Petawatt and Exawatt Class Lasers Worldwide

Total Page:16

File Type:pdf, Size:1020Kb

Petawatt and Exawatt Class Lasers Worldwide High Power Laser Science and Engineering, (2019), Vol. 7, e54, 54 pages. © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/hpl.2019.36 Petawatt and exawatt class lasers worldwide Colin N. Danson1;2;3, Constantin Haefner4;5;6, Jake Bromage7, Thomas Butcher8, Jean-Christophe F. Chanteloup9, Enam A. Chowdhury10, Almantas Galvanauskas11, Leonida A. Gizzi12, Joachim Hein13, David I. Hillier1;3, Nicholas W. Hopps1;3, Yoshiaki Kato14, Efim A. Khazanov15, Ryosuke Kodama16, Georg Korn17, Ruxin Li18, Yutong Li19, Jens Limpert20;21;22, Jingui Ma23, Chang Hee Nam24, David Neely8;25, Dimitrios Papadopoulos9, Rory R. Penman1, Liejia Qian23, Jorge J. Rocca26, Andrey A. Shaykin15, Craig W. Siders4, Christopher Spindloe8,Sandor´ Szatmari´ 27, Raoul M. G. M. Trines8, Jianqiang Zhu28, Ping Zhu28, and Jonathan D. Zuegel7 1AWE, Aldermaston, Reading, UK 2OxCHEDS, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK 3CIFS, Blackett Laboratory, Imperial College, London, UK 4NIF & Photon Science Directorate, Lawrence Livermore National Laboratory, Livermore, USA 5Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany 6Chair for Laser Technology LLT, RWTH Aachen University, Aachen, Germany 7University of Rochester, Laboratory for Laser Energetics, Rochester, USA 8Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, UK 9LULI, CNRS, CEA, Sorbonne Universites,´ Ecole´ Polytechnique, Institut Polytechnique de Paris, Palaiseau, France 10Department of Physics, The Ohio State University, Columbus, USA 11Centre for Ultrafast Optical Science, University of Michigan, Ann Arbor, USA 12Intense Laser Irradiation Laboratory, Istituto Nazionale di Ottica (INO), CNR, Pisa, Italy 13Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena and Helmholtz Institute, Jena, Germany 14The Graduate School for the Creation of New Photonics Industries, Nishiku, Hamamatsu, Japan 15Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia 16Institute of Laser Engineering, Osaka University, Suita, Osaka, Japan 17ELI-Beamlines, Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic 18State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China 19National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 20Institute for Applied Physics (IAP) at Friedrich-Schiller-University Jena, Jena, Germany 21Helmholtz Institute Jena, Jena, Germany 22Fraunhofer Institute for Applied Optics and Precision Engineering (IOF), Jena, Germany 23Key Laboratory for Laser Plasma (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China 24Centre for Relativistic Laser Science (CoReLS), Institute for Basic Science, Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju, South Korea 25SUPA, Department of Physics, University of Strathclyde, Glasgow, UK 26Colorado State University, Fort Collins, Colorado, USA 27Department of Experimental Physics, University of Szeged, Szeged, Hungary 28National Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China (Received 10 March 2019; accepted 21 June 2019) Correspondence to: C. N. Danson, AWE, Aldermaston, Reading, UK. Email: [email protected] 1 Downloaded from https://www.cambridge.org/core. 01 Oct 2021 at 04:33:27, subject to the Cambridge Core terms of use. 2 C. N. Danson et al. Abstract In the 2015 review paper ‘Petawatt Class Lasers Worldwide’ a comprehensive overview of the current status of high- power facilities of >200 TW was presented. This was largely based on facility specifications, with some description of their uses, for instance in fundamental ultra-high-intensity interactions, secondary source generation, and inertial confinement fusion (ICF). With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification (CPA), which made these lasers possible, we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed. We are now in the era of multi-petawatt facilities coming online, with 100 PW lasers being proposed and even under construction. In addition to this there is a pull towards development of industrial and multi-disciplinary applications, which demands much higher repetition rates, delivering high-average powers with higher efficiencies and the use of alternative wavelengths: mid-IR facilities. So apart from a comprehensive update of the current global status, we want to look at what technologies are to be deployed to get to these new regimes, and some of the critical issues facing their development. Keywords: exawatt lasers; high-power lasers; petawatt lasers; ultra-high intensity 1. Introduction laser in 1960[9]. In the following few years there was vigorous research activity as attempts were made to increase There have been two published reviews of ultra-high-power the peak power and focused intensity in order to reach lasers separated by nearly two decades; the first by Backus extreme conditions within the laboratory. Initial jumps of et al.[1] in 1998, when there was only one petawatt class several orders of magnitude in peak power came with the laser in operation[2], and the second by Danson et al.