Reactivity Parameters for Nitrogen Nucleophiles: from the Alpha-Effect

Total Page:16

File Type:pdf, Size:1020Kb

Reactivity Parameters for Nitrogen Nucleophiles: from the Alpha-Effect Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Reactivity Parameters for Nitrogen Nucleophiles: From the α-Effect to Applications as Organocatalysts and Photo-leaving Groups Tobias Alexander Nigst aus Freising 2012 Erklärung Diese Dissertation wurde im Sinne von §7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Herbert Mayr betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 03.09.2012 ………………………………… Tobias Alexander Nigst Dissertation eingereicht am 14.09.2012 1. Gutachter Prof. Dr. Herbert Mayr 2. Gutachter Prof. Dr. Hendrik Zipse Mündliche Prüfung am 11.10.2012 FÜR MEINE ELTERN Danksagung Danksagung In erster Linie möchte ich mich herzlich bei Prof. Dr. Herbert Mayr dafür bedanken, dass er mir die Möglichkeit zur Durchführung meiner Arbeit auf so interessanten wie auch diversen Themengebieten gegeben hat. Seine beispielhafte Betreuung durch geduldige Hilfs- und Diskussionsbereitschaft sowie die exzellenten Arbeitsbedingungen haben maßgeblich zum Gelingen dieser Arbeit beigetragen. Besonderer Dank gilt Dr. Andrew Smith für die Möglichkeit drei Monate in seinen Laboren in St. Andrews forschen zu dürfen und dabei ein völlig anderes Arbeitsgebiet kennenzulernen. Seinen Mitarbeitern, besonders Dr. Caroline Joannesse und Dr. Eoin Gould danke ich für die überaus freundliche Aufnahme in die Gruppe, ihre Kollegialität und Hilfsbereitschaft. Mit freudigen Erinnerungen blicke ich auf die schöne Zeit zurück, in der ich so viel erleben durfte. Dem Fonds der Chemischen Industrie gebührt mein Dank für die zweijährige Finanzierung meiner Doktorarbeit. Weiterhin ermöglichte mir dieses Stipendium meinen Auslandsaufenthalt in Schottland und die Teilnahme an internationalen Konferenzen. Ich danke allen Mitgliedern des Prüfungsausschusses für ihre Teilnahmebereitschaft, besonders auch Prof. Dr. Hendrik Zipse für die Übernahme des Zweitgutachtens, sowie für seine hilfreichen Anregungen auf dem Gebiet der Pyridinkatalyse. Bei Dr Armin Ofial möchte ich für die kritische Durchsicht meiner Publikationen und die hilfreichen Verbesserungsvorschläge bedanken. Besonderer Dank gilt auch allen aktuellen und ehemaligen Mitgliedern des Arbeitskreises, vor allem den Kollegen aus meinem Labor, Johannes Ammer, Dominik Allgäuer, Dr. Wei Han, Dr. Jan Keller, Dr. Jörg Lippstreu, Dr. Dorothea Richter, Dr. Nicolas Streidl, Konstantin Troshin, Alexander Wagner und besonders meinem Mentor im Forschungspraktikum Dr. Martin Westermaier. Dank Danksagung der angenehmen Arbeitsatmosphäre und der zahlreichen gemeinsamen Aktivitäten innerhalb sowie außerhalb der Universität wird mir die gemeinsame Zeit in schöner Erinnerung bleiben. Mögen die entstanden Freundschaften noch lange fortbestehen. Erik Breuer, Nathalie Hampel, Brigitte Janker und Hildegard Lipfert danke ich für die übernommenen organisatorischen Angelegenheiten sowie für bedachte Ratschläge und Hilfestellungen bei so manchen nicht trivialen Synthesen. Meinem Forschungspraktikant, Andreas Maier, danke ich für die überaus erfolgreiche Zusammenarbeit