers to support projection flexibility is the constant deceleration approach through displays, automation, and procedures.
    [Show full text]
  • Observing On-Demand Aircrew Transitioning from Paper to Electronic
    Wright State University CORE Scholar International Symposium on Aviation International Symposium on Aviation Psychology - 2021 Psychology 5-1-2021 Observing on-Demand Aircrew Transitioning From Paper to Electronic Charla L. Long Kevin M. Gildea Follow this and additional works at: https://corescholar.libraries.wright.edu/isap_2021 Part of the Other Psychiatry and Psychology Commons Repository Citation Long, C. L., & Gildea, K. M. (2021). Observing on-Demand Aircrew Transitioning From Paper to Electronic. 66th International Symposium on Aviation Psychology, 152-157. https://corescholar.libraries.wright.edu/isap_2021/26 This Article is brought to you for free and open access by the International Symposium on Aviation Psychology at CORE Scholar. It has been accepted for inclusion in International Symposium on Aviation Psychology - 2021 by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. OBSERVING ON-DEMAND AIRCREW TRANSITIONING FROM PAPER TO ELECTRONIC FLIGHT BAGS: THE IMPACT ON WORKLOAD Charla L. Long, Ph.D. Federal Aviation Administration Oklahoma City, OK Kevin M. Gildea, Ph.D. Federal Aviation Administration Oklahoma City, OK The introduction of electronic flight bags (EFBs) for flight crew use has reduced the overall workload, except in some situations if not designed properly or employed effectively. Researchers from the Civil Aerospace Medical Institute (CAMI) undertook an observational study combined with crew interviews to assess overall flight crew operations including flight demands, procedures, and the methods the crews used to integrate EFBs into all aspects of their flights from preflight planning to postflight debrief. The researchers also examined the EFB applications (apps) themselves for general usability and developed some recommendations for ways EFB use in operations could be improved.
    [Show full text]
  • RCED-91-152 Meeting the Aviation Challenges of the 1990S
    144321I I Preface In the past, we have reported on a wide variety of complex and contro- versial aviation issues, including the Federal Aviation Administration’s (FAA) modernization of the nation’s air traffic control system, the training needs of air traffic controllers and the staffing needs of that work force, FAA'S oversight of aviation safety, improvements in airport security, aircraft noise, and airline competition. Although the Congress, the Department of Transportation (nor), and FAA have taken positive actions on these issues, some will remain problematic. At the same time, new problems will develop to challenge the effectiveness of the nation’s aviation system. To better understand and deal with the long-standing aviation issues and to examine emerging issues, we convened a conference on November 29 and 30,199O. The conference brought together 23 leading aviation experts from the Congress, the administration, the aviation industry, and academia to provide their perspectives on the problems facing the aviation community. To help the speakers frame these issues, in advance of the conference we suggested general topics for them to discuss, including (1) FAA'S organization and management, (2) airspace management and air traffic control, (3) aviation safety, (4) airport capacity and security, and (5) airline competition and consumer protec- tion. The conference speakers not only brought new understanding to these subjects, but also raised major points for the Congress, DOI', and FAA to consider when addressing both long-standing and new problems facing the aviation system. Consequently, we are issuing this report to make the results of the conference and the speakers’ presentations available to a larger audience.
    [Show full text]
  • Increasing Aircrew Flight Equipment Personnel
    C O R P O R A T I O N CHAITRA M. HARDISON, LESLIE ADRIENNE PAYNE, RUSSELL H. WILLIAMS, DANIELLE BEAN, KENRIC SMITH, HANNAH ACHESON-FIELD, IVICA PAVISIC, ANTHONY LAWRENCE, BENJAMIN M. PANCOAST Increasing Aircrew Flight Equipment Personnel Proficiency Insights from Members of the Career Field For more information on this publication, visit www.rand.org/t/RRA114-1 Library of Congress Cataloging-in-Publication Data is available for this publication. ISBN: 978-1-9774-0675-0 Published by the RAND Corporation, Santa Monica, Calif. © 2021 RAND Corporation R® is a registered trademark. Cover: U.S. Air Force photo by Airman 1st Class Isaiah Miller. Limited Print and Electronic Distribution Rights This document and trademark(s) contained herein are protected by law. This representation of RAND intellectual property is provided for noncommercial use only. Unauthorized posting of this publication online is prohibited. Permission is given to duplicate this document for personal use only, as long as it is unaltered and complete. Permission is required from RAND to reproduce, or reuse in another form, any of its research documents for commercial use. For information on reprint and linking permissions, please visit www.rand.org/pubs/permissions. The RAND Corporation is a research organization that develops solutions to public policy challenges to help make communities throughout the world safer and more secure, healthier and more prosperous. RAND is nonprofit, nonpartisan, and committed to the public interest. RAND’s publications do not necessarily reflect
    [Show full text]
  • Las Vegas, USA, March 14-18, 2016
    INTERNATIONAL FEDERATION OF AIR TRAFFIC CONTROLLERS’ ASSOCIATIONS 55TH ANNUAL CONFERENCE – Las Vegas, USA, March 14-18, 2016 Agenda Item: C.6.11 IFATCA 16 WP No. 310 Separation in Class E Airspace Presented by PLC Summary Class E Airspace is the lowest class of controlled airspace. Controlled doesn't mean visual flight rules (VFR) traffic has to be in radio contact with air traffic control (ATC), but that ATC services are available within the capabilities of radar and radio equipment. Instrument flight rules (IFR) traffic is required to contact ATC for a clearance. This is general-purpose airspace and aircraft flying under VFR can fly more-or-less wherever they want (weather permitting) and IFR traffic operates under positive control by ATC. There are regulations in this airspace but they aren't onerous, and they're designed to accommodate the variety of aircraft and activities that can be found here. Although Class E airspace is a single class of airspace, there are tighter regulations above 10,000 feet, where there are no airspeed restrictions (other than the prohibition on supersonic flight over land) compared to lower altitudes where airspeeds are limited to 250 knots. 1. Introduction 1.1. This paper was requested by Germany at the 2015 Conference in Sofia. The purpose of this paper is to look at Class E Airspace: who is responsible for separation and what would the legal implications be in the event of an incident or accident that occurred in Class E Airspace. 1.2. Airspace is an area of aeronautical knowledge that is commonly poorly demonstrated in practical tests.