[3] invention of Q-switching[10], and then mode-locking[11–15]. some 17 years later, which identified approximately fifty Progress slowed, as illustrated in Figure1, until the late petawatt class lasers either operational, under construction 1980s, with the development of the technique of chirped or in the planning phase. These review papers were cited pulse amplification (CPA) by Strickland and Mourou[16] at by the Nobel Committee for Physics in its 2018 award to the Laboratory for Laser Energetics (LLE) at the University Strickland and Mourou in its Scientific Background paper[4] of Rochester, USA. ‘Groundbreaking Inventions in Laser Physics’. In addition A parallel problem existed in radar systems, where short, to these the National Academy of Sciences, Engineering and powerful pulses that were beyond the capabilities of existing Medicine in the USA published a report in December 2017 electrical circuits were needed. Using dispersive delay ‘Opportunities in Intense Ultrafast Lasers: Reaching for the lines, the radar pulses could be stretched and amplified [5] Brightest Light’ , which summarized the current status of prior to transmission, and then the reflected pulse could be high-power lasers, highlighting the decline in this activity compressed, avoiding high-peak powers within the amplifier within the USA in recent years, and making recommenda- circuitry[17]. In the telecommunications industry, work was tions of how this should be remedied. carried out on the use of prisms[18] and grating pairs[19] A special mention should also be made to the work to compensate for the spectral phase distortions imposed of ICUIL. ICUIL, the International Committee on Ultra- on broad bandwidth laser pulses by long lengths of optical High Intensity Lasers, is an organization concerned with fibre. By putting a telescope inside a grating pair, Martinez international aspects of ultra-high-intensity laser science, produced a method to reverse the sign of the spectral phase technology and education. This was formed in 2003 fol- that was imparted, thus creating a device that could stretch a lowing the work of the OECD (Organisation for Economic pulse and then exactly compress it. These systems were used Co-operation and Development) Global Science Forum[6] in stretching pulses prior to propagation along the fibre, then under the International Union of Pure and Applied Physics compressing them in order to reduce nonlinear effects. (IUPAP)[7]. ICUIL has a very active programme of work Strickland and Mourou’s approach was to take the 150 ps and maintains a track of ultra-high-intensity lasers on its output from a commercial mode-locked Nd:YAG oscillator, website[8]. It also hosts a biennial conference to bring the which was then stretched to 300 ps and spectrally broadened community together for the exchange of information on the in 1.4 km of optical fibre, using a combination of group subject. velocity dispersion and self-phase modulation. The pulse was then amplified in a Nd:glass regenerative amplifier, and [20] 1.1. Introduction – historical perspective compressed using a Treacy grating pair which compen- sated for the second-order spectral phase imposed by the The possibility of using lasers to achieve previously un- fibre. From the original CPA paper’s conclusion, it states ‘we obtainable states of matter in the laboratory gained much have shown that by first stretching a chirped optical pulse and attention following the demonstration of the first pulsed then amplifying before compressing, high-peak power pulses Downloaded from https://www.cambridge.org/core. 01 Oct 2021 at 04:33:27, subject to the Cambridge Core terms of use. Petawatt and exawatt class lasers worldwide 3 Figure
Recommended publications
  • Call for Access to the LULI Laser Facilities
    Call for Access to the LULI laser facilities Application for beam time on the LULI laser facilities will soon be open for the period May 2013 – April 2014. The closing date will be the 3rd of October, 2012. BRIEF DESCRIPTION OF THE LULI LASER FACILITIES AVAILABLE IN 2013 ELFIE is a highly versatile and manageable facility coupling a fully-equipped experimental room with a Ti:Sa/mixed glass laser system based on the chirped pulse amplification (CPA) technique. Two ultra-intense vacuum-compressed beams (~15J in typically 0.35ps at ω or 1.06 µm - 2 ω available) are optically synchronized with a ~60J / 600ps uncompressed chirped pulse. A 100mJ short (0.3ps) frequency-converted (from ω to 4 ω) probe beam is also available. Shot-to-shot reliability (at a repetition rate of 1 shot every 20 minutes) and good focused beam quality is ensured through an adaptive-optics closed-loop system. Reduced flexibility in terms of angles between the various laser beams is offered (see graph below). LULI2000 is one of the most energetic laser facilities in Europe: it consists of two experimental areas and a laser hall (below) containing 2 high-power single pulse neodymium glass laser chains. Each beam can deliver up to 1kJ at ω in 1.5ns square pulses ( nano2000 configuration). Pulse duration [from 0.5 to 5ns - rise time ~150ps, pulse shaping available], beam delay [±10ns] and angle can be readily adjusted. 2 ω is available (3 ω upon request). The repetition rate is limited to 1 shot every 90 minutes (4-5 full-energy shots per day), but a 10Hz laser beam allows fast diagnostics alignment.
