<<

7. Formal

Derivatives of elementary functions

Elem. Its Composed with inner function Composite function f (x) ( f (x))  f (x) ( f (g(x))  f (g(x))  g(x) example

2 1  Power function (1 x ) 2     1  1 (x )   x ((g(x)) )   (g(x))  g(x) 2  1 x 1 (1 x ) 2 (2x) (α: real constant) 2

Root function  1 x Use  x  x  to reduce roots to power functions (β ≠ 0 is real)

Exponential x x g(x) g(x) tg x  tg x 1 (a )  a ln a (a )  (a ln a) g(x) 2   2 ln 2 2 function a x cos x

(0 < a ≠ 1 real x x g(x) g(x) (e )  e (e )  e  g(x) x  x x constant) e   e (1)  e

Logarithm 1  function  g (x) (loga x)  , (loga g(x))  , g(x)  0  sin x loga x x ln a g(x)ln a (lg(cos x))  cos x ln10 (0 < a ≠ 1 real if x  0 logarithmic derivative of g(x): constant)

1 g(x) x x e ln x  loge x (ln x)  , if x  0 (ln g(x))  , ha g(x)  0 (ln (1 e ))  x g(x) 1 e x

1 sin x (sin x)  cos x (sin g(x))  cos g(x) g(x) (sin(ln x))  cos(ln x))  x

(cos (x2 1))  cos x (cos x)  sin x (cos g(x))  sin g(x) g(x)  sin(x2 1)) 2x

1 (tgx)  g(x) tg2 x 1 t an x cos2 x (tgg(x))  (tg(tgx))  cos2 (g(x)) cos2 (tgx)  tg2 x 1 1 1 (ctg x)   g(x) ctgx     ctg x sin2 x (ctg g(x))   sin2 x   sin 2 (g(x))    ctg2 x 1

General rules

1. Constant factor rule: (cf (x))  cf (x)

2. Sum rule: ( f (x)  g(x))  f (x)  g(x)

3. Difference rule: ( f (x)  g(x))  f (x)  g(x)

4. : ( f (x)  g(x))  f (x)g(x)  f (x)g(x)

 f (x)  f (x)g(x)  f (x)g(x)   5. :   2  g(x)  (g(x))

6. (composite function): ( f (g(x))  f (g(x))  g(x)

7. Logarithmic differentiation: f (x)  f (x)(ln f (x)) Using we can reduce product to sum, quotient to difference, power to product, e. g.:: (x 3 1)sin 2 x a) f (x)   f (x)  f (x)  ln(x 3 1)  ln(sin 2 x)  ln(e x  e 2 ) e x  e 2 (x 3 1)sin 2 x  3x 2 2sin x cos x e x        x 2  3 2 x 2  e  e  x 1 sin x e  e  1 1 x x x  1 2 1 1 b) f (x)  x  x  f (x)  f (x)  ln x   f (x)  (x ln x)  f (x)  (x ln x  x x ) 1 ln x  x x  x 2

PROBLEM 1 Differentiate these functions using rules for fundamental operations: x 2 x 3 a) 1 x   b) 3sin x  tgx  2 2 c) 2x ( 2x  33 x) 2 6

x 2005  2  2 2 e  x d) 3tgx  3  lg x e) sin x  cos x f)  x  2006 x

4 2 e sin x  cos x x   x  2 x ctg x g) h) 5 3 i)  2 sin x  cos x 2x  x  9x x  ln x x(e x 1) j) log0,5 x PROBLEM 2 Differentiate these functions using the chain rule for composite functions:

a) log (x) b) e2x c) cos x d)  4x 2 2

x e 2,71828 cosxsinx 2005 2006 e) (e  x ) f) e g) sin 2x  cos 2x h) x  x i) cos(cos x) j) exp ( 1 x2 ) k) exp (ex ) l) 2 1 x x 100 1 x   m) 1 1 x n) ln o) log2 p) 1  1  x 2  100  q) sin(cos ( x )) r) tg(ctg(x ))

PROBLEM 3 Differentiate these functions using the appropriate rules:

e2x  e2x a) 1 e4x  1 43x1 b) x3 (tg3x  ctg2x) c) ln 2 3 e2x  e2x

3 2 x 3 x  x  x 1 2 2 d) 3 log3 (1 x ) e) 2 f) (1 x ) 1 x 2x  2 sin 2x g) h) ex sin2x i) xe ln (1 ex )  e x2 cos 2 x

4 x 4  x 4 cos2 x  cos x2 j) (2ctgx  lg x)2 k) l) tg4x x2

3x tgx m) esinx ln (sin x) n) ctg(tgx)  tg(ctg x) o*) 3 ln 2x

(1 2x 2 )sin x p*) q*) (cos x)tg x r*) x x  x 2 e2x  x 2 1

sinxcosx x s*) sin x  cos x t*) x

Domain of definition, differentiability, derivative

PROBLEM 4 What is the domain of definition and where is it differentiable? Determine the derivative! (also plot the graph of the original function and give its range.)

3 2 2ln(1x) a+) x 1 b) log2 (1 cos x) c+) e d) ctg x 1  x 1 e) sin x f+) cos x 1 1 g) h) 2 2  x x  3x  2  x  1 i) 2x  x2 j) ln (tgx) k+) l+) ln x x 1 x

Equation of line

PROBLEM 5 Detemine the tangent line of f (x) at x0! (+-problem: also plot the graph of f (x) and its

tangent line.) Approximate the value of f (x) using the tangent line equation at x=x0+0.1

or at x=x0–0.1. x2 a+) f (x)  x 1, x  5 b+) f (x)    3x  4, x  1 0 2 0 2x  5 c+) f (x)  , x  0 d+) f (x)  1 cos 2x, x   x  2 0 0 4

2 x1 e) f (x)  ln (x  2x  2), x0  1 f) f (x)  2xe 1, x0  1