Separate Effects of the Microkeratome Incision and Laser Ablation on the Eye’S Wave Aberration

Total Page:16

File Type:pdf, Size:1020Kb

Separate Effects of the Microkeratome Incision and Laser Ablation on the Eye’S Wave Aberration Separate Effects of the Microkeratome Incision and Laser Ablation on the Eye’s Wave Aberration JASON PORTER, MS, SCOTT MACRAE, MD, GEUNYOUNG YOON, PHD, CYNTHIA ROBERTS, PHD, IAN G. COX, PHD, AND DAVID R. WILLIAMS, PHD ● PURPOSE: To study the optical changes induced by the tion, the total and higher order root mean square of microkeratome cut, the subsequent laser ablation, and wavefront errors were nearly identical for both the study the biomechanical healing response of the cornea in and control eyes 3-months after the laser ablation, normal laser in situ keratomileusis (LASIK) eyes. indicating that a procedure in which the incision and the ● DESIGN: Prospective randomized clinical trial. ablation are separated in time to better control aberra- ● METHODS: A Hansatome microkeratome was used to tions does not compromise the outcome of a conventional cut a corneal flap in one eye (study eye) of 17 normal LASIK treatment. (Am J Ophthalmol 2003;136: myopic patients and a subsequent laser ablation was 327–337. © 2003 by Elsevier Inc. All rights reserved.) performed 2 months after this initial microkeratome incision. Control eyes received conventional LASIK VEN THOUGH EARLY CUSTOMIZED ABLATION RESULTS treatments at the latter time point. The wave aberration have been encouraging, further refinements of wave- of both the study and contralateral control eyes were E front-guided laser in situ keratomileusis (LASIK) measured over a 6-mm pupil with a Shack–Hartmann procedures are needed to obtain an aberration-free ablative wavefront sensor for all preoperative, postflap cut, and correction.1–4 It has been well established that conven- postablation visits. tional photorefractive keratectomy (PRK) and LASIK ● RESULTS: The eye’s higher order aberrations had a procedures induce higher order aberrations, including in- of approximately creased amounts of spherical aberration, despite their (03. ؍ small, but significant increase (P 30% 2 months after cutting a flap. No systematic changes accurate correction of spherocylindrical errors.5–10 To date, were observed in nearly all Zernike coefficients from little evidence has been presented to determine the origins their preoperative levels at 2 months postflap cut. A of these induced higher order aberrations. Consequently, significant difference between the study and control eyes not much is known about the importance or relative ؍ 3 was observed for one trefoil mode, Z3 (P .04). contribution of the two separate effects of creating a ● CONCLUSIONS: There was a wide variation in the microkeratome flap and performing a subsequent laser response of individual Zernike modes across patients ablation on the overall optical quality of an eye receiving after cutting a flap. The majority of spherical aberration a LASIK treatment. Developing a firm understanding of induced by the LASIK procedure seems to be due to the the aberrations induced by these two processes is crucial for laser ablation and not the microkeratome cut. In addi- achieving an optimal, customized correction of the eye’s higher order aberrations with laser refractive surgery. Accepted for publication Feb 12, 2003. Studies have been conducted to investigate structural InternetAdvance publication at ajo.com Feb 19, 2003. From The Institute of Optics (J.P.), Department of Ophthalmology changes in corneal shape due to the laser ablation in (S.M., G.Y.), and Center for Visual Science (D.R.W.), University of refractive surgery procedures. Howland and coworkers11 Rochester, Rochester, New York; Department of Ophthalmology (C.R.), found that changes made in the midperipheral and periph- Ohio State University, Columbus, Ohio; and Bausch & Lomb (I.G.C.), Rochester, New York. eral cornea could create biomechanical changes in the Supported by the National Institutes of Health grants EY01319 and central cornea in radial keratotomy. In PRK and LASIK EY07125, and a research grant from Bausch & Lomb. Jason Porter, procedures, central corneal shape can be altered by shape Geunyoung Yoon, Cynthia Roberts, David Williams, and Scott MacRae have served as consultants for Bausch & Lomb. In addition, the changes occurring outside of the ablation zone. The laser University of Rochester has a licensing agreement with Bausch & Lomb ablation itself creates a thickening of the peripheral stroma for the customized correction of higher order aberrations. (that is, an increase in corneal elevation outside of the Inquiries to Scott MacRae, MD, StrongVision, 100 Meridian Centre, Suite 125, Rochester, NY 14618; fax: (585) 756-1975; e-mail: scott_ ablation zone) and a secondary steepening of the midpe- [email protected] ripheral cornea. This peripheral steepening results in a 0002-9394/03/$30.00 © 2003 BY ELSEVIER INC.ALL RIGHTS RESERVED. 