    [Show full text]
  • FY20 National Laser Users' Facility Program
    FY20 NATIONAL LASER USERS’ FACILITY PROGRAM FY20 National Laser Users’ Facility Program M. S. Wei Laboratory for Laser Energetics, University of Rochester During FY19, the National Nuclear Security Administration (NNSA) and Office of Science jointly completed a funding opportu- nity announcement (FOA), review, and selection process for National Laser Users’ Facility (NLUF) experiments to be conducted at the Omega Facility during FY20 and FY21. After peer review by an independent proposal review committee for scientific and technical merit and the feasibility review by the Omega Facility team, NNSA selected 11 proposals for funding and Omega shot allocation with a total of 22.5 and 23.5 shot days for experiments in FY20 and FY21, respectively. During the first half of the FY20, LLE completed a one-time solicitation, review, and selection process for Academic and Industrial Basic Science (AIBS) experiments to utilize the remaining NLUF shot allocation in FY20–FY21. Ten new projects were selected for AIBS shot alloca- tion (a total of 11 and 10 shot days) for experiments staring in Q3FY20 and throughout FY21. FY20 was the first of a two-year period of performance for these 21 NLUF including AIBS projects (Table I). Fifteen NLUF and AIBS projects obtained a total of 232 target shots during FY20, which are summarized in this section. A critical part of the NNSA-supported NLUF program and the DOE Office of Fusion Energy Sciences (FES)-supported Laser- NetUS program is the education and training of graduate students in high-energy-density (HED) physics. In addition, graduate students can also access the Omega Laser Facility to conduct their theses research through collaborations with national labora- tories and LLE.
    [Show full text]
  • A Programmable Mode-Locked Fiber Laser Using Phase-Only Pulse Shaping and the Genetic Algorithm
    hv photonics Article A Programmable Mode-Locked Fiber Laser Using Phase-Only Pulse Shaping and the Genetic Algorithm Abdullah S. Karar 1,* , Raymond Ghandour 1 , Ibrahim Mahariq 1 , Shadi A. Alboon 1,2, Issam Maaz 1, Bilel Neji 1 and Julien Moussa H. Barakat 1 1 College of Engineering and Technology, American University of the Middle East, Kuwait; [email protected] (R.G.); [email protected] (I.M.); [email protected] (S.A.A.); [email protected] (I.M.); [email protected] (B.N.); [email protected] (J.M.H.B.) 2 Electronics Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan * Correspondence: [email protected] Received: 24 July 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: A novel, programmable, mode-locked fiber laser design is presented and numerically demonstrated. The laser programmability is enabled by an intracavity optical phase-only pulse shaper, which utilizes the same linearly chirped fiber Bragg grating (LC-FBG) from its two opposite ends to perform real-time optical Fourier transformation. A binary bit-pattern generator (BPG) operating at 20-Gb/s and producing a periodic sequence of 32 bits every 1.6 ns, is subsequently used to drive an optical phase modulator inside the laser cavity. Simulation results indicate stable programmable intensity profiles for each optimized user defined 32 code words. The laser operated in the self-similar mode-locking regime, enabling wave-breaking free operation. The programmable 32 bit code word targeting a specific intensity profile was determined using 100 generations of the genetic algorithm.