die seinem großen Engagement bei den durchgeführten Experimenten zu verdanken ist. Mögen sich viele deiner Schüler dich zum Vorbild nehmen. Für die sorgfältige und zügige Durchsicht dieser Arbeit danke ich Johannes Ammer, Dr. Jörg Bartl, Dominik Allgäuer, Dr. Saloua Chelli, Francisco Corral, Hans Laub, Konstantin Troshin, Alexander Wagner und Elija Wiedemann. Weiterhin möchte ich mich bei meinen Kooperationspartnern Johannes Ammer, Anna Antipova, Dr. Caroline Joannesse, Lydia Klier und ihrem Doktorvater Prof. Dr. Paul Knochel sowie Raman Tandon und seinem Doktorvater Prof. Dr. Hendrik Zipse erkenntlich zeigen für die Hilfsbereitschaft bei der Planung der Experimente und der Interpretation der Ergebnisse, ohne die ein großer Teil dieser Arbeit nicht zustande gekommen wäre. Zuletzt möchte ich mich bei all meinen Freunden sowie bei meiner Familie bedanken, in erster Linie Michael und Iris, die mit mir nicht nur die schönen Augenblicke genießen konnten, sondern mich auch in so manchen schwierigen Zeiten ertragen mussten. Der größte Dank gebührt sicherlich meinen Eltern. Ihre steten Ermutigungen, der grenzenlose Rückhalt, sowie ihre immerwährende Unterstützung haben mir das Studium und die Promotion erst ermöglicht. Publikationsverzeichnis und Konferenzbeiträge Publikationsverzeichnis [1] Spectroscopic and structural characterization of cationic N-(2-aminoethyl)- aziridine-N,N’ chelate complexes of the d6-metals Rh(III) and Ir(III) R. Bobka, J. N. Roedel, B. Neumann, T. Nigst, I.-P. Lorenz, Polyhedron 2008, 27, 955– 961 [2] Nucleophilic Reactivities of Pyrroles T. A. Nigst, M. Westermaier, A. R. Ofial, H. Mayr in Eur. J. Org. Chem. 2008, 2369– 2374 (Titelbild) [3] Nucleophilic Reactivities of Primary and Secondary Amines in Acetonitrile T. Kanzian, T. A. Nigst, A. Maier, S. Pichl, H. Mayr, Eur. J. Org. Chem. 2009, 6379– 6385 [4] Nucleophilicities and Lewis Basicities of Isothiourea Derivatives B. Maji, C. Joannesse, T. A. Nigst, A. D. Smith, H. Mayr, J. Org. Chem. 2011, 76, 5104–5112 [5] Ambident Reactivities of Methylhydrazines [Ambidente Reaktivität von Methylhydrazinen] T. A. Nigst, J. Ammer, H. Mayr, Angew. Chem. 2012, 124, 1381–1385; Angew. Chem. Int. Ed. 2012, 51, 1353–1356 (VIP) [6] Isothiourea-Mediated Asymmetric O- to C-Carboxyl Transfer of Oxazolyl Carbonates: Structure-Selectivity Profiles and Mechanistic Studies C. Joannesse, C. P. Johnston, L. C. Morrill, P. A. Woods, M. Kieffer, T. A. Nigst, H. Mayr, T. Lebl, D. Philp, R. A. Bragg, A. D. Smith, Chem. Eur. J. 2012, 18, 2398–2408 [7] Lewis Acid-Triggered Selective Zincation of Chromones, Quinolones, and Thiochromones: Application to the Preparation of Natural Flavones and Isoflavones L. Klier, T. Bresser, T. A. Nigst, K. Karaghiosoff, P. Knochel, J. Am. Chem. Soc. 2012, 134, 13584–13587 Publikationsverzeichnis und Konferenzbeiträge [8] Photogeneration of Benzhydryl Cations by Near-UV Laser Flash Photolysis of Pyridinium Salts T. A. Nigst, J. Ammer, H. Mayr, J. Phys. Chem. A 2012, 116, 8494–8499 [9] Nucleophilic Reactivities of Hydrazines and Amines: The Futile Search for the α-Effect in Hydrazine Reactivities T. A. Nigst, A. Antipova, H. Mayr, J. Org. Chem. 2012, 77, 8142–8155 Konferenzbeiträge