Formal Rules for Differentiation

Formal Rules for Differentiation

7. Formal differentiation rules Derivatives of elementary functions Elem. function Its derivative Composed with inner function Composite function f (x) ( f (x)) f (x) ( f (g(x)) f (g(x)) g(x) example 2 1 Power function (1 x ) 2 1 1 (x ) x ((g(x)) ) (g(x)) g(x) 2 1 x 1 (1 x ) 2 (2x) (α: real constant) 2 Root function 1 x Use x x to reduce roots to power functions (β ≠ 0 is real) Exponential x x g(x) g(x) tg x tg x 1 (a ) a ln a (a ) (a ln a) g(x) 2 2 ln 2 2 function a x cos x (0 < a ≠ 1 real x x g(x) g(x) (e ) e (e ) e g(x) x x x constant) e e (1) e Logarithm function 1 g(x) (loga x) , (loga g(x)) , g(x) 0 sin x loga x x ln a g(x)ln a (lg(cos x)) cos x ln10 (0 < a ≠ 1 real if x 0 logarithmic derivative of g(x): constant) 1 g(x) e x x ln x loge x (ln x) , if x 0 (ln g(x)) , ha g(x) 0 (ln (1 e )) x g(x) 1 e x 1 sin x (sin x) cos x (sin g(x)) cos g(x) g(x) (sin(ln x)) cos(ln x)) x (cos (x2 1)) cos x (cos x) sin x (cos g(x)) sin g(x) g(x) sin(x2 1)) 2x 1 (tgx) g(x) tg2 x 1 t an x cos2 x (tgg(x)) (tg(tgx)) cos2 (g(x)) cos2 (tgx) tg2 x 1 1 1 (ctg x) g(x) ctgx ctg x sin2 x (ctg g(x)) sin2 x sin 2 (g(x)) ctg2 x 1 General rules 1. Constant factor rule: (cf (x)) cf (x) 2. Sum rule: ( f (x) g(x)) f (x) g(x) 3. Difference rule: ( f (x) g(x)) f (x) g(x) ( f (g(x)) f (g(x)) g(x) 4. Product rule: ( f (x) g(x)) f (x)g(x) f (x)g(x) f (x) f (x)g(x) f (x)g(x) 5. Quotient rule: 2 g(x) (g(x)) 6. Chain rule (composite function): 7. Logarithmic differentiation: f (x) f (x)(ln f (x)) Using logarithm we can reduce product to sum, quotient to difference, power to product, e. g.:: (x 3 1)sin 2 x a) f (x) f (x) f (x) ln(x 3 1) ln(sin 2 x) ln(e x e 2 ) e x e 2 (x 3 1)sin 2 x 3x 2 2sin x cos x e x x 2 3 2 x 2 e e x 1 sin x e e 1 1 x x x 1 2 1 1 b) f (x) x x f (x) f (x) ln x f (x) (x ln x) f (x) (x ln x x x ) 1 ln x x x x 2 PROBLEM 1 Differentiate these functions using rules for fundamental operations: x 2 x 3 a) 1 x b) 3sin x tgx 2 2 c) 2x ( 2x 33 x) 2 6 x 2005 2 2 2 e x d) 3tgx 3 lg x e) sin x cos x f) x 2006 x 4 2 e sin x cos x x x 2 x ctg x g) h) 5 3 i) 2 sin x cos x 2x x 9x x ln x x(e x 1) j) log0,5 x PROBLEM 2 Differentiate these functions using the chain rule for composite functions: a) log (x) b) e2x c) cos x d) 4x 2 2 x e 2,71828 cosxsinx 2005 2006 e) (e x ) f) e g) sin 2x cos 2x h) x x i) cos(cos x) j) exp ( 1 x2 ) k) exp (ex ) l) 2 1 x x 100 1 x m) 1 1 x n) ln o) log2 p) 1 1 x 2 100 q) sin(cos ( x )) r) tg(ctg(x )) PROBLEM 3 Differentiate these functions using the appropriate rules: e2x e2x a) 1 e4x 1 43x1 b) x3 (tg3x ctg2x) c) ln 2 3 e2x e2x 3 2 x 3 x x x 1 2 2 d) 3 log3 (1 x ) e) 2 f) (1 x ) 1 x 2x 2 sin 2x g) h) ex sin2x i) xe ln (1 ex ) e x2 cos 2 x 4 x 4 x 4 cos2 x cos x2 j) (2ctgx lg x)2 k) l) tg4x x2 3x tgx m) esinx ln (sin x) n) ctg(tgx) tg(ctg x) o*) 3 ln 2x (1 2x 2 )sin x p*) q*) (cos x)tg x r*) x x x 2 e2x x 2 1 sinxcosx x s*) sin x cos x t*) x Domain of definition, differentiability, derivative PROBLEM 4 What is the domain of definition and where is it differentiable? Determine the derivative! (also plot the graph of the original function and give its range.) 3 2 2ln(1x) a+) x 1 b) log2 (1 cos x) c+) e d) ctg x 1 x 1 e) sin x f+) cos x 1 1 g) h) 2 2 x x 3x 2 x 1 i) 2x x2 j) ln (tgx) k+) l+) ln x x 1 x Equation of tangent line PROBLEM 5 Detemine the tangent line of f (x) at x0! (+-problem: also plot the graph of f (x) and its tangent line.) Approximate the value of f (x) using the tangent line equation at x=x0+0.1 or at x=x0–0.1. x2 a+) f (x) x 1, x 5 b+) f (x) 3x 4, x 1 0 2 0 2x 5 c+) f (x) , x 0 d+) f (x) 1 cos 2x, x x 2 0 0 4 2 x1 e) f (x) ln (x 2x 2), x0 1 f) f (x) 2xe 1, x0 1 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us