327 doi:10.1016/S0002-9394(03)00222-8 flattening of the central cornea and consequently a shift toward hyperopia.12,13 These peripheral and central shape TABLE 1. Average Preoperative Manifest Refractions and changes, along with the unintended hyperopic shift, can Attempted Corrections for Study and Control Eyes occur even for a PTK type ablation, which is not designed Preoperative Manifest Attempted Laser 14–17 to change corneal curvature. As a result, the biome- Refraction Correction chanical response of the cornea to the laser ablation will Eyes Sphere Cylinder Sphere Cylinder yield central flattening and hyperopic shifts for both myopic and hyperopic procedures. Few reports have dis- Study Ϫ2.62 D Ϫ0.50 D Ϫ2.55 D Ϫ0.67 D Ϫ Ϫ Ϫ Ϫ cussed the effects of these biomechanical changes on Control 2.66 D 0.65 D 2.61 D 0.70 D aberrations other than defocus, or sphere. D ϭ diopters. We sought to determine how the eye’s aberrations changed as a result of the microkeratome flap-cut and the laser ablation. The first experimental stage provided infor- mation on the degree of aberration change resulting only the contralateral control eye was treated with a conven- from the corneal flap-cut and the subsequent readhesion of tional LASIK treatment based on the most recent manifest the flap to the cornea. The second stage offered further refraction. The average preoperative manifest refractions information on the amount of aberrations that are induced and attempted corrections for both the study and control in LASIK solely due to the laser ablation. Comparing post- eyes are presented in Table 1. ablation aberration data from the study eyes with data from Manifest refractions and uncorrected and best-corrected the normal, one-step LASIK-treated, contralateral control visual acuities were performed preoperatively and at each eyes might provide preliminary insight for whether conven- postoperative examination. A Shack–Hartmann wave- tional LASIK yields better optical performance when per- front sensor (Zywave; Bausch & Lomb) was used to formed as a one- or two-step procedure. Finally, this study measure the monochromatic wave aberration of both the could also provide insight as to whether the majority of study and control eyes under scotopic conditions with spherical aberration induced after a LASIK procedure is a dilation (2.5% neosynephrine). The wave aberration was result of the microkeratome incision or the laser ablation. expressed as a Zernike polynomial up to and including fifth order aberrations (18 Zernike terms) over a 6-mm pupil. The Zernike polynomials were expressed according to the METHODS standard normalized polynomials and representation estab- lished by the VSIA Standards Taskforce team.18 Wave- SEVENTEEN HEALTHY MYOPIC PATIENTS BETWEEN 30 AND front analysis was made comparable for right and left eyes 50 years of age were enrolled in an institutional review by creating the mirror image of the wavefronts from all left board-monitored study. A full informed consent was ob- eyes (that is, flipping the signs of all appropriate Zernike tained for each patient. The myopia ranged between coefficients that exhibit odd symmetry about the vertical Ϫ0.75 and Ϫ6.75 diopters (D) with less than Ϫ2.50 D of axis) and performing the analysis. All measurements were astigmatism. made in the study and the contralateral control eyes The study was divided into two stages: a postmicrokera- preoperatively (Pre), at 20 minutes (20 min), 1 day (1D), tome incision (or postflap cut) stage and a postlaser ablation 1 week (1W), 1 month (1M), and 2 months (2M) stage. In the first stage, patients received a microkeratome postmicrokeratome incision. The same measurements were incision with a superior hinge in only one eye (study eye) also performed 1 day (1DLSK), 1 week (1WLSK), 1 month while the contralateral eye (control eye) was left untreated. A (1 MLSK), and 3 months (3 MLSK) postlaser ablation. Hansatome Microkeratome (Bausch & Lomb, Rochester, New York, USA) was used to perform the cut. The study eye ● STATISTICAL ANALYSIS: To determine which aberra- for each patient was chosen at random. All study eyes tions significantly changed due to the flap cut, two-tailed t received a 180-␮m microkeratome