Nuclear Thermal Propulsion and Power

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Thermal Propulsion and Power Nuclear Thermal Propulsion (NTP) and Power National Aeronautics and Space Administration A New Capability for Outer Planet Science and Exploration • Imagine Cassini class missions to the outer solar system • Curiosity class rover possible on Triton • Shortened trip times • NTP enables approximately 5X the payload capability to the outer planets than SLS only or SLS with solid motor upperstage Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune • No gravity assist required • Allows orbit capture in the outer solar system NTP for Departure to Outer Planets (S, U, N, P) with SLS 30 6000 Why NTP? Fission products produced in one week Faster 25 5000 at a LEU university research reactor = 107 Current NTP systems can 1 entire Roundtrip Mars mission using NTP Sails Unproven Technology (TRL 1–3) 20 Pluto Trip Time 4000 Demonstrated Technology (TRL 4–6) Neptune Trip Time be designed to use Low 106 Uranus Trip Time Operational Systems (TRL 7–9) Saturn Trip Time Antimatter Pluto Payload Enriched Uranium (LEU) Continuous Fusion 15 Neptune Payload 3000 5 Uranus Payload 10 (yrs) Time Trip Saturn Payload Pulsed Fusion Neptune w/Var. C3 with minimal (or no) SLS-ony cases 10 2000 (kg) Approximate Payload Ultra-high SLS w/Star 63F 4 Electro- αPlasma Pulsed Fission/Fusion 10 static impact on performance. Electro- Pulsed Fission Specic Impulse (sec) magnetic 5 1000 Nuclear Thermal Past NTP systems used 103 Electrothermal Laser Solar Thermal Propulsion (NTP) Farther Fission Chemical Rockets 0 0 Highly Enriched Uranium 100 105 110 115 120 125 130 135 140 145 150 155 102 10-5 10-4 10-3 10-2 10-1 1 10 102 Departure C3 (km2/s2) (HEU) requiring Vehicle Acceleration or T/W Ratio (g’s) S U N P maximum security. The use of LEU reduces cost, The robustness supported by NTP’s higher performance enables NTP SLS Combination Provides New Capability programmatic exibility and increases probability of mission success. lowers the risk and should dramatically for Science at the Ice Giants and Beyond decrease the regulatory burden. How Best to Use NTP Ground Rules & Assumptions 7.5 m 20 • Direct ight to target planets Space Launch System Configurations 19 18 • NTP engine (3.5 mT engine mass, 850 sec Isp, 25,000 lbf thrust, LH propellant) 2 !"#$%& ',,*+& '(.*+& ',-*+& '()*+& • All Earth Departures take place from a C3 = –10 km2/s2 6 m 2 2 !"#$%&'()*+,'-./,01 • SLS to C3 = –10 km /s : 42.8 mt B$8<0+/">' 9"+7*'F"8+8$7 9"+7*'F"8+8$7 C+8*$ -,"70'(;"A,0+ 6@A>*+",8*$' 6@A>*+",8*$' :$,0+81'9+.*70$8% BAA0+'-,"70 BAA0+'-,"70 2.7 m • Length in 62.7ft SLS fairing for S/C: 17.8 m E+*A#>/8*$'-,"70 !"#$%&'D0&8%>0 :$,0+/,"70 :$,0+/,"70 19.1 m 2 2 -,"70'(;"A,0+ + • Falcon Heavy to C3 = –10 km /s : 15 mt 9*+0'-,"70 9*+0'-,"70 9*+0'-,"70 4.2 m • Length in 13.1m FH fairing for S/C: <13 m • NTP is dropped off after departure burn 2.7 m -*>8; -*>8; 2*%?0, 2*%?0, (;<"$%0; • Captures at outer planets are into elliptical orbits with apoapses at moons’ distances =**/,0+/ =**/,0+/ =**/,0+/ Payload Envelope 2 m 2-345'6$78$0/ • Capture is done with storable prop (Isp = 320 sec) 5 4 3 2 1 0 -1 -2 -3 -4 -5 /0/*12345*9 /0/*12345*91*68": /0/*12345*91*678$3 /0/*12345*,*678$3 !!!"