März 2008 SFB 749-Symposium, Wildbad Kreuth, Vortrag: “Ambident Reactivities of N-Acylpyridinium Ions” nd Sept. 2008 2 EUCHEMS CHEMISTRY CONGRESS, Turin, Italien, Posterpräsentation: “Observation of the Individual Steps in Pyridine-Catalyzed Acylation Reactions” März 2009 SFB 749-Symposium, Wildbad Kreuth, Vortrag: “Electrophilic Reactivities of Acyl Compounds” Apr. 2009 SymPOC 2009, Glasgow, Schottland, Posterpräsentation: “Observation of the Individual Steps in Pyridine-Catalyzed Acylation Reactions” Table of Contents Table of Contents 1 SUMMARY 1 2 INTRODUCTION AND OBJECTIVES 17 3 NUCLEOPHILIC REACTIVITIES OF PRIMARY AND SECONDARY 27 AMINES IN ACETONITRILE 3.1 INTRODUCTION 27 3.2 RESULTS AND DISCUSSION 28 3.2.1 Product Characterization 28 3.2.2 Kinetics of the Reactions of the Amines 2–15 with the Reference 30 Electrophiles 1 3.3 CONCLUSION 41 3.4 EXPERIMENTAL SECTION 42 3.4.1 General Comment 42 3.4.2 Kinetic Experiments 43 3.4.3 Product Characterization 60 3.5 REFERENCES 65 4 NUCLEOPHILIC REACTIVITIES OF HYDRAZINES AND AMINES: 68 THE FUTILE SEARCH FOR THE α-EFFECT IN HYDRAZINE REACTIVITIES 4.1 INTRODUCTION 68 4.2 RESULTS AND DISCUSSION 72 4.2.1 Product Characterization 72 4.2.2 Kinetics of the Reactions of 1–15 with the Reference Electrophiles 16 77 4.2.3 Ambident Reactivities of Asymmetrical Hydrazines 86 4.2.4 Structure Reactivity Relationship 92 4.2.5 Correlation of Kinetic with Thermodynamic Data 97 4.2.6 Computational Results 106 4.3 CONCLUSION 108 4.4 EXPERIMENTAL SECTION 109 4.4.1 General Comment 109 4.4.2 Kinetic Experiments 113 4.4.3 Determination of Equilibrium Constants 157 4.4.4 Product Characterization 162 4.4.4 Computational Details 177 4.5 REFERENCES 184 5 LIMITATIONS OF THE BENZHYDRYLIUM-BASED 192 NUCLEOPHILICITY SCALES FOR PREDICTING RATES OF ACYLATION REACTIONS 5.1 INTRODUCTION 192 5.2 RESULTS AND DISCUSSION 196 5.2.1 Reaction Products 196 Table of Contents 5.2.2 Kinetic Investigations 197 5.2.3 Correlation Analysis 202 5.3 CONCLUSION 210 5.4 EXPERIMENTAL SECTION 211 5.4.1 General Comment 211 5.4.2 Kinetic Experiments 213 5.4.3 Product Characterization 238 5.5 REFERENCES 239 6 REACTIVITIES OF PYRIDINES AND N-ACYLPYRIDINIUM IONS: 243 KINETICS OF MODEL REACTIONS OF AN ORGANOCATALYTIC CYCLE 6.1 INTRODUCTION 243 6.2 RESULTS AND DISCUSSION 246 6.2.1 Synthesis of N-Acylpyridinium Ions 246 6.2.2 Kinetics of the Reactions of the Benzoyl Chlorides 2a–n with the 248 Pyridines 1a–q 6.2.3 Kinetics of the Reactions of DMAP (2a) with Other Acyl Chlorides and 256 Anhydrides 6.2.4 Kinetics of the Reactions of N-Acylpyridinium ions with Benzylamine (9) 261 6.3 CONCLUSION 269 6.4 EXPERIMENTAL SECTION 271 6.4.1 General Comment 271 6.4.2 Kinetic Experiments 275 6.4.3 Product Characterization 311 6.5 REFERENCES 315 7 INDUCTIVE EFFECTS THROUGH ALKYL GROUPS — 317 HOW LONG IS LONG ENOUGH? 7.1 INTRODUCTION 317 7.2 RESULTS AND DISCUSSION 318 7.3 CONCLUSION 327 7.4 EXPERIMENTAL SECTION 327 7.4.1 General Comment 327 7.4.2 Kinetic Experiments 328 7.5 REFERENCES 332 8 PHOTOGENERATION OF BENZHYDRYL CATIONS BY NEAR-UV 333 LASER FLASH PHOTOLYSIS OF PYRIDINIUM SALTS 8.1 Introduction 333 8.2 RESULTS AND DISCUSSION 336 8.2.1 Photo-generation of Benzhydrylium Ions