plate depth incision with tests were used to test for significance when comparing a flap diameter of 9.5 mm or 8.5 mm, and no subsequent laser postoperative differences in aberrations (relative to preop) treatment was performed after the incision. between the study and control eyes 2 months postflap cut. The second stage of the study was conducted at least 2 The same tests were used to investigate potential signifi- months after the initial microkeratome incision was made cant changes between the study and control eyes 3 months in the study eye. In the second stage, the microkeratome after the laser ablation. Finally, paired, two-tailed t tests flap was lifted in the study eyes and a conventional myopic were used to determine significant changes in aberrations excimer ablation (Technolas 217c; Bausch & Lomb) was from preoperative levels within the study eyes and the performed based on the preoperative and 2-month post- control eyes 3 months postablation. Values of P Ͻ .05 were microkeratome incision manifest refractions. At that time, considered to be significant.
Recommended publications
  • FY20 National Laser Users' Facility Program
    FY20 NATIONAL LASER USERS’ FACILITY PROGRAM FY20 National Laser Users’ Facility Program M. S. Wei Laboratory for Laser Energetics, University of Rochester During FY19, the National Nuclear Security Administration (NNSA) and Office of Science jointly completed a funding opportu- nity announcement (FOA), review, and selection process for National Laser Users’ Facility (NLUF) experiments to be conducted at the Omega Facility during FY20 and FY21. After peer review by an independent proposal review committee for scientific and technical merit and the feasibility review by the Omega Facility team, NNSA selected 11 proposals for funding and Omega shot allocation with a total of 22.5 and 23.5 shot days for experiments in FY20 and FY21, respectively. During the first half of the FY20, LLE completed a one-time solicitation, review, and selection process for Academic and Industrial Basic Science (AIBS) experiments to utilize the remaining NLUF shot allocation in FY20–FY21. Ten new projects were selected for AIBS shot alloca- tion (a total of 11 and 10 shot days) for experiments staring in Q3FY20 and throughout FY21. FY20 was the first of a two-year period of performance for these 21 NLUF including AIBS projects (Table I). Fifteen NLUF and AIBS projects obtained a total of 232 target shots during FY20, which are summarized in this section. A critical part of the NNSA-supported NLUF program and the DOE Office of Fusion Energy Sciences (FES)-supported Laser- NetUS program is the education and training of graduate students in high-energy-density (HED) physics. In addition, graduate students can also access the Omega Laser Facility to conduct their theses research through collaborations with national labora- tories and LLE.
    [Show full text]
  • A Programmable Mode-Locked Fiber Laser Using Phase-Only Pulse Shaping and the Genetic Algorithm
    hv photonics Article A Programmable Mode-Locked Fiber Laser Using Phase-Only Pulse Shaping and the Genetic Algorithm Abdullah S. Karar 1,* , Raymond Ghandour 1 , Ibrahim Mahariq 1 , Shadi A. Alboon 1,2, Issam Maaz 1, Bilel Neji 1 and Julien Moussa H. Barakat 1 1 College of Engineering and Technology, American University of the Middle East, Kuwait; [email protected] (R.G.); [email protected] (I.M.); [email protected] (S.A.A.); [email protected] (I.M.); [email protected] (B.N.); [email protected] (J.M.H.B.) 2 Electronics Engineering Department, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid 21163, Jordan * Correspondence: [email protected] Received: 24 July 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: A novel, programmable, mode-locked fiber laser design is presented and numerically demonstrated. The laser programmability is enabled by an intracavity optical phase-only pulse shaper, which utilizes the same linearly chirped fiber Bragg grating (LC-FBG) from its two opposite ends to perform real-time optical Fourier transformation. A binary bit-pattern generator (BPG) operating at 20-Gb/s and producing a periodic sequence of 32 bits every 1.6 ns, is subsequently used to drive an optical phase modulator inside the laser cavity. Simulation results indicate stable programmable intensity profiles for each optimized user defined 32 code words. The laser operated in the self-similar mode-locking regime, enabling wave-breaking free operation. The programmable 32 bit code word targeting a specific intensity profile was determined using 100 generations of the genetic algorithm.