#$%$"&'()%*% Conguration – SLS 1B (8.4-m fairing) • SLS + SRM comparison case done with a STAR 63F-derived motor (Isp = 295 sec) Current NTP Project Partners On-going Work FY16 FY17 FY18 FY19 AMA, Inc. NASA Glenn Research Center System The goal of the current Feasibility Idaho National Lab Analysis NTP project is to Aerojet BWXT Rocketdyne determine the feasibility Technologies Oak Ridge and affordability of a Fuel Element National Lab Development The University of Low Enriched Uranium and Testing Alabama in Huntsville NASA Marshall Los Alamos Space Flight Center (LEU)-based NTP engine National Lab Project Lead with solid cost and NASA Stennis Space Center Exhaust Capture Dynetics schedule condence. NASA Center Analysis and Aerojet Testing Rocketdyne Academia Industry Other Gov’t Agency Other Future Possibilities “Specic investments include development of… • Using NTP for braking at mission destination using advancements rapid transit nuclear thermal propulsion technology in Cryogenic Fluid Management utilizing low-enriched uranium that could potentially • NTP reactor providing multiple kWe electric power for entire mission provide 20 percent shorter travel time to Mars while • Other potential users showing interest substantially improving mission exibility.” G-366385 www.nasa.gov.
Recommended publications
  • Aerospace Engine Data
    AEROSPACE ENGINE DATA Data for some concrete aerospace engines and their craft ................................................................................. 1 Data on rocket-engine types and comparison with large turbofans ................................................................... 1 Data on some large airliner engines ................................................................................................................... 2 Data on other aircraft engines and manufacturers .......................................................................................... 3 In this Appendix common to Aircraft propulsion and Space propulsion, data for thrust, weight, and specific fuel consumption, are presented for some different types of engines (Table 1), with some values of specific impulse and exit speed (Table 2), a plot of Mach number and specific impulse characteristic of different engine types (Fig. 1), and detailed characteristics of some modern turbofan engines, used in large airplanes (Table 3). DATA FOR SOME CONCRETE AEROSPACE ENGINES AND THEIR CRAFT Table 1. Thrust to weight ratio (F/W), for engines and their crafts, at take-off*, specific fuel consumption (TSFC), and initial and final mass of craft (intermediate values appear in [kN] when forces, and in tonnes [t] when masses). Engine Engine TSFC Whole craft Whole craft Whole craft mass, type thrust/weight (g/s)/kN type thrust/weight mini/mfin Trent 900 350/63=5.5 15.5 A380 4×350/5600=0.25 560/330=1.8 cruise 90/63=1.4 cruise 4×90/5000=0.1 CFM56-5A 110/23=4.8 16
    [Show full text]
  • Constellation Program Overview
    Constellation Program Overview October 2008 hris Culbert anager, Lunar Surface Systems Project Office ASA/Johnson Space Center Constellation Program EarthEarth DepartureDeparture OrionOrion -- StageStage CrewCrew ExplorationExploration VehicleVehicle AresAres VV -- HeavyHeavy LiftLift LaunchLaunch VehicleVehicle AltairAltair LunarLunar LanderLander AresAres II -- CrewCrew LaunchLaunch VehicleVehicle Lunar Capabilities Concept Review EstablishedEstablished Lunar Lunar Transportation Transportation EstablishEstablish Lunar Lunar Surface SurfaceArchitecturesArchitectures ArchitectureArchitecture Point Point of of Departure: Departure: StrategiesStrategies which: which: Satisfy NASA NGO’s to acceptable degree ProvidesProvides crew crew & & cargo cargo delivery delivery to to & & from from the the Satisfy NASA NGO’s to acceptable degree within acceptable schedule moonmoon within acceptable schedule Are consistent with capacity and capabilities ProvidesProvides capacity capacity and and ca capabilitiespabilities consistent consistent Are consistent with capacity and capabilities withwith candidate candidate surface surface architectures architectures ofof the the transportation transportation systems systems ProvidesProvides sufficient sufficient performance performance margins margins IncludeInclude set set of of options options fo for rvarious various prioritizations prioritizations of cost, schedule & risk RemainsRemains within within programmatic programmatic constraints constraints of cost, schedule & risk ResultsResults in in acceptable