Recommended publications
  • Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis Guojian Lu Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 1-15-2011 Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis Guojian Lu Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Lu, Guojian, "Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis" (2011). All Theses and Dissertations (ETDs). 612. https://openscholarship.wustl.edu/etd/612 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST.LOUIS Department of Chemistry Dissertation Examination Committee: Prof. Vladimir B. Birman, Chair Prof. Mikhail Berezin Prof. John R. Bleeke Prof. James W. Janetka Prof. Kevin D. Moeller Prof. John-Stephen Taylor Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis By Guojian Lu A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2011 Saint Louis, Missouri ABSTRACT OF THE DISSERTATION Part I Development of Nucleophilic Acylation Catalysts Part II Chiral Brønsted Acid Catalyzed Enantioselective Alcoholysis by Guojian Lu Doctor of Philosophy in Chemistry Washington University in St. Louis, 2011 Professor Vladimir B. Birman, Chairperson Chiral bicyclic amidines and isothioureas developed in our group have been showed as a new type of nucleophilic acyl transfer catalysts.
    [Show full text]
  • Synthesis of Oligonucleotides Synthese Von Oligonukleotiden Synthèse D’Oligonucléotides
    Europäisches Patentamt *EP000984021B1* (19) European Patent Office Office européen des brevets (11) EP 0 984 021 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07H 21/00, C07B 61/00, of the grant of the patent: C07H 19/10, C07H 19/20 27.04.2005 Bulletin 2005/17 (21) Application number: 99306168.8 (22) Date of filing: 03.08.1999 (54) Synthesis of oligonucleotides Synthese von Oligonukleotiden Synthèse d’oligonucléotides (84) Designated Contracting States: • BERGMANN ET AL.: "ALLYL AS DE FR GB INTERNUCLEOTIDE PROTECTING GROUP IN DNA SYNTHESIS TO BE CLEAVED OFF BY (30) Priority: 03.08.1998 US 128052 AMMONIA" TETRAHEDRON, vol. 51, no. 25, 22.06.1999 US 338179 1995, pages 6971-6976, XP002167838 • BERGMANN F ET AL: "NUCLEOTIDES PART XLI (43) Date of publication of application: 1) THE 2-DANSYLETHOXYCARBONYL (=2-((5- 08.03.2000 Bulletin 2000/10 DIMETHYLAMINO)NAPTHALEN-1-YL)SULFONY L)ETHO XYCARBONYL;DNSEOC) GROUP FOR (73) Proprietor: Agilent Technologies, Inc. (a Delaware PROTECTION OF THE 5’-HYDROXY FUNCTION corporation) IN OLIGORIBONUCLEOTIDE SYNTHESIS" Palo Alto, CA 94303 (US) HELVETICA CHIMICA ACTA, vol. 77, 1994, pages 203-214, XP002167878 ISSN: 0018-019X (72) Inventors: • PIRRUNG ET AL.: "PROOFING OF • Dellinger, Douglas J. PHOTOLITHOGRAPHIC DNA SYNTHESIS WITH Sunnyvale, CA 94087 (US) 3’,5’-DIMETHOXYBENZOINYLOXYCARBONYL- • Caruthers, Marvin H. PROTEC TED DEOXYNUCLEOSIDE Boulder, CO 80303 (US) PHOSPHORAMIDITES" JOURNAL OF ORGANIC • Betley, Jason R. CHEMISTRY, vol. 63, 1998, pages 241-246, Bury St. Edmunds, Suffolk IP28 6HW (GB) XP000916248 • SIGMUND ET AL.: "A NEW TYPE OF (74) Representative: Howard, Paul Nicholas FLUORESCENCE LABELLING OF Carpmaels & Ransford NUCLEOSIDES, NUCLEOTIDES AND 43 Bloomsbury Square OLIGONUCLEOTIDES" NUCLEOSIDES AND London WC1A 2RA (GB) NUCLEOTIDES, vol.