    [Show full text]
  • Petawatt and Exawatt Class Lasers Worldwide
    Petawatt and exawatt class lasers worldwide Colin Danson, Constantin Haefner, Jake Bromage, Thomas Butcher, Jean-Christophe Chanteloup, Enam Chowdhury, Almantas Galvanauskas, Leonida Gizzi, Joachim Hein, David Hillier, et al. To cite this version: Colin Danson, Constantin Haefner, Jake Bromage, Thomas Butcher, Jean-Christophe Chanteloup, et al.. Petawatt and exawatt class lasers worldwide. High Power Laser Science and Engineering, Cambridge University Press, 2019, 7, 10.1017/hpl.2019.36. hal-03037682 HAL Id: hal-03037682 https://hal.archives-ouvertes.fr/hal-03037682 Submitted on 3 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. High Power Laser Science and Engineering, (2019), Vol. 7, e54, 54 pages. © The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/hpl.2019.36 Petawatt and exawatt class lasers worldwide Colin N. Danson1;2;3, Constantin Haefner4;5;6, Jake Bromage7, Thomas Butcher8, Jean-Christophe F. Chanteloup9, Enam A. Chowdhury10, Almantas Galvanauskas11, Leonida A.
    [Show full text]
  • MRI-Guided Laser Ablation Surgery of Hypothalamic Hamartomas
    NEUROSURGERY MRI-Guided Laser Ablation Surgery of Hypothalamic Hamartomas HOW DOES THE TEAM DECIDE IF A PATIENT IS A CANDIDATE FOR MRI-GUIDED LASER ABLATION? A careful review of each patient’s medical records is the first step, including MR imaging of the brain and any applicable neurology or neurosurgery records. Patients with Hypothalamic Hamartomas (HH) typically have gelastic seizures, which are characterized by emotionless laughing, although variations including abnormal movements or staring spells are also common. Every patient’s case is handled individually, and it may be necessary for a patient to come to Texas Children’s Hospital for further testing to determine if they are a candidate for MRI-guided laser ablation surgery. WHAT HAPPENS DURING MRI-GUIDED LASER ABLATION SURGERY? After being placed under general anesthesia, a head frame, or a set of markers, is fitted to the patient’s skull. A CT scan is completed to orient the brain to the frame in 3 dimensions. With the help of computer software, a safe pathway that goes through the brain to the HH is calculated for the laser. The neurosurgeon then makes a small incision and drills a small hole through the skull (3.2 mm wide). The laser applicator, a small tube about the width of a strand of spaghetti, is inserted and guided through the brain into the HH. Once the laser applicator is inserted into the brain, the head frame is removed, and the patient is transported to the MRI scanner. After confirming proper placement of the laser applicator and setting safety markers, the surgeon performs a small test firing using the laser.
    [Show full text]
  • Galvanometer Scanning Technology and 9.3Μm CO2 Lasers for On-The-Fly Converting Applications
    Lasers in Manufacturing Conference 2017 Galvanometer Scanning Technology and 9.3µm CO2 Lasers for On-The-Fly Converting Applications M. Hemmericha,*, M. Darvisha, J. Conroyb, L. Knollmeyerb, J. Wayb, X. Luoc, Y. J. Hsuc, J. Lic aNovanta Europe GmbH, Münchner Strasse 2a, 82152 Planegg, Germany bSynrad Inc., 4600 Campus Place, Mukilteo, WA, USA 98275 cCambridge Technology, 125 Middlesex Turnpike, Bedford, MA, USA 01730 Abstract Digital converting processes are used to transform a roll of material into a different form or shape and provide the flexibility to deliver unique designs or changes on-the-fly, unlike traditional mechanical processes. Tremendous progress has been made in the field of digital printing; its increased adoption requires that converting processes also be more flexible and cost-effective while delivering high cut quality. Due to the high cost of storage and maintenance of a plurality of conventional dies and long set up time, using CO2 lasers in combination with fast and precise laser scanning has proven to have great potential in paper and cardboard processing, flexible packaging and label cutting. At the same time, the capability to control the laser beam power density delivered on the material processed is critical to achieve high quality finish goods. In this paper, we are showing the capabilities of an all-digital galvanometer scanner in combination with a highly frequency stable CO2 laser that provides stable laser power density by modulating the laser power in coordination with beam scanning speed. Our system also demonstrates high scanning speed of more than 10 m/s and a focal spot size of less than 150µm.