    [Show full text]
  • National Aviation Safety and Management Plan 2019–2020
    United States Department of Agriculture National Aviation Safety and Management Plan 2019–2020 Forest Service March 2019 In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S.
    [Show full text]
  • Chapter: 2. En Route Operations
    Chapter 2 En Route Operations Introduction The en route phase of flight is defined as that segment of flight from the termination point of a departure procedure to the origination point of an arrival procedure. The procedures employed in the en route phase of flight are governed by a set of specific flight standards established by 14 CFR [Figure 2-1], FAA Order 8260.3, and related publications. These standards establish courses to be flown, obstacle clearance criteria, minimum altitudes, navigation performance, and communications requirements. 2-1 fly along the centerline when on a Federal airway or, on routes other than Federal airways, along the direct course between NAVAIDs or fixes defining the route. The regulation allows maneuvering to pass well clear of other air traffic or, if in visual meteorogical conditions (VMC), to clear the flightpath both before and during climb or descent. Airways Airway routing occurs along pre-defined pathways called airways. [Figure 2-2] Airways can be thought of as three- dimensional highways for aircraft. In most land areas of the world, aircraft are required to fly airways between the departure and destination airports. The rules governing airway routing, Standard Instrument Departures (SID) and Standard Terminal Arrival (STAR), are published flight procedures that cover altitude, airspeed, and requirements for entering and leaving the airway. Most airways are eight nautical miles (14 kilometers) wide, and the airway Figure 2-1. Code of Federal Regulations, Title 14 Aeronautics and Space. flight levels keep aircraft separated by at least 500 vertical En Route Navigation feet from aircraft on the flight level above and below when operating under VFR.
    [Show full text]
  • Aircraft Wake Turbulence
    AERONAUTICAL AUSTRALIA INFORMATION AERONAUTICAL INFORMATION SERVICE CIRCULAR (AIC) AIRSERVICES AUSTRALIA GPO BOX 367, CANBERRA ACT 2601 Phone: 02 6268 4874 Email: [email protected] H30/17 Effective: 201710200300 UTC AIRCRAFT WAKE TURBULENCE 1. INTRODUCTION 1.1 This AIC provides basic information on wake vortex behaviour, alerts pilots to the hazards of aircraft wake turbulence, and recommends operational procedures to avoid or deal with wake turbulence encounters. 2. WHAT IS WAKE TURBULENCE? 2.1 All aircraft generate wake vortices, also known as wake turbulence. When an aircraft is flying, there is an increase in pressure below the wing and a decrease in pressure on the top of the aerofoil. Therefore, at the tip of the wing, there is a differential pressure that concentrates the roll up of the airflow aft of the wing tip. Limited smaller vortex swirls exist also for the same reason at the tips of the flaps. Behind the aircraft all these small vortices mix together and roll up into two main vortices turning in opposite directions, clockwise behind the left wing (seen from behind) and anti-clockwise behind the right one wing (see Figure 1). 3. CHARACTERISTICS OF WAKE VORTICES 3.1 Wake vortex generation begins when the nose wheel lifts off the runway on take-off and continues until the nose wheel touches down on landing. 3.2 Size: The active part of a vortex has a very small radius, not more than a few metres. However, there is a lot of energy due to the high rotation speed of the air. (AIC H30/17) Page 2 of 20 3.3 Intensity: The characteristics of the wake vortices generated by an aircraft in flight are determined initially by the aircraft’s gross weight, wingspan, aircraft configuration and attitude.