    [Show full text]
  • Gas-Phase Ion Chemistry: Kinetics and Thermodynamics
    Gas-Phase Ion Chemistry: Kinetics and Thermodynamics by Charles M. Nichols B. S., Chemistry – ACS Certified University of Central Arkansas, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2016 This thesis entitled: Gas-Phase Ion Chemistry: Kinetics and Thermodynamics Written by Charles M. Nichols has been approved for the Department of Chemistry and Biochemistry by: _______________________________________ Veronica M. Bierbaum _______________________________________ W. Carl Lineberger Date: December 08, 2015 A final copy of this thesis has been examined by all signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Nichols, Charles M. (Ph.D., Physical Chemistry) Gas Phase Ion Chemistry: Kinetics and Thermodynamics Thesis directed by Professors Veronica M. Bierbaum and W. Carl Lineberger Abstract: This thesis employs gas-phase ion chemistry to study the kinetics and thermodynamics of chemical reactions and molecular properties. Gas-phase ion chemistry is important in diverse regions of the universe. It is directly relevant to the chemistry occurring in the atmospheres of planets and moons as well as the molecular clouds of the interstellar medium. Gas-phase ion chemistry is also employed to determine fundamental properties, such as the proton and electron affinities of molecules. Furthermore, gas-phase ion chemistry can be used to study chemical events that typically occur in the condensed-phase, such as prototypical organic reactions, in an effort to reveal the intrinsic properties and mechanisms of chemical reactions.
    [Show full text]
  • John O. Edwards, a Half-Century of Peroxide Chemistry: a Translation from R
    Chem. Educator 2020, 25, 31–36 31 John O. Edwards, A Half-Century of Peroxide Chemistry: A translation from R. Curci, L. D'Accolti, & C. Fusco (2006) La Chimica e l'Industria, 88(6): 32–39 Edward J. Behrman Prof. Emeritus, Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, [email protected] Abstract: A brief summary is presented of the life and scientific work of Prof. John O. Edwards (Brown University, USA) and honorary member of the Italian Chemical Society who died recently. We summarize his notable contributions to the development of peroxide chemistry and, in particular, to mechanisms of oxidation, the reactions of electrophilic oxygen with nucleophiles, the generation of radical species, catalysis by transition metal species, and the reactions of the elusive peroxynitrite. work with the famous physical chemist and Nobel Prize winner, Peter Debye. In 1952 he was offered an academic job by Brown University. Because of his publications, his teaching, and his research he quickly rose to be Full Professor and then Professor Emeritus. His long, fruitful, and versatile teaching activities earned him, in 1974, the MCA (Manufacturing Chemists Association) College Chemistry Teaching Award. In the academic year 1967–1968, he was the recipient of a Guggenheim Memorial Fellowship which he took at the Universities of Rome and Padua and attended conferences and research seminars at various Italian Universities (Bologna, Milano, Genova, Bari et al.) Finally, after another three years of visits to research institutes and universities in Italy he was nominated to be Honorary Member of the Italian Chemical Society.
    [Show full text]
  • The Lfer Correlations for SN2 Reactions of Phenacyl Bromide +
    Indian Journal of Chemistry Vol. 35A, November 1996, pp. 979-982 Notes The lFER correlations for SN2 reactions to a great deal in understanding reaction mechan- of phenacyl bromide isms and throw light on the nature of transition 4 7 states. However, limited work has been done .5. on the application of LFER to reactions of phen- S John Winston, P Jayaprakash Rao* B Sethuram & TNavaneeth Rao acyl bromide. Here we report the reactions of Department of Chemistry, Osmania University, phenacyl bromide with a variety of nucleophiles, Hyderabad 500 007, India viz., CO}-, HCO;, OH-, CH3COO-, N;, SOi-, Received 15 March 1996; revised 1 May 1996 ph enoxide, imidazole, pyridine, aniline and thiou- rea and discuss the correlation of rate data with The second order rate constants for the reaction of phenacyl bromide with a number of nucleophiles, viz., different LFERs. COj-, HCOi, OH-, CH3COO-, N}-, SO~-, phenox- ide, imidazole, pyridine, aniline and thiourea have Experimental been measured in 60% acetone - 40% water(v/v) sol- Phenacyl bromide was prepared in the labora- vent medium at different temperatures. The correla- tory by standard procedure" and the purity was tion of the rate data with different linear free energy established by spectral and analytical data. All relations (LFER), viz., the Bronsted equation, the other compounds, viz., sodium carbonate, sodium Swain-Scott equation and the Edwards equation has bicarbonate, sodium hydroxide, sodium acetate, been attempted. The applicability of Bronsted equa- sodium azide, sodium sulphate, phenol, imidazole, tion and Swain-Scott equation has been found to be pyridine, aniline and thiourea were either of high- unsatisfactory and the reasons are discussed.