    [Show full text]
  • 6. Chemical-Nuclear Propulsion MAE 342 2016
    2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20
    [Show full text]
  • Enhancement of Volumetric Specific Impulse in HTPB/Ammonium Nitrate Mixed
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 12-2016 Enhancement of Volumetric Specific Impulse in TPB/H Ammonium Nitrate Mixed Hybrid Rocket Systems Jacob Ward Forsyth Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Propulsion and Power Commons Recommended Citation Forsyth, Jacob Ward, "Enhancement of Volumetric Specific Impulse in TPB/AmmoniumH Nitrate Mixed Hybrid Rocket Systems" (2016). All Graduate Plan B and other Reports. 876. https://digitalcommons.usu.edu/gradreports/876 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ENHANCEMENT OF VOLUMETRIC SPECIFIC IMPULSE IN HTPB/AMMONIUM NITRATE MIXED HYBRID ROCKET SYSTEMS by Jacob W. Forsyth A report submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Aerospace Engineering Approved: ______________________ ____________________ Stephen A. Whitmore Ph.D. David Geller Ph.D. Major Professor Committee Member ______________________ Rees Fullmer Ph.D. Committee Member UTAH STATE UNIVERSITY Logan, Utah 2016 ii Copyright © Jacob W. Forsyth 2016 All Rights Reserved iii ABSTRACT Enhancement of Volumetric Specific Impulse in HTPB/Ammonium Nitrate Mixed Hybrid Rocket Systems by Jacob W. Forsyth, Master of Science Utah State University, 2016 Major Professor: Dr. Stephen A. Whitmore Department: Mechanical and Aerospace Engineering Hybrid rocket systems are safer and have higher specific impulse than solid rockets. However, due to large oxidizer tanks and low regression rates, hybrid rockets have low volumetric efficiency and very long longitudinal profiles, which limit many of the applications for which hybrids can be used.
    [Show full text]
  • Silencing Nasa's Space Shuttle Crawler
    SILENCING NASA’S SPACE SHUTTLE CRAWLER TRANSPORTER R. MacDonalda, C. Faszerb, and R. Margasahayamc aNoise Solutions Inc., #310 605 – 1st Street SW, Calgary, Alberta, Canada T2P 3S9 bFaszer Farquharson & Associates, #304 605 – 1st Street SW, Calgary, Alberta, Canada T2P 3S9 cNASA, John F. Kennedy Space Center, Florida, United States of America 32899 [email protected]; [email protected]; [email protected] Abstract. The crawler transporter (CT) is the world’s second largest known tracked vehicle, weighing 6 million pounds with a length of 131 feet and a width of 113 feet. The Kennedy Space Center (KSC) has two CTs that were designed and built for the Apollo program in the 1960’s, maintained and retrofitted for use in the Space Shuttle program. As a key element of the Space Shuttle ground systems, the crawler transports the entire 12-million-pound stack comprising the orbiter, the mobile launch platform (MLP), the external tank (ET), and the solid rocket boosters (SRB) from the Vehicle Assembly Building (VAB) to the launch pad. This rollout, constituting a 3.5 to 5.0 mile journey at a top speed of 0.9 miles-per-hour, requires over 8 hours to reach either Launch Complex 39A or B. This activity is only a prelude to the spectacle of sound and fury of the Space Shuttle launch to orbit in less than 10 minutes and traveling at orbital velocities of Mach 24. This paper summarizes preliminary results from the Crawler Transporter Sound Attenuation Study, encompassing test and engineering analysis of significant sound sources to measure and record full frequency spectrum and intensity of the various noise sources and to analyze the potential for noise mitigation.