    [Show full text]
  • With Short Pulse • About 7% Coupling Significantly Less Than the Osaka Experiment
    Electron/proton generation from solid targets and applications Farhat Beg University of California, San Diego This work was performed under the auspices of the U.S. DOE under contracts No.DE-FG02-05ER54834, DE-FC0204ER54789 and DE-AC52-07NA27344. We greatly acknowledge support of Institute for Laser Science Applications, LLNL. Committee on Atomic, Molecular and Optical Sciences Meeting The National Academy of Sciences Washington DC, April 5, 2011 1 Summary ü Short pulse high intensity laser solid interactions create matter under extreme conditions and generate a variety of energetic particles. ü There are a number of applications from fusion to low energy nuclear reactions. 10 ns ü Fast Ignition Inertial Confinement Fusion is one application that promises high gain fusion. ü Experiments have been encouraging but point towards complex issues than previously anticipated. ü Recent, short pulse high intensity laser matter experiments show that low coupling could be due to: - prepulse - electron source divergence. ü Experiments on fast ignition show proton focusing spot is adequate for FI. However, conversion efficiency has to be increased. 2 Outline § Short Pulse High Intensity Laser Solid Interaction - New Frontiers § Extreme conditions with a short pulse laser § Applications § Fast Ignition - Progress - Current status § Summary Progress in laser technology 10 9 2000 Relativistic ions 8 Nonlinearity of 10 Vacuum ) Multi-GeV elecs. V 7 1990 Fast Ignition e 10 ( e +e- Production y 6 Weapons Physics g 10 Nuclear reactions r e 5 Relativistic
    [Show full text]
  • Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS and NANOSTRUCTURES
    Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS AND NANOSTRUCTURES Akos Veites Department of Chemistry, Institute for Proteomics Technology and Applications, The George Washington University, Washington DC 20052 1. INTRODUCTION In 1948, Ame Tiselius won the Nobel Prize in chemistry for the discovery of electrophoresis and its application to analyze large molecules, specifically complex serum proteins. During the following decades, gel electrophoresis and its derivative techniques became a central method for molecular biology. They allowed for the identification of molecular mass with an accuracy of ~1 kDa, i.e., a thousand atomic mass units. Although this method enabled the separation of thousands of proteins from biological samples, the determination of the actual molecular weight, and with it finding the true identity of many substances, remained unachievable. When it came to accurate mass determination of small molecules, mass spectrometry was the method of choice. However, for the accurate mass analysis of large molecules, their low volatility presented a fundamental obstacle. Typically, the larger the molecule, the harder it is to transfer it into the gas phase without degradation. Depositing the energy necessary for volatilization initiates other competing processes that elevate the internal energy of the adsorbate and results in its fragmentation. This competition between evaporation (or desorption) and fragmentation was recognized early on and the method of rapid heating was proposed to minimize the latter (Beuhler, et al., 1974). Lasers with submicrosecond pulse length were appealing tools for rapid heating but the initial results indicated limitations with respect to the ultimate size of the biomolecules (m/z < 1,500) that could 506 Laser Ablation and its Applications be successfully analyzed (Posthumus ,et al., 1978).
    [Show full text]
  • Laser Ablationablation
    LaserLaser AblationAblation FundamentalsFundamentals && ApplicationsApplications Samuel S. Mao Department of Mechanical Engineering Advanced Energy Technology Department University of California at Berkeley Lawrence Berkeley National Laboratory March 10, 2005 University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation What is “Laser Ablation”? Mass removal by coupling laser energy to a target material University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition substrate * oxide/superconductor films material * nanocrystals/nanotubes plume target mass spectrometer ) Materials characterization * semiconductor doping profiling plasma lens * solid state chemical analysis target optical spectrometer ) Micro structuring * direct wave guide writing * 3D micro fabrication microstructure target transparent solid University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition * oxide/superconductor films * nanocrystals/nanotubes ) Materials characterization * semiconductor doping profiling * solid state chemical analysis 100 µm ) Micro structuring * direct wave guide writing * 3D micro fabrication University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er DoDo wewe reallyreally understand?understand? las laser beam “Laser ablation … is still largely unexplored at the plasma fundamental level.” J. C. Miller &
    [Show full text]
  • MRI-Guided Laser Ablation Surgery for Epilepsy
    MRI-Guided Laser Ablation Surgery for Epilepsy In August 2010, Texas Children’s Hospital became the first hospital in the world to use real-time MRI-guided thermal imaging and laser technology to destroy epilepsy-causing lesions in the brain that are too deep inside the brain to safely access with usual neurosurgical methods. To date, our team has performed more than 100 of these procedures on patients who have traveled to Houston and Texas Children’s from around the globe. This technology has become a standard of care and is now being used in many adult and pediatric centers across the United States. The advantages of the MRI-guided laser surgery procedure include: • A safer, significantly less-invasive alternative to open brain surgery with a craniotomy, which is the traditional technique used for the surgical treatment of epilepsy. • No hair is removed from the patient’s head. • Only a 3 mm opening is needed for the laser. It is closed with a single suture resulting in less scarring and pain for the patient. • A reduced risk of complications and a faster recovery time for the patient. Most patients are discharged the day after surgery. MRI-guided laser surgery is changing the face of epilepsy treatment and provides a life-altering option for many epilepsy surgery candidates. The benefits of this new approach in reducing risk and invasiveness may open the door for more epilepsy patients to see surgery as a viable treatment option. Epilepsy today • Approximately 1 in 10 people will have at least one seizure during their lifetime.