    [Show full text]
  • Nucleophilic Substitution at Nitrogen: Mechanisms and Intermediates
    AN ABSTRACT OF THE THESIS OF PIERRE FRANCOIS BLANCHET for theDOCTOR OF PHILOSOPHY (Name) (Degree) in CHEMISTRY (INORGANIC) presented on c)3)J J73 (Major) Date) Title:NUCLEOPHILIC SUBSTITUTION AT NITROGEN. MECHANISMS AND INTERMEDIATES INVOLVED IN SUBSTITUTION REACTIONS OF THE HYDROXYLAMINE-0- SULFONATE Redacted for privacy Abstract approved: James H. Krueger 0 The kinetics of reactions between various nucleophiles and hydroxylamine-0-sulfonate ion, H2NOSO3, have beenstudied spectrophotometrically in water and in 50 wt % water-methanol. The objective of the study was to make a quantitative evaluation of nucleo- philic reactivity at the trivalent nitrogen center in H2NOS03. show first- Reactions of the various nucleophiles (Nu) with H NOSO3 order behavior in both reactants, leading to the general rate law -d[H2NOS03] /dt = k2[H2NOS03][Nu.z]. From the kinetic studies the following results were obtained: Nucleophile 1<2 AH* A S 1<H"D pH range Ivi- lsec-1 kcal/mole eu (C 2, 0 ± 0.1 7. 4 ± 0, 1 -32±1 1.6± 0. 1 5 - 7 6H 5)3P 0. 069 ± 0, 06 1 1 6 ± 0.3 -24, 4± 1 1.3± 0.1 3 - 8 2- 2203 0. 550 ± 0, 015 10, 8 ± 0, 1 -22,80,5 1, 1 ± 0,05 3 - 9 (HN)C=S 1,63 ± 0, 07 7. 4 ± 0,2 5 1, 1 ± 0, 1 3 -11 2 2 -32, 3±1. For the reactions of (CH 5)3P, (H2N)2C =S, and I, the second-order 6 rate constants decrease below pH 3 and, in the case of Nu = I, it was possible to obtain the rate constant for reaction with molecular -1 H3NOSO3, .
    [Show full text]
  • Nucleophilic Reactivity Towards Electron-Deficient Nitrogen
    NUCLEOPHILIC REACTIVITY TOWARDS ELECTRON-DEFICIENT NITROGEN by GURUDAS BHATTACHARJEE, M.Sc. A Thesis submitted to the University of London for the Degree of Doctor of Philosophy in the Faculty of Science September, 1973 Department of Organic Chemistry, Imperial College of Science & Technology, South Kensington, London, S.W.7. 2 ABSTRACT A general survey of recent developments in the field of nucleophilic reactivity towards some familiar organic electron- deficient centes is presented and the chemistry of the three electron-deficient N-centres investigated is reviewed. A new scale of relative nucleophilicities of various substrates towards the electron-deficient N-centre of 0-(2,4-dinitropheny1)- hydroxylamine is given and explained in terms of Pearson's HSAB principle and the polarizability factor of Edwards and Pearson. The steric environment about the N-atom is found to be less congested than that of comparable carbon compounds. The relative nucleophilicities of substrates towards the hydroxyl- amine are compared with those towards peroxide oxygen, sulphenyl sulphur and I+ species. The order of relative nucleophilicities of various substrates towards the nitroso group of alkylnitrites is found to be similar to that for the nitrous acidium ion and is explained in terms of a dependen-ce on both basicity and polarizability factors. The facile reactions of 2,3,3-triethyl oxaziridine with selenocyanate is explained as a moderately soft N-Centre in the light of the HSAB principle. The products of the acid hydrolysis of 2-benzy1-3,3-diethyloxaziridine are investigated. The formation of aniline by the acid-catalysed pathway and that of benzaldehyde by both the acid and the base-catalysed pathways is explained.