    [Show full text]
  • MRI-Guided Laser Ablation Surgery of Hypothalamic Hamartomas
    NEUROSURGERY MRI-Guided Laser Ablation Surgery of Hypothalamic Hamartomas HOW DOES THE TEAM DECIDE IF A PATIENT IS A CANDIDATE FOR MRI-GUIDED LASER ABLATION? A careful review of each patient’s medical records is the first step, including MR imaging of the brain and any applicable neurology or neurosurgery records. Patients with Hypothalamic Hamartomas (HH) typically have gelastic seizures, which are characterized by emotionless laughing, although variations including abnormal movements or staring spells are also common. Every patient’s case is handled individually, and it may be necessary for a patient to come to Texas Children’s Hospital for further testing to determine if they are a candidate for MRI-guided laser ablation surgery. WHAT HAPPENS DURING MRI-GUIDED LASER ABLATION SURGERY? After being placed under general anesthesia, a head frame, or a set of markers, is fitted to the patient’s skull. A CT scan is completed to orient the brain to the frame in 3 dimensions. With the help of computer software, a safe pathway that goes through the brain to the HH is calculated for the laser. The neurosurgeon then makes a small incision and drills a small hole through the skull (3.2 mm wide). The laser applicator, a small tube about the width of a strand of spaghetti, is inserted and guided through the brain into the HH. Once the laser applicator is inserted into the brain, the head frame is removed, and the patient is transported to the MRI scanner. After confirming proper placement of the laser applicator and setting safety markers, the surgeon performs a small test firing using the laser.
    [Show full text]
  • With Short Pulse • About 7% Coupling Significantly Less Than the Osaka Experiment
    Electron/proton generation from solid targets and applications Farhat Beg University of California, San Diego This work was performed under the auspices of the U.S. DOE under contracts No.DE-FG02-05ER54834, DE-FC0204ER54789 and DE-AC52-07NA27344. We greatly acknowledge support of Institute for Laser Science Applications, LLNL. Committee on Atomic, Molecular and Optical Sciences Meeting The National Academy of Sciences Washington DC, April 5, 2011 1 Summary ü Short pulse high intensity laser solid interactions create matter under extreme conditions and generate a variety of energetic particles. ü There are a number of applications from fusion to low energy nuclear reactions. 10 ns ü Fast Ignition Inertial Confinement Fusion is one application that promises high gain fusion. ü Experiments have been encouraging but point towards complex issues than previously anticipated. ü Recent, short pulse high intensity laser matter experiments show that low coupling could be due to: - prepulse - electron source divergence. ü Experiments on fast ignition show proton focusing spot is adequate for FI. However, conversion efficiency has to be increased. 2 Outline § Short Pulse High Intensity Laser Solid Interaction - New Frontiers § Extreme conditions with a short pulse laser § Applications § Fast Ignition - Progress - Current status § Summary Progress in laser technology 10 9 2000 Relativistic ions 8 Nonlinearity of 10 Vacuum ) Multi-GeV elecs. V 7 1990 Fast Ignition e 10 ( e +e- Production y 6 Weapons Physics g 10 Nuclear reactions r e 5 Relativistic
    [Show full text]
  • Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS and NANOSTRUCTURES
    Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS AND NANOSTRUCTURES Akos Veites Department of Chemistry, Institute for Proteomics Technology and Applications, The George Washington University, Washington DC 20052 1. INTRODUCTION In 1948, Ame Tiselius won the Nobel Prize in chemistry for the discovery of electrophoresis and its application to analyze large molecules, specifically complex serum proteins. During the following decades, gel electrophoresis and its derivative techniques became a central method for molecular biology. They allowed for the identification of molecular mass with an accuracy of ~1 kDa, i.e., a thousand atomic mass units. Although this method enabled the separation of thousands of proteins from biological samples, the determination