    [Show full text]
  • Rules for VFR Flight
    EUROCONTROL guidance notes for pilots 1. Rules for VFR Flight AIRSPACE INFRINGEMENT when aircraft are on converging courses. detailed requirements for both VFR and Infringement of controlled airspace, dan- If there is a risk of collision, both pilots IFR vary depending on the class of air- ger and restricted areas etc. is a serious must act in accordance with these space in which the aircraft is flying. aviation hazard and occurs when an air- General Rules. A pilot who is required to craft enters the airspace without permis- give way should alter course to the right, VISUAL FLIGHT RULES sion. This happens several times a day in and one who has the right of way should Internationally, a pilot is required to stay the busiest areas of European airspace. maintain course and speed, but should more than 1000 feet above any obstacles Careful planning, and accurately flying also be prepared to take avoiding action in a “congested area” or above any large the plan, are the best means of avoiding if the other does not give way. collection of people. Over uncongested such infringements. However, it is impor- areas, he or she must stay more than 500 tant that pilots understand the rules they feet above the ground. Also, loss of are expected to follow. engine power needs to be considered when operating a single engine aircraft. This is one of a series of Guidance Notes The UK is unique. In that country, pilots (GN) intended to help you keep out of following VFR may fly below 500 feet, but trouble.The others are listed at the foot of they must stay more than 500 feet away the next page.
    [Show full text]
  • Cabin Safety Subject Index
    Cabin Safety Subject Index This document is prepared as part of the FAA Flight Standards Cabin Safety Inspector Program. For additional information about this document or the program contact: Donald Wecklein Pacific Certificate Management Office 7181 Amigo Street Las Vegas, NV 89119 [email protected] Jump to Table of Contents Rev. 43 Get familiar with the Cabin Safety Subject Index The Cabin Safety Subject Index (CSSI) is a reference guide to Federal Regulations, FAA Orders, Advisory Circulars, Information for Operators (InFO), Safety Alerts for Operators (SAFO), legal interpretations, and other FAA related content related to cabin safety. Subscribe to updates If you would like to receive updates to the Cabin Safety Subject Index whenever it’s revised, click here: I want to subscribe and receive updates. This is a free service. You will receive an automated response acknowledging your request. You may unsubscribe at any time. Getting around within the CSSI The CSSI structure is arranged in alphabetical order by subject, and the document has direct links to the subject matter, as well as links within the document for ease of navigation. The Table of Contents contains a hyperlinked list of all subjects covered within the CSSI. • Clicking the topic brings you to the desired subject. • Clicking the subject brings you back to the Table of Contents. • Next to some subjects you will see (also see xxxxxxxx). These are related subjects. Click on the “also see” subject and it will bring you directly to that subject. • Clicking on hyperlinked content will bring you directly to the desired content.
    [Show full text]
  • For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/267828187 For Spacious Skies: Self-Separation with "Autonomous Flight Rules" in US Domestic Airspace Article · September 2011 DOI: 10.2514/6.2011-6865 CITATIONS READS 18 123 2 authors: David J. Wing William B Cotton NASA 8 PUBLICATIONS 35 CITATIONS 80 PUBLICATIONS 590 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Traffic Complexity Management View project AFR (Autonomous Flight Rules) View project All content following this page was uploaded by David J. Wing on 02 April 2015. The user has requested enhancement of the downloaded file. For Spacious Skies: Self-Separation with “Autonomous Flight Rules” in US Domestic Airspace David J. Wing1 NASA Langley Research Center, Hampton, VA, 23681 William B. Cotton2 National Institute of Aerospace, Hampton, VA, 23666 Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global precision navigation, emerging airborne surveillance, and onboard computing enable traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer flight restrictions than are required when using ground-based separation.
    [Show full text]
  • Pilot and Air Traffic Controller Guide to Wake Turbulence (This Page Intentionally Left Blank)
    SECTION 2 2 Pilot and Air Traffic Controller Guide to Wake Turbulence (This page intentionally left blank) 2.ii SECTION 2 Pilot and Air Traffic Controller Guide to Wake Turbulence Table of Contents 2 Section Page 2.0 Introduction .......................................................................................................................... 2.1 2.0.1 Preview .......................................................................................................................... 2.1 2.0.2 The Goal........................................................................................................................ 2.1 2.0.3 Participants and Review Process ................................................................................... 2.1 2.1 Objectives ............................................................................................................................. 2.2 2.2 Historical Examination of the Wake-Turbulence Hazard..................................................... 2.3 2.3 Review of Accidents and Incidents ...................................................................................... 2.5 2.4 Description/Characteristics of the Wake-Turbulence Hazard .............................................. 2.8 2.4.1 Wake-Turbulence Formation......................................................................................... 2.8 2.4.2 Velocity Flow Field ....................................................................................................... 2.9 2.4.3 The Hazard .................................................................................................................
    [Show full text]