    [Show full text]
  • Orgunic and Biologicul Chemistry
    1827 Orgunic and Biologicul Chemistry Application of the Principle of Hard and Soft Acids and Bases to Organic Chemistry Ralph G.Pearson and Jon Songstad' Contribution from the Department of Chemistry, Northwestern University, Euanston, Illinois 60201. Received November 2, 1966 Abstract: The principle of hard and soft acid and bases (HSAB principle) is applied to organic chemistry. ,Organic molecules are viewed as Lewis acid-base complexes and their relative thermodynamic stability explained in terms of two factors. One is the tendency of intrinsically strong acids to coordinate to the strongest bases. The second is the special stabilization of combinations of hard acids and bases, or soft acids and bases. The symbiotic principle is illustrated, which states that there is an extra stabilization if several soft bases (ligands) or several hard bases cluster about a single acidic atom. The same two principles are applied to rates of nucleophilic and elec- trophilic substitutionreactions in organic chemistry. ecently2a generalization was proposed which makes CHSHg+(aq) + BH+(aq) CHaHgB+(aq) + H+(aq) (1) R it possible to correlate a great many phenomena in various areas of chemistry. Use is made of the con- If the equilibrium constant for this reaction is much cept of generalized, or Lewis, acids and bases. The greater than unity, the base B is soft. If it is near unity, generalization may be called the principle of hard or less than unity, the base is hard. The proton is the and soft acids and bases (HSAB). It states that hard simplest hard acid and the methylmercury cation is one acids prefer to coordinate to hard bases and soft acids of the simplest soft acids.
    [Show full text]
  • Solvent Effect and Catalysis in the Synthesis of Thiosemicarbazone Derivatives from Ketones and 4’ - Phenylthiosemicarbazide
    Vol. 8(8), pp. 110 -115 August, 2014 DOI:10.5897/AJPAC2014.0575 Article Number: 4083C7C46886 African Journal of Pure and Applied ISSN 1996 - 0840 Copyright © 2014 Chemi stry Author(s) retain the copyright of this article http://www.academicjournals.org/AJPAC Full Length Research Paper Solvent effect and catalysis in the synthesis of thiosemicarbazone derivatives from ketones and 4’ - phenylthiosemicarbazide 1, 2 2,3 1 4 Urbain C. Kasséhin *, Fernand A. Gbaguidi , Coco N. Kapanda , Christopher R. McCurdy and Jacques H. Poupaert 1 1Medicinal Chemistry, Louvain Drug Research Institute, Université catholique de Louvain. 73, Bte B1.73.10, Av. E. Mounier B-1200 Bruxelles, Belgique.U.E. Belgium. 2Laboratoire de Chimie Pharmaceutique Organique, Ecole de Pharmacie, Faculté des Sciences de la Santé, Université d'Abomey-Calavi, Campus du Champ de Foire, 01 BP 188, Cotonou Benin Republic West Africa. 3Laboratoire de Pharmacognosie/UAC/CBRST ; Porto-Novo, BP 06 Oganla, Benin Republic West Africa. 4Medicinal Chemistry, School of Pharmacy, 419 Faser Hall, P. O. BOX 1848, Oxford, University, Mississipi 386771848, United States. Received 13 May, 2014; Accepted 12 August, 2014 In this paper, we performed a series of experiments aiming at establishing the solvent effects in the condensation of 4-phenylthiosemicarbazide with 4-nitroacetophenone to form the expected thiosemicarbazone derivative, reaction which was chosen as pilot reaction, having in mind to set up optimal reaction conditions for the future elaboration of a compound library of thiosemicarbazone derivatives. Methanol was found to be a suitable solvent for this purpose. As a general rule, acid catalysis was found to perform better than base catalysis.