of the actual molecular weight, and with it finding the true identity of many substances, remained unachievable. When it came to accurate mass determination of small molecules, mass spectrometry was the method of choice. However, for the accurate mass analysis of large molecules, their low volatility presented a fundamental obstacle. Typically, the larger the molecule, the harder it is to transfer it into the gas phase without degradation. Depositing the energy necessary for volatilization initiates other competing processes that elevate the internal energy of the adsorbate and results in its fragmentation. This competition between evaporation (or desorption) and fragmentation was recognized early on and the method of rapid heating was proposed to minimize the latter (Beuhler, et al., 1974). Lasers with submicrosecond pulse length were appealing tools for rapid heating but the initial results indicated limitations with respect to the ultimate size of the biomolecules (m/z < 1,500) that could 506 Laser Ablation and its Applications be successfully analyzed (Posthumus ,et al., 1978).
    [Show full text]
  • Laser Ablationablation
    LaserLaser AblationAblation FundamentalsFundamentals && ApplicationsApplications Samuel S. Mao Department of Mechanical Engineering Advanced Energy Technology Department University of California at Berkeley Lawrence Berkeley National Laboratory March 10, 2005 University of California at Berkeley Q Lawrence Berkeley National Laboratory LaserLaser AblationAblation What is “Laser Ablation”? Mass removal by coupling laser energy to a target material University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition substrate * oxide/superconductor films material * nanocrystals/nanotubes plume target mass spectrometer ) Materials characterization * semiconductor doping profiling plasma lens * solid state chemical analysis target optical spectrometer ) Micro structuring * direct wave guide writing * 3D micro fabrication microstructure target transparent solid University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er IsIs itit important?important? las ) Film deposition * oxide/superconductor films * nanocrystals/nanotubes ) Materials characterization * semiconductor doping profiling * solid state chemical analysis 100 µm ) Micro structuring * direct wave guide writing * 3D micro fabrication University of California at Berkeley Q Lawrence Berkeley National Laboratory ion lat ab er DoDo wewe reallyreally understand?understand? las laser beam “Laser ablation … is still largely unexplored at the plasma fundamental level.” J. C. Miller &
    [Show full text]
  • MRI-Guided Laser Ablation Surgery for Epilepsy
    MRI-Guided Laser Ablation Surgery for Epilepsy In August 2010, Texas Children’s Hospital became the first hospital in the world to use real-time MRI-guided thermal imaging and laser technology to destroy epilepsy-causing lesions in the brain that are too deep inside the brain to safely access with usual neurosurgical methods. To date, our team has performed more than 100 of these procedures on patients who have traveled to Houston and Texas Children’s from around the globe. This technology has become a standard of care and is now being used in many adult and pediatric centers across the United States. The advantages of the MRI-guided laser surgery procedure include: • A safer, significantly less-invasive alternative to open brain surgery with a craniotomy, which is the traditional technique used for the surgical treatment of epilepsy. • No hair is removed from the patient’s head. • Only a 3 mm opening is needed for the laser. It is closed with a single suture resulting in less scarring and pain for the patient. • A reduced risk of complications and a faster recovery time for the patient. Most patients are discharged the day after surgery. MRI-guided laser surgery is changing the face of epilepsy treatment and provides a life-altering option for many epilepsy surgery candidates. The benefits of this new approach in reducing risk and invasiveness may open the door for more epilepsy patients to see surgery as a viable treatment option. Epilepsy today • Approximately 1 in 10 people will have at least one seizure during their lifetime.