    [Show full text]
  • An Investigation of the Performance Potential of A
    AN INVESTIGATION OF THE PERFORMANCE POTENTIAL OF A LIQUID OXYGEN EXPANDER CYCLE ROCKET ENGINE by DYLAN THOMAS STAPP RICHARD D. BRANAM, COMMITTEE CHAIR SEMIH M. OLCMEN AJAY K. AGRAWAL A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Aerospace Engineering and Mechanics in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2016 Copyright Dylan Thomas Stapp 2016 ALL RIGHTS RESERVED ABSTRACT This research effort sought to examine the performance potential of a dual-expander cycle liquid oxygen-hydrogen engine with a conventional bell nozzle geometry. The analysis was performed using the NASA Numerical Propulsion System Simulation (NPSS) software to develop a full steady-state model of the engine concept. Validation for the theoretical engine model was completed using the same methodology to build a steady-state model of an RL10A-3- 3A single expander cycle rocket engine with corroborating data from a similar modeling project performed at the NASA Glenn Research Center. Previous research performed at NASA and the Air Force Institute of Technology (AFIT) has identified the potential of dual-expander cycle technology to specifically improve the efficiency and capability of upper-stage liquid rocket engines. Dual-expander cycles also eliminate critical failure modes and design limitations present for single-expander cycle engines. This research seeks to identify potential LOX Expander Cycle (LEC) engine designs that exceed the performance of the current state of the art RL10B-2 engine flown on Centaur upper-stages. Results of this research found that the LEC engine concept achieved a 21.2% increase in engine thrust with a decrease in engine length and diameter of 52.0% and 15.8% respectively compared to the RL10B-2 engine.
    [Show full text]
  • Propulsione Aeronautica 2020/2021 Francesco Barato
    PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO MATERIALE DI SUPPORTO FONDAMENTI DI PROPULSIONE AERONAUTICA Thrust 푇 = (푚̇ 푎 + 푚̇ 푓)푉푒 − 푚̇ 푎푉0 + (푝푒 − 푝푎)퐴푒 푇 ≈ 푚̇ 푎(푉푒 − 푉0) + (푝푒 − 푝푎)퐴푒 1 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Ramjet P-270 Moskit (left), BrahMos (right) Turboramjet Pratt & Whitney J-58 turbo(ram)jet 2 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Scramjet 3 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Specific impulse 푇 푉푒 푇 푚̇ 푝 푉푒 − 푉0 퐼푠푝 = = [푠] 푟표푐푘푒푡푠 퐼푠푝 = = [푠] 푎푟 푏푟푒푎푡ℎ푛푔 푚̇ 푝푔0 푔0 푚̇ 푓푔0 푚̇ 푓 푔0 4 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Propulsive efficiency Overall efficiency Overall efficiency with Mach number 5 PROPULSIONE AERONAUTICA 2020/2021 FRANCESCO BARATO Engine bypass ratios Bypass Engine Name Major applications ratio turbojet early jet aircraft, Concorde 0.0 SNECMA M88 Rafale 0.30 GE F404 F/A-18, T-50, F-117 0.34 PW F100 F-16, F-15 0.36 Eurojet EJ200 Typhoon 0.4 Klimov RD-33 MiG-29, Il-102 0.49 Saturn AL-31 Su-27, Su-30, J-10 0.59 Kuznetsov NK-144A Tu-144 0.6 PW JT8D DC-9, MD-80, 727, 737 Original 0.96 Soloviev D-20P Tu-124 1.0 Kuznetsov NK-321 Tu-160 1.4 GE Honda HF120 HondaJet 2.9 RR Tay Gulfstream IV, F70, F100 3.1 GE CF6-50 A300, DC-10-30,Lockheed C-5M Super Galaxy 4.26 PowerJet SaM146 SSJ 100 4.43 RR RB211-22B TriStar 4.8 PW PW4000-94 A300, A310, Boeing 767, Boeing 747-400 4.85 Progress D-436 Yak-42, Be-200, An-148 4.91 GE CF6-80C2 A300-600, Boeing 747-400, MD-11, A310 4.97-5.31 RR Trent 700 A330 5.0 PW JT9D Boeing 747, Boeing 767, A310, DC-10 5.0 6 PROPULSIONE
    [Show full text]
  • Basic Analysis of a LOX/Methane Expander Bleed Engine