    [Show full text]
  • Organic Mechanisms: Reactions, Stereochemistry and Synthesis
    Organic Mechanisms Reactions, Stereochemistry and Synthesis Reinhard Bruckner Organic Mechanisms Reactions, Stereochemistry and Synthesis Edited by Michael Harmata With a foreword by Paul A. Wender Prof. Dr. Reinhard Bruckner Albert-Ludwigs-Universität Freiburg Institut für Organische Chemie und Biochemie Albertstr. 21 79104 Freiburg [email protected] Prof. Dr. Michael Harmata Norman Rabjohn Distinguished Professor of Chemistry Department of Chemistry University of Missouri-Columbia 601 S. College Avenue Columbia, Missouri 65211 [email protected] Translation: Karin Beifuss ISBN: 978-3-642-03650-7 e-ISBN: 978-3-642-03651-4 DOI: 10.1007/978-3-642-03651-4 Library of Congress Control Number: 2009938642 © Springer-Verlag Berlin Heidelberg 2010 Translation of Brückner, R Reaktionsmechanismen, 3rd edition, published by Spektrum Akademi- scher Verlag, © 2007 Spektrum Akademischer Verlag, ISBN 987-3-8274-1579-0 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad - casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Acidity and Basicity It Is Useful to Begin a Discussion of Organic Chemical
    1 Acidity and Basicity It is useful to begin a discussion of organic chemical reactions with a review of acid-base chemistry and terminology for several reasons. First, acid-base reactions are among the simplest to recognize and understand. Second, some classes of organic compounds have distinctly acidic properties, and some other classes behave as bases, so we need to identify these aspects of their chemistry. Finally, many organic reactions are catalyzed by acids and/or bases, and although such transformations may seem complex, our understanding of how they occur often begins with the functioning of the catalyst. Organic chemists use two acid-base theories for interpreting and planning their work: the Brønsted theory and the Lewis theory. 2 Brønsted Theory According to the Brønsted theory, an acid is a proton donor, and a base is a proton acceptor. In an acid-base reaction, each side of the equilibrium has an acid and a base reactant or product, and these may be neutral species or ions. H-A + B:(–) A:(–) + B-H (acid1) (base1) (base2) (acid2) Structurally related acid-base pairs, such as {H-A and A:(–)} or {B:(–) and B-H} are called conjugate pairs. Substances that can serve as both acids and bases, such as water, are termed amphoteric. (–) (+) H-Cl + H2O Cl: + H3O (acid) (base) (base) (acid) (+) (–) H3N: + H2O NH4 + HO 3 (base) (acid) (acid) (base) The relative strength of a group of acids (or bases) may be evaluated by measuring the extent of reaction that each group member undergoes with a common base (or acid). Water serves nicely as the common base or acid for such determinations.
    [Show full text]
  • Gas-Phase Ion Chemistry: Kinetics and Thermodynamics by Charles M
    Gas-Phase Ion Chemistry: Kinetics and Thermodynamics by Charles M. Nichols B. S., Chemistry – ACS Certified University of Central Arkansas, 2009 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2016 This thesis entitled: Gas-Phase Ion Chemistry: Kinetics and Thermodynamics Written by Charles M. Nichols has been approved for the Department of Chemistry and Biochemistry by: _______________________________________ Veronica M. Bierbaum _______________________________________ W. Carl Lineberger Date: December 08, 2015 A final copy of this thesis has been examined by all signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Nichols, Charles M. (Ph.D., Physical Chemistry) Gas Phase Ion Chemistry: Kinetics and Thermodynamics Thesis directed by Professors Veronica M. Bierbaum and W. Carl Lineberger Abstract: This thesis employs gas-phase ion chemistry to study the kinetics and thermodynamics of chemical reactions and molecular properties. Gas-phase ion chemistry is important in diverse regions of the universe. It is directly relevant to the chemistry occurring in the atmospheres of planets and moons as well as the molecular clouds of the interstellar medium. Gas-phase ion chemistry is also employed to determine fundamental properties, such as the proton and electron affinities of molecules. Furthermore, gas-phase ion chemistry can be used to study chemical events that typically occur in the condensed-phase, such as prototypical organic reactions, in an effort to reveal the intrinsic properties and mechanisms of chemical reactions.
    [Show full text]