    [Show full text]
  • Laser Ablation Molecular Isotopic Spectrometry and Time-Resolved Laser- Induced Breakdown Spectroscopy: Implications for Planetary Exploration
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2585.pdf LASER ABLATION MOLECULAR ISOTOPIC SPECTROMETRY AND TIME-RESOLVED LASER- INDUCED BREAKDOWN SPECTROSCOPY: IMPLICATIONS FOR PLANETARY EXPLORATION. M. Konstantinidis1,2, E. A. Lalla1, G. Lopez-Reyes3, E. A. Lymer1, J. Freemantle1, M. G. Daly1. 1Department of Earth & Space Science & Engineering, Lassonde School of Engineering, York University, Toronto, Ontario, Canada, ([email protected]). 2Dalla Lana School of Public Health, University of Toronto, 155 College St. Toronto, Canada. 3Unidad Asociada Universidad de Valladolid-CSIC-CAB, C/Francisco Valles 8, 47151 Boecillo, Valladolid, Spain Introduction: The LIBS Raman Sensor (LiRS) capabilities are particularly important features for the instrument [1,2] is a breadboard design for future identification and possible quantification of isotopes – planetary exploration missions. It features two laser Carbon-12 (12C) and Carbon-13 (13C). sources – 1064 nm for Laser-induced Breakdown LAMIS: Laser Ablation Molecular Isotopic Spectroscopy (LIBS), and 266 nm for Raman Spectrometry (LAMIS) is a form of spectrometry by Spectroscopy, Laser-induced Fluorescence which laser-induced plasma emissions can be used for Spectroscopy (LIF), and Time-resolved LIF (TR-LIF). isotopic inferences. The characterization of isotopic These combined techniques allow for an in-depth behaviours is based on isotopic shifts (isotopologues) geochemical and biochemical characterization of from molecular emissions due to the association of free surface and sub-surface samples both in situ and for molecules in the “plasma afterglow” [4]. By quantifying sample return missions similar to OSIRIS-REx and the spectral intensity and shift, it is possible to estimate Mars2020. In particular, the LiRS instrument has been the relative abundance between elemental isotopes (e.g., found to provide 1) elemental identification, 2) 13C/12C).
    [Show full text]
  • Dynamics of a Passively Mode-Locked Fiber Laser Containing a Long-Period Fiber Grating
    Dynamics of a Passively Mode-Locked Fiber Laser containing a Long-Period Fiber Grating by Abdullah S. Karar A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment of the requirements for the degree of Master of Applied Science Ottawa-Carleton Institute for Electrical and Computer Engineering Department of. Electronics Carleton University Ottawa, Ontario, Canada September 2007 Copyright © 2007 - Abdullah S. Karar Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliotheque et Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-33654-0 Our file Notre reference ISBN: 978-0-494-33654-0 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these.
    [Show full text]
  • Advantages of Surface Ablation in Excimer Laser Surgery
    Ophthalmology Research: An International Journal 11(3): 1-7, 2019; Article no.OR.53619 ISSN: 2321-7227 Advantages of Surface Ablation in Excimer Laser Surgery Fouad Chraibi1* 1University Hospital Hassan II of Fez, Sidi Mohamed Ben Abdellah University, Fez, Morocco. Author’s contribution The sole author designed, analysed, interpreted and prepared the manuscript. Article Information DOI: 10.9734/OR/2019/v11i330130 Editor(s): (1) Dr. Kota V. Ramana, Professor, Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, USA. Reviewers: (1) Marwa Mahmoud Abdellah, Sohag University, Egypt. (2) Asaad Ahmed Ghanem, Mansoura University, Egypt. Complete Peer review History: http://www.sdiarticle4.com/review-history/53619 Received 27 October 2019 Accepted 02 January 2020 Review Article Published 14 January 2020 ABSTRACT In this article, we review the advantages of corneal laser surface surgery to explain the current trend toward this technique. The excimer laser in corneal surface surgery can be used for two reasons. On the one hand, to correct a refractive error by photorefractive keratectomy (PRK) and its two variants; Laser epithelial keratomileusis (LASEK) and Epithelial Laser-assisted in situ keratomileusis (Epi-lasik). On the other hand, it is used to perform superficial corneal capacities photoablation, among other uses, by Phototherapeutic keratectomy (PTK). PRK is regaining popularity thanks to its better safety profile, mitomycin C usage and improvement of photoablation profiles. Lasek and Epilasik are less frequently performed nowadays. PTK is an important element in the techniques used to improve visual acuity in a wide range of corneal conditions such as corneal scars, recurrent erosion syndrome and corneal dystrophies.