    DOI: 10.13009/EUCASS2017-332 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) DOI: ADD DOINUMBER HERE Basic Analysis of a LOX/Methane Expander Bleed Engine ? ? ? Marco Leonardi , Francesco Nasuti † and Marcello Onofri ?Sapienza University of Rome Via Eudossiana 18, Rome, Italy [email protected] [email protected] [email protected] · · †Corresponding author Abstract As present trends in rocket engine development recommend overall simplicity and reliability as the main design driver, while preserving high performance, expander cycle engines based on the oxygen-methane pair have been considered as a possible upper stage option. A closed expander cycle is considered for Vega Evolution upper stage, while there are no studies published in the literature on methane-based expander bleed cycles. A basic cycle analysis is presented to evaluate the performance of an oxygen/methane ex- pander bleed cycle for an engine of 100 kN thrust class. Results show the feasibility of the system and its peculiarities with respect to the better known expander bleed cycle based on hydrogen. 1. Introduction The high chamber pressure required to achieve high specific impulse in liquid propellant rocket engines (LRE), has been efficiently obtained by pump-fed systems. Different solutions have been proposed since the beginning of space age and just a few of them has found its own field of application. In these systems the pumps are driven by gas turbines whose power comes from two possible sources: combustion or cooling system. The different needs for the specific applications (booster, sustainer or upper stage of different classes of rockets) led to classify pump-fed LRE systems in open and closed cycles, which differ because of turbine discharge pressure.14, 16 Closed cycles are those providing the best performance because the whole propellant mass flow rate is exploited in the main chamber.
    [Show full text]
  • Space Shuttle Main Engine Orientation
    BC98-04 Space Transportation System Training Data Space Shuttle Main Engine Orientation June 1998 Use this data for training purposes only Rocketdyne Propulsion & Power BOEING PROPRIETARY FORWARD This manual is the supporting handout material to a lecture presentation on the Space Shuttle Main Engine called the Abbreviated SSME Orientation Course. This course is a technically oriented discussion of the SSME, designed for personnel at any level who support SSME activities directly or indirectly. This manual is updated and improved as necessary by Betty McLaughlin. To request copies, or obtain information on classes, call Lori Circle at Rocketdyne (818) 586-2213 BOEING PROPRIETARY 1684-1a.ppt i BOEING PROPRIETARY TABLE OF CONTENT Acronyms and Abbreviations............................. v Low-Pressure Fuel Turbopump............................ 56 Shuttle Propulsion System................................. 2 HPOTP Pump Section............................................ 60 SSME Introduction............................................... 4 HPOTP Turbine Section......................................... 62 SSME Highlights................................................... 6 HPOTP Shaft Seals................................................. 64 Gimbal Bearing.................................................... 10 HPFTP Pump Section............................................ 68 Flexible Joints...................................................... 14 HPFTP Turbine Section......................................... 70 Powerhead...........................................................
    [Show full text]
  • Handout – Innovative Business Agreements and Related Cost
    MG-4 - Innovative Business Agreements and Related Cost & Pricing Methods at NASA in Support of New Commercial Programs Kennedy Space Center - CFO Business & Cost Assessment Office Innovative Business Agreements and Related Cost & Pricing Methods at NASA in Support of New Commercial Programs JIM ROBERTS & TERRY LAMBING NASA Kennedy Space Center Office of the CFO ICEAA National Conference June 2014 Kennedy Space Center - CFO Business & Cost Assessment Office Background.. • Immediately after Shuttle retirement decision in 2004, transition planning for NASA’s facilities was begun. • In April 2010 President Obama delivered a speech at Kennedy Space Center in which he outlined his new vision for the U.S. space program. Emphasis was placed on enabling the exploration of Space by Commercial entities instead of by Government. • The Constellation Program - which was to fill the void of the retiring Space Shuttle Program - was cancelled. • Facilities no longer needed for remaining NASA programs were identified, and NASA Centers were charged with leveraging value of underutilized property through initiatives such as out-leasing. • Focus was placed on development of Commercial Business Partnerships to enable commercial space activities using unused or available facilities and launch infrastructure. 5/23/2014 2 1 ICEAA 2014 Professional Development & Training Workshop MG-4 - Innovative Business Agreements and Related Cost & Pricing Methods at NASA in Support of New Commercial Programs Kennedy Space Center - CFO Business & Cost Assessment Office Kennedy
    [Show full text]
  • NASA Begins Engine Test Project for Space Launch System Rocket 21 July 2014, by Rachel Kraft
    NASA begins engine test project for space launch system rocket 21 July 2014, by Rachel Kraft shuttle," said Steve Wofford, SLS Liquid Engines Element manager. "This testing will confirm the RS-25 will be successful at powering SLS." Early tests on the engine will collect data on the performance of its new advanced engine controller and other modifications. The controller regulates valves that direct the flow of propellant to the engine, which determines the amount of thrust generated during an engine test, known as a hotfire test. In flight, propellant flow and engine thrust determine the speed and trajectory of a spacecraft. The controller also regulates the engine startup sequence, which is especially important on an engine as sophisticated as the RS-25. Likewise, the controller determines the engine shutdown sequence, ensuring it will proceed properly under RS-25 rocket engine No. 0525 is positioned onto the A-1 both normal and emergency conditions. Test Stand at NASA’s Stennis Space Center in Mississippi in preparation for a series of developmental "Installation of RS-25 engine No. 0525 signals the tests. Credit: NASA launch of another major rocket engine test project for human space exploration on the A-1 Test Stand," said Gary Benton, RS-25 rocket engine test project manager at Stennis. (Phys.org) —Engineers have taken a crucial step in preparing to test parts of NASA's Space Launch The SLS is designed to carry astronauts in NASA's System (SLS) rocket that will send humans to new Orion spacecraft deeper into space than ever destinations in the solar system.
    [Show full text]
  • Rocket Basics 1: Thrust and Specific Impulse
    4. The Congreve Rocket ROCKET BASICS 1: THRUST AND SPECIFIC IMPULSE In a liquid-propellant rocket, a liquid fuel and oxidizer are injected into the com- bustion chamber where the chemical reaction of combustion occurs. The combustion process produces hot gases that expand through the nozzle, a duct with the varying cross section. , In solid rockets, both fuel and oxidizer are combined in a solid form, called the grain. The grain surface burns, producing hot gases that expand in the nozzle. The rate of the gas production and, correspondingly, pressure in the rocket is roughly proportional to the burning area of the grain. Thus, the introduction of a central bore in the grain allowed an increase in burning area (compared to “end burning”) and, consequently, resulted in an increase in chamber pressure and rocket thrust. Modern nozzles are usually converging-diverging (De Laval nozzle), with the flow accelerating to supersonic exhaust velocities in the diverging part. Early rockets had only a crudely formed converging part. If the pressure in the rocket is high enough, then the exhaust from a converging nozzle would occur at sonic velocity, that is, with the Mach number equal to unity. The rocket thrust T equals PPAeae TmUPPAmUeeae e mU eq m where m is the propellant mass flow (mass of the propellant leaving the rocket each second), Ue (exhaust velocity) is the velocity with which the propellant leaves the nozzle, Pe (exit pressure) is the propellant pressure at the nozzle exit, Pa (ambient 34 pressure) is the pressure in the surrounding air (about one atmosphere at sea level), and Ae is the area of the nozzle exit; Ueq is called the equivalent exhaust velocity.
    [Show full text]