    [Show full text]
  • Reduced Graphene: Synthesis, Properties, and Applications
    REVIEW Laser Direct-Writing www.advmattechnol.de Laser-Reduced Graphene: Synthesis, Properties, and Applications Zhengfen Wan, Erik W. Streed, Mirko Lobino, Shujun Wang, Robert T. Sang, Ivan S. Cole, David V. Thiel, and Qin Li* produce graphene with relatively high Laser reduction of graphene oxide has attracted significant interest in recent crystalline quality, including mechanical years, because it offers a highly flexible, rapid, and chemical-free graphene exfoliation of graphite,[6,7] epitaxial [8–10] fabrication route that can directly write on almost any solid substrate growth, and chemical vapor deposi- tion (CVD).[11–14] Another class of methods with down to sub-micrometer feature size. Laser-reduced graphene (LRG) adopts graphene oxide (GO) as the pre- is explored for various important applications such as supercapacitors, cursor for the synthesis of graphene with sensors, field effect transistors, holograms, solar cells, flat lenses, varied qualities. GO can be reduced to gra- bolometers, thermal sound sources, cancer treatment, water purification, phene by various reduction routes such as [15,16] [17–19] [20] lithium-ion batteries, and electrothermal heaters. This contribution reviews thermal, chemical, electrical, [21] [22,23] [24] most recent research progress on the aspects of fabrication, properties, microwave, photo, laser, or a combination of these methods.[25] Table 1 and applications of LRG. Particular attention is paid to the mechanism of summarizes several typical reduction LRG formation, which is still debatable. The three main theories, including methods for graphene oxide and the the photochemical process, the photothermal process, and a combination respective conductivity (or sheet resistance) of both processes, are discussed.
    [Show full text]
  • Ixblue Presentation at Advanced Fiber Laser
    Advanced – State of the Art – Fiber solutions and LiNbO3 Modulators and pulse generators for Fiber Lasers Dr Shuo ZHANG iXblue Photonics [email protected] High-Technology Independent Company 750+ employees 80% export 140+ M€ turnover Founded in 2000 iXblue in France Lannion Saint-Germain-en-Laye 8 industrial Specialty Fibers Navigation sites Navigation Headquarters Besançon 100% of R&D Integrated optics Brest Bonneuil- and production Underwater Acoustic sur-Marne Positioning Motion Systems as well as Acoustic Labcom 90% of suppliers located in France St Etienne Bordeaux Hardened optical fibers Labcom Cold Atoms Labcom Joint Research Laboratories La Ciotat Sonars Sea Operations Shipyard 1- AFL Topic 1: Fiber and Fiber based devices - Fiber and Fiber based devices offer for the laser world - Key Electro-optic modulation solutions for the laser world 2- AFL Topic 2: High power fiber laser - The laser seeder for the high Energy Industrial Lasers - Pump seeder source for Petawatt lasers based on OPCPA - The laser seeder for scientific High Energy Density Lasers TABLE OF - The diagnosis fibers for scientific High Energy Density Lasers 3- AFL Topic 3: Ultrafast fiber laser and nonlinear fiber optics CONTENT - Femtoscond Fiber Lasers and fibers solutions 4- AFL Topic 5: Beam combination of fiber lasers - The right electro-optical modulator for Coherent Beam Combining (CBC) lasers - The electro-optical modulators offer for Spectral Beam Combining (SBC) lasers 4- AFL Topic 6: Fiber laser application - 2 µm Fibre lasers for medical and defense
    [Show full text]