    [Show full text]
  • LEVEL LASER Therapy CLINICAL EVIDENCE Content
    LOW - LEVEL LASER THeraPY CLINICAL EVIDENCE CONTENT 1. Low-Level Laser Therapy in Rehabilitation 4 Additive effects of low-level laser therapy with exercise on subacromial syndrom: A randomised, double-blind, controlled trial 4 Efficacy of low-level laser therapy in the management of neck pain: A systematic review and meta-analysis of randomised placebo or active-treatment controlled trials 5 Evaluation of low-level therapy effectiveness on the pain and masticatory performance of patients with myofascial pain 6 A randomised, placebo controlled trial of low-level laser therapy for activated achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations 7 Effect of low–level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation 8 Effectiveness of physiotherapy and GaAIAs laser in the management of temporomandibular joint disorders 9 Evaluation of low-level laser therapy in TMD patients – A case report 10 A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders 11 Role of low-level laser therapy in neurorehabilitation 12 2. Low-Level Laser Therapy in Dermatology 13 Low-level laser therapy in skin – Stimulating, Healing, Restoring 13 Low-level laser therapy – A conservative approach to the burn scar 14 Prophylactic low-level light therapy for the treatment of hypertrophic scars and keloids – A case series 15 Effects of low–level laser therapy on the progress of wound healing in humans: The contribution of in vitro and in vivo experimental studies 16 Effect of laser phototherapy on reccuring herpes labialis prevention – An in vivo study 17 Blue and red light combination led phototherapy for acne vulgaris in patients with skin phototype IV 18 Helium-neon laser irradiaton stimulates migration and proliferation in melanocytes and induces repigmentation in segmental – type vitiligo 20 The use of laser acupuncture for the treatment of neurogenic pruritus in a child – A case history 21 3.
    [Show full text]
  • Excimer Laser Ablation – a Novel Patterning Solution for Advanced Packaging
    EXCIMER LASER ABLATION – A NOVEL PATTERNING SOLUTION FOR ADVANCED PACKAGING Ralph Zoberbier SUSS MicroTec Lithography GmbH | Germany Habib Hichri SUSS MicroTec Photonic Systems Inc | USA Published in the SUSS report V1 06/2015 E-mail: [email protected] www.SUSS.com EXCIMER LASER ABLATION – A NOVEL PATTERNING SOLUTION FOR ADVANCED PACKAGING Ralph Zoberbier SUSS MicroTec Lithography GmbH, Schleissheimer Str. 90, 85748 Garching, Germany Habib Hichri SUSS MicroTec Photonic Systems Inc. 220 Klug Circle, Corona, CA 92880-5409, USA INTRODUCTION EXCIMER LASER ABLATION Photolithography has long been the key TECHNOLOGY patterning technology for structuring organic Excimer laser ablation is a dry patterning pro- materials used in advanced packaging appli- cess, breaking a material’s molecular structure cations like fl ip-chip wafer bumping, electro- and directly etching the desired circuit pattern to plated gold, solder bumps, copper pillar tech- clearly defi ned depths on the substrate, with mi- nologies and redistribution layers. Nowadays, nimal heat affected zone (HAZ). This patterning proximity exposure technologies (mask aligner) technology uses the advantage of the excimer or projection lithography (step and repeat or laser source to emit high energy pulses at projection scanning) are the typical choices short wavelengths. The short wavelength out- to create the features. The continuous trend put on the one hand enables the imaging of of the miniaturization, increasing performance small features but also supports absorption and mobility of electronic devices drive the in many different materials. Depending on the requirements of the chip itself but also its material each laser pulse removes a certain package type. More and more, the photolitho- amount of material.